Способ определения мощности ядерного взрыва

Изобретение относится к области построения и функционирования измерительных информационных систем обнаружения и засечки ядерных взрывов. Способ определения мощности ядерного взрыва содержит этапы, на которых одновременно измеряют сигнал в оптическом диапазоне длин волн и сигнал от ионизирующего излучения, при этом аппаратно или программно дифференцируют сигналы, полученные от каналов измерения оптического сигнала и сигнала ионизирующего излучения, а мощность взрыва определят по величине смещения точки пересечения графиков производных функций сигналов ионизирующего и оптического излучения. Технический результат – повышение точности и достоверности определения параметров ядерного взрыва, в том числе его мощности. 2 ил.

 

Изобретение относится к области построения и функционирования измерительно-информационных систем обнаружения и засечки ядерных взрывов. Обнаружение ядерных взрывов необходимо для наблюдения за испытаниями ядерного оружия за рубежом и контроля соблюдения договоров о запрещении ядерных испытаний.

В настоящее время определение основных параметров ядерного взрыва осуществляется по данным радиотехнического метода, сейсмического метода и светотехнического метода. Сложность определения мощности ядерного взрыва по данным радиотехнического метода заключается в том, что характеристики электромагнитного излучения в эпицентре (наиболее полно отражающие энергетику источника) существенно отличаются от тех, которые регистрируются в точке обнаружения. Эмпирические же данные, полученные в ходе проведения испытаний ядерного оружия, систематизированы для некоторого расстояния от эпицентра. Следовательно, в лабораториях специального контроля и вычислительных центрах необходимо использовать методики пересчета параметров, зарегистрированных электромагнитных импульсов на этом расстоянии с последующим определением параметров взрыва. В системах сейсмического контроля процесс определения мощности ядерного взрыва проводится в три этапа: расчет магнитуды по сейсмическому сигналу, внесение поправок для учета различий в геологическом строении каждого испытательного полигона, преобразование магнитуды в оценку мощности.

Для определения мощности ядерного взрыва светотехническим методом могут быть использованы следующие три способа [1].

1. Способ, основанный на измерении радиуса светящейся области r(t) в фиксированные относительно начала ядерного взрыва моменты времени или на измерении скорости развития светящейся области Способ характеризуется высокой точностью (σq≤0,07q), применяется при полигонных испытаниях. В станциях засечки применения не нашел, поскольку необходимо фотографировать светящуюся область через малые промежутки времени.

2. Способ определения мощности ядерного взрыва по размерам изображения светящейся области на дневной (аристотипной) фотобумаге.

3. Способы, основаны на измерении информативных параметров оптического сигнала ядерного взрыва. При этом к информативным параметрам оптического сигнала относят: tКНФ - время конца начальной фазы развития световой области; tК1Ф - время конца первой фазы развития световой области; t2max - время наступления второго максимума оптического сигнала ядерного взрыва. На измерении tКНФ основан способ «первого максимума». На измерении tК1Ф основан способ минимума, а на измерении t2max - способ «второго максимума».

Способы, описанные в [1], используют один канал измерения, дифференцирование формы полученных сигналов как функции времени и координат не осуществляют.

В [2] разработан метод и устройство, которые обеспечивают за одно измерение определение мощности и направления на центр ядерного взрыва по его световому излучению. Метод основан на автоматическом определении длительности первой фазы светового излучения ядерного взрыва и сигналов, порожденных импульсами излучения, от двух плоских кремниевых фотодиодов, размещенных под углом друг к другу. Указанный способ [2] использует один канал измерения, дифференцирование формы сигнала не осуществляет.

Наиболее близким по сущности к заявляемому способу является способ, который реализуют в устройстве регистрации импульсного ионизирующего и импульсного оптического излучения с передачей сигнала по ВОЛС [3]. Устройство прототипа регистрирует импульсное ионизирующее и импульсное оптическое излучение микро-, наносекундного временных диапазонов, передает полученный сигнал по волоконно-оптическим линиям связи с использованием внешней модуляции излучения к устройству обработки информации и осуществляет точное восстановление формы регистрируемого импульсного ионизирующего или импульсного оптического излучения по оптическому аналогу. Устройство [3] содержит: лазерный модуль (источник оптического излучения); электрооптический модулятор интенсивности по схеме интерферометра Маха-Цандера; приемник оптического излучения (например, фотодиод или хронографический электронно-оптический регистратор (ЭОР)); источник питания для подачи постоянного напряжения на электроды сдвига модулятора; электроды сдвига модулятора; электрический сигнальный вход модулятора; оцифровщик (например, осциллограф, если в качестве приемника оптического излучения используется фотодиод, или ПЗС-регистратор, если в качестве приемника оптического излучения используется хронографический ЭОР); фотоэлемент (например, фотоэлектронный умножитель сцинтилляционного детектора ионизирующего излучения или полупроводниковый чувствительный элемент); источник калибровочного оптического сигнала, электрический аналог калибровочного оптического сигнала; электрический аналог регистрируемого информационного сигнала; изменение оптического сигнала на выходе модулятора, вызванное калибровочным электрическим сигналом, изменение оптического сигнала на выходе модулятора, вызванное приходом информационного электрического сигнала; входное одномодовое волокно; выходное одномодовое волокно; регистрируемый информационный сигнал (например, импульсное ионизирующее излучение или импульсное оптическое излучение); калибровочный оптический сигнал.

Таким образом, прототип содержит два независимых канала измерения: каналы ионизирующего и оптического излучения, но способ определения параметров ядерного взрыва в силу состава используемых для его реализации технических средств не осуществляет определение его мощности. Также способ прототипа не использует дифференцирование формы полученных сигналов, что снижает его точность и достоверность.

Задачей предлагаемого способа является повышение точности и достоверности определения параметров ядерного взрыва, в том числе, его мощности. Задачу решают путем измерения формы сигнала как в оптическом диапазоне (ультрафиолетовом, видимом и инфракрасном) длин волн, так и в диапазоне ионизирующего излучения (рентгеновского, гамма-излучения), затем формы сигналов как функции времени дифференцируют аппаратно или программно. Известно, что использование производных от функций, имеющих достаточно монотонный вид для повышения точности определения связи значения измеряемой величины со значением аргумента оказалось высоко эффективным способом при исследовании спектров первоначально твердых тел [4], а в последствии широко применяют при спектральном анализе различных физических процессов. Мощность ядерного взрыва по заявляемому способу однозначно и с высокой точностью определяют по величине смещения точки пересечения графиков производных от функций сигналов ионизирующего и оптического излучения. На фиг. 1 представлены зависимости интенсивности гамма и светового импульса ядерного взрыва (100 кт в тротиловом эквиваленте) от времени, а также их производные, взятые по модулю. На фиг. 2 приведен пример смещения точек пересечения производных функций интенсивности светового импульса и гамма-излучения ядерного взрыва с различным тротиловым эквивалентом (ТЭ). Достоверность заявляемого способа достигают за счет использования двух независимых спектральных каналов регистрации излучения взрыва.

Реализация заявляемого способа может быть осуществлена с помощью полупроводникового комбинированного приемника электромагнитного излучения [5].

Литература

1. Г.А. Ивойлов, А.В. Скуридин, М.Ю. Дорофеев. Измерительные информационные системы. Москва.: Военная академия Ракетных войск стратегического назначения, 2008. 272 с.

2. И.Ю. Чернявский, А.Н. Григорьев, З.В. Билык, В.Б. Матыкин. Применение кремниевых PIN детекторов для регистрации параметров ядерного взрыва. 2016, №4 (48).

3. Игнатьев Н. Г., Крапива П.С., Короткое К.Е., Москаленко И.Н. Устройство регистрации импульсного ионизирующего и импульсного оптического излучения с передачей по ВОЛС. Патент на изобретение RU 2 620 589, 2017 г. Опубликовано: 29.05.2017. Бюл. №16.

4. М. Кардона. Модуляционная спектроскопия. Москва: «Мир», 1972 г, 414 с.

5. Средин В.Г., Войцеховский А.В., Васильева Ю.В. Полупроводниковый комбинированный приемник электромагнитного излучения. Патент на изобретение RU 2578103, 2016 г.

Способ определения мощности ядерного взрыва, заключающийся в том, что одновременно измеряют сигнал в оптическом диапазоне длин волн и сигнал от ионизирующего излучения, отличающийся тем, что аппаратно или программно дифференцируют сигналы, полученные от каналов измерения оптического сигнала и сигнала ионизирующего излучения, а мощность взрыва определяют по величине смещения точки пересечения графиков производных функций сигналов ионизирующего и оптического излучения.



 

Похожие патенты:

Группа изобретений относится к детектору излучения. Детектор излучения содержит преобразующий элемент для преобразования падающего излучения в электрические сигналы; схему считывания для обработки упомянутых электрических сигналов; нагревательное устройство, отделенное от схемы считывания, для нагревания преобразующего элемента, причем нагревательное устройство содержит элемент Пельтье, и причем источник тепла упомянутого элемента Пельтье ориентирован к преобразующему элементу, а его теплоотвод ориентирован к схеме считывания.

Группа изобретений относится к детектору излучения. Детектор излучения содержит преобразующий элемент для преобразования падающего излучения в электрические сигналы; схему считывания для обработки упомянутых электрических сигналов; нагревательное устройство, отделенное от схемы считывания, для нагревания преобразующего элемента, причем нагревательное устройство содержит элемент Пельтье, и причем источник тепла упомянутого элемента Пельтье ориентирован к преобразующему элементу, а его теплоотвод ориентирован к схеме считывания.

Изобретение относится к обнаружению медленных нейтронов. Устройство обнаружения медленного нейтрона содержит первый преобразователь медленных нейтронов и второй преобразователь медленных нейтронов, выполненные с возможностью взаимодействия с падающими нейтронами и генерирования электронов, устройство умножения и считывания электронов, расположенное между первым преобразователем медленных нейтронов и вторым преобразователем медленных нейтронов и выполненное с возможностью умножения и считывания электронов, причем устройство умножения и считывания электронов содержит первый катодный проводной набор, второй катодный проводной набор и проводной набор считывающего электрода.

Изобретение относится к обнаружению медленных нейтронов. Устройство обнаружения медленного нейтрона содержит первый преобразователь медленных нейтронов и второй преобразователь медленных нейтронов, выполненные с возможностью взаимодействия с падающими нейтронами и генерирования электронов, устройство умножения и считывания электронов, расположенное между первым преобразователем медленных нейтронов и вторым преобразователем медленных нейтронов и выполненное с возможностью умножения и считывания электронов, причем устройство умножения и считывания электронов содержит первый катодный проводной набор, второй катодный проводной набор и проводной набор считывающего электрода.

Планарный полупроводниковый детектор предназначен для регистрации излучений в ядерной физике, физике высоких энергий, а также в цифровых аппаратах, регистрирующих заряженные частицы, гамма-кванты и рентгеновское излучение.

Планарный полупроводниковый детектор предназначен для регистрации излучений в ядерной физике, физике высоких энергий, а также в цифровых аппаратах, регистрирующих заряженные частицы, гамма-кванты и рентгеновское излучение.

Группа изобретений относится к полупроводниковым детекторам рентгеновского или гамма-излучения. Полупроводниковый детектор для счета фотонов содержит подложку из полупроводникового материала, источник напряжения смещения для приложения к подложке напряжения смещения в течение каждого периода сбора данных, считывающее устройство для периодического считывания данных, характеризующих количество зарядов, образующихся в подложке (11) как отклик на фотоны, внешний источник оптического излучения, способный воздействовать указанным излучением на подложку для обеспечения возможности перехода захваченных носителей заряда с дефектных уровней в подложку, управляющее устройство, функционально связанное с источником напряжения смещения, при этом управляющее устройство сконфигурировано с возможностью управлять источником напряжения смещения с прерыванием подачи указанного напряжения на подложку и внешним источником оптического излучения с включением указанного источника для облучения подложки, обеспечивающего возможность перехода захваченных носителей заряда с дефектных уровней в подложку, одновременно в течение по меньшей мере части указанных периодов считывания.

Использование: для создания полупроводникового пиксельного детектора сильно ионизирующих заряженных частиц. Сущность изобретения заключается в том, что детектор включает последовательное соединение монолитного слоя высокоомного полупроводникового материала (сенсора) со сплошным внешним и пиксельным внутренним металлическими электродами и регистрирующей пиксельной микросхемы с коэффициентом усиления не менее 80 мВ/фКл, при этом из схемы детектора исключен источник напряжения смещения и добавлен резистор, который подключен к внешнему металлическому электроду сенсора и регистрирующей схеме.

Группа изобретений относится к способу контроля коэффициента усиления и установки в ноль многопиксельного счетчика фотонов. Способ контроля коэффициента усиления многопиксельного счетчика фотонов содержит этапы, на которых сигналы, генерируемые устройством, принимают в течение заданных периодов, пока не будет достигнуто заданное суммарное время измерений, формируют гистограмму амплитуд на основе принятых сигналов, определяют позиции двух последовательных пиков, измеримых на этой гистограмме, генерируют сигнал ошибки, равный девиации между этими двумя пиками, и на основе этого сигнала ошибки регулируют напряжение, подаваемое на устройство, чтобы поддерживать девиацию, равную заданной величине.

Группа изобретений относится к способу контроля коэффициента усиления и установки в ноль многопиксельного счетчика фотонов. Способ контроля коэффициента усиления многопиксельного счетчика фотонов содержит этапы, на которых сигналы, генерируемые устройством, принимают в течение заданных периодов, пока не будет достигнуто заданное суммарное время измерений, формируют гистограмму амплитуд на основе принятых сигналов, определяют позиции двух последовательных пиков, измеримых на этой гистограмме, генерируют сигнал ошибки, равный девиации между этими двумя пиками, и на основе этого сигнала ошибки регулируют напряжение, подаваемое на устройство, чтобы поддерживать девиацию, равную заданной величине.

Изобретение относится к области построения и функционирования измерительных информационных систем обнаружения и засечки ядерных взрывов. Способ определения мощности ядерного взрыва содержит этапы, на которых одновременно измеряют сигнал в оптическом диапазоне длин волн и сигнал от ионизирующего излучения, при этом аппаратно или программно дифференцируют сигналы, полученные от каналов измерения оптического сигнала и сигнала ионизирующего излучения, а мощность взрыва определят по величине смещения точки пересечения графиков производных функций сигналов ионизирующего и оптического излучения. Технический результат – повышение точности и достоверности определения параметров ядерного взрыва, в том числе его мощности. 2 ил.

Наверх