Композиционный материал на основе алюминия (варианты) и изделие из него

Изобретение относится к материалам для защиты от радиационного излучения, обладающим повышенной теплопроводностью, термостойкостью до 400°С и низким значением коэффициента термического расширения, и может быть использовано в атомной, радиохимической промышленности, а также в военно-морской и авиакосмической промышленности в целях защиты обслуживающего персонала и окружающей среды. Композиционный материал на основе алюминия состоит из карбида бора с содержанием от 40 до 60 масс. % и карбида кремния от 5 до 25 масс. %, остальное - матрица из алюминия или литейного алюминиевого сплава системы Al-Si, а также изделие из него. Композиционный материал на основе алюминия состоит из карбида бора с содержанием от 30 до 59 масс. %, изотопа бора 10 с содержанием от 1 до 10 масс. % и карбида кремния от 5 до 25 масс. %, остальное - матрица из алюминия или литейного алюминиевого сплава системы Al-Si, а также изделие из него. Изобретение позволяет повысить теплопроводность и защиту от радиационного излучения. 4 н.п. ф-лы, 1 табл.

 

Область техники

Изобретение относится к материалам для защиты от радиационного излучения, обладающих умеренной теплопроводностью, термостойкостью до 400°С и низким значением коэффициента термического расширения и может быть использовано в атомной, радиохимической промышленности, а также в военно-морской и авиакосмической промышленности в целях защиты обслуживающего персонала и окружающей среды.

Уровень техники

Существует широкий спектр материалов, которые используются или могут быть использованы, для защиты от нейтронного и γ-излучения. Самыми широко используемыми являются: свинец, карбид бора, углеродные материалы, железо и полиэтилен. При этом те или иные материалы обладают рядом недостатков, связанных с физической природой, коррозионной стойкостью или высокой стоимостью. В связи с этим универсального материала, который мог бы использоваться для защиты одновременно от этих видов излучений пока нет, что предполагает использование комплексной защиты. В этом случае, использование композиционных материалов, в частности на алюминиевой основе, является перспективным направлением, которое обеспечит получение эффективной защиты от радиационного излучения и обеспечит необходимую теплопроводность и снизит вес.

Изобретение относится к композиционным материалам на металлической матрице, применяющимся для защиты от ионизирующих излучений в атомной, радиохимической промышленности, военно-морском флоте, авиакосмической промышленности, обслуживающего персонала и окружающей среды.

Известен композиционный материал из алюминиевой матрицы и карбида бора, который включает в себя следующие исходные материалы по массе: 5-40% порошка карбида бора и 60-95% порошка из алюминиевого сплава (заявка на патент CN 106702192, B22F 3/15, С22С 1/05, С22С 21/00, С22С 32/00, C25D 11/04, G21F 1/08, опубл. 24.05.2017 г.) и способ его получения. Композитный материал имеет относительную плотность более 99,8%, прочность на растяжение при комнатной температуре более 280 МПа, предел текучести более 220 МПа, относительное удлинение более 3,5%.

Недостатком данного материала является слишком низкая прочность и защита от радиационного излучения за счет низкой концентрации бора.

Известен алюминиевый композиционный материал, обладающий поглощающей энергию нейтроном, который улучшает способность поглощать нейтроны за счет увеличения содержания В, а также превосходит материалы предшествующего уровня техники с точки зрения механических свойств и обрабатываемости (патент KR 100414958, С22С 21/00, С22С 32/00, G21F 1/08, опубл. 13.01.2014 г.). Алюминиевый композитный материал содержит от 1,5 до 9 масс. % В, остальное алюминий или его сплавы.

Недостатком этого материала является очень низкое содержание бора для эффективной защиты от радиационного излучения.

Известен композиционный материал для радиационной защиты (патент RU 2396232, С04 В 35/563, С04В 35/626, опубл. 10.08.2010 г.). Изобретение направлено на создание высокотвердого керамического материала, который может быть использован для изготовления элементов аппаратов, работающих в условиях ударных воздействий и интенсивного абразивного изнашивания. В результате получается керамический материал на основе карбида бора с микроструктурой, образованной зернами В4С и одного или нескольких тугоплавких соединений, включающих бориды элементов IVb и Vb групп Периодической системы, отличающийся тем, что на поверхности упомянутых зерен равномерно распределена наноразмерная композиция, содержащая карбид бора и одно или несколько из нижеперечисленных соединений: SiC, бориды элементов IVb, Vb, VIb групп Периодической системы, и материал имеет следующий состав, об. %:

карбид бора 63-81
одно или несколько соединений из ряда: SiC, бориды элементов IVb и/или 14-27;

Vb, и/или VIb групп Периодической таблицы

наноразмерные частицы 5-10.

Недостатком этого материала является низкая теплопроводность из-за высокого содержания керамических частиц и высокого значения пористости (около 5%).

Наиболее близким, принятым за прототип, по технической сущности к заявляемому изобретению является композиционный материал (патент US 5700962), имеющий плотность от 2,5 до 2,8 г/см3 и состоит из В4С в диапазоне от примерно 10 до 60 масс. % и металлической матрицы от 40 до 90 масс. %. Металлическая матрица представляет собой алюминий, магний, титан, гадолиний или один из их сплавов. Карбид бора включает один или несколько металлических элементов, добавленных для улучшения свойств материала металлической матрицы путем образования интерметаллических связей с материалом металлической матрицы. Металлические добавки присутствуют в композите в количестве менее примерно 6 масс. %.

Недостатком данного метода является низкая теплопроводность при высоком содержании частиц карбида бора и низкая поглощающая способность из-за низкого содержания карбида бора при высокой теплопроводности.

Раскрытие изобретения

Задачей данного изобретения является разработка материала для защиты от радиационного излучения, обладающего повышенной теплопроводностью и низкой пористостью с сохранением или повышением эффективности защиты от радиационного излучения, из которого изготавливаются элементы конструкций применяемых, в том числе, в качестве сегментов в конструкции транспортно-упаковочного комплекта.

Техническим результатом заявленного изобретения является повышение теплопроводности и повышение радиационной защиты.

В одном предпочтительном варианте осуществления изобретения достижение технического результата обеспечивается тем, что в композиционном материале на основе алюминия, состоящем из карбида бора, матрицы на основе алюминия или алюминиевого сплава, новым является то, что он дополнительно содержит карбид кремния при следующем соотношении компонентов, масс. %:

В4С 40-60
SiC 5-25
Матрица из алюминиевого сплава 35 -55,

причем размер частиц карбида бора и карбида кремния в материале составляет не более 200 мкм, а суммарное содержания карбида бора и карбида кремния не превышает 65 масс. %, матрица - остальное, где в качестве матрицы используется алюминий или алюминиевые сплавы системы Al-Si, содержащие в сумме, по меньшей мере, два элемента из группы, масс. %:

железо, кремний, магний, марганец, никель, гадолиний 0,3-12.

В другом предпочтительном варианте осуществления изобретения достижение технического результата обеспечивается тем, что в композиционном материале на основе алюминия, состоящем из карбида бора, матрицы на основе алюминия или алюминиевого сплава, новым является то, что он дополнительно содержит изотоп бора 10 и карбид кремния при следующем соотношении компонентов, масс. %:

В4С 30-59
10В 1-10
SiC 5-25
Матрица из алюминиевого сплава 35-55,

причем размер частиц карбида бора, изотопа бора 10 и карбида кремния в материале составляет не более 200 мкм, а суммарное содержания карбида бора, изотопа бора 10 и карбида кремния не превышает 65 масс. %, матрица - остальное, где в качестве матрицы используется алюминий или алюминиевые литейные сплавы системы Al-Si, содержащие в сумме, по меньшей мере, два элемента из группы, масс. %:

железо, кремний, магний, марганец, никель, гадолиний 0,3-12.

В соответствии с другим аспектом заявленное изобретение относится к изделию, выполненному из любого композиционного материала на основе алюминия, которое описано выше.

Осуществление изобретения Для достижения необходимых свойств использовали карбид бора, изотоп бора 10 и карбид кремния. Бор в виде бористых соединений имеет большое сечение захвата медленных и тепловых нейтронов и характеризуется небольшим вторичным γ-излучением. В отличие от тяжелых и относительно тяжелых элементов, которые применяются в первую очередь для защиты от γ-излучения, легкие вещества, содержащие бор, используются в ядерном реакторе в основном для защиты от нейтронов. Карбид бора и изотоп бора 10 вводится в данный композиционный материал на основе алюминия в качестве источника бора в количестве, достаточном для получения требуемых защитных качеств материала.

Карбид кремния, который в своем составе содержит графит, имеющий хорошие замедляющие и отражающие свойства и являющийся одним из основных материалов для ядерной промышленности. Кроме этого, карбид кремния имеет очень высокую теплопроводность (до 400 Вт/м*К) и широко применяется для упрочнения матриц композиционных материалов на алюминиевой и медной основах. Его введение позволяет одновременно повысить прочность материала и теплопроводность.

В качестве матрицы используются алюминий и литейные алюминиевые сплавы системы Al-Si, имеющие высокие показатели жидкотекучести для процесса пропитки и содержащие в сумме, по меньшей мере, два элемента из группы, масс. %:

железо, кремний, магний, марганец, никель, гадолиний 0,3-12.

Равномерность распределения частиц карбида бора, изотопа бора 10 и карбида кремния достигается путем обработки в мельницах или других смесителях, позволяющих добиться высокой равномерности распределения. Размер частиц карбида бора, изотопа бора 10 и карбида кремния в материале не более 200 мкм позволяет сохранить допустимый уровень пластичности и обеспечивает равномерное распределение частиц в матрице при пропитке расплавом.

Выбранное соотношение компонентов, равномерность распределения и размера частиц карбида бора, изотопа бора 10 и карбида кремния позволяет получить оптимальный уровень радиационной защиты и теплопроводности.

Примеры осуществления изобретения

Пример 1.

Порошок карбида бора с содержанием 40 масс. % и порошок карбида кремния содержанием 25 масс. % по варианту 1 с размером частиц, не превышающих 200 мкм, обрабатывали в мельницах с шарами из оксида циркония в инертной атмосфере аргона не более 10 часов до получения смеси с равномерным распределением частиц. Далее смесь нагревали в металлической оснастке до температуры 700±10°С и пропитывали расплавом АК9ч, перегретым до температуры 900±10°С с приложением давления не более 10 тонн. В результате получают изделие по варианту 1 в виде элемента конструкции чехла транспортно-упаковочного комплекта (ТУК), обеспечивающий требуемый уровень ядерной и радиационной безопасности в соответствии с нормативными документами по перевозке и хранению отработанного ядерного топлива (ОЯТ). Механические и физические свойства полученных экспериментальных образцов указанного состава представлены в таблице 1.

Пример 2.

Порошок карбида бора с содержанием 50 масс. % и порошок карбида кремния с содержанием 10 масс. % по варианту 1, с размером частиц, не превышающих 200 мкм, обрабатывали и пропитывали по примеру 1. В результате получают изделие по варианту 1 в виде элемента конструкции чехла ТУК, обеспечивающий требуемый уровень ядерной и радиационной безопасности в соответствии с нормативными документами по перевозке и хранению ОЯТ. Механические и физические свойства полученных экспериментальных образцов указанного состава представлены в таблице 1.

Пример 3.

Порошок карбида бора с содержанием 60 масс. % и порошок карбида кремния с содержанием 5 масс. % по варианту 1, с размером частиц, не превышающих 200 мкм, обрабатывали и пропитывали по примеру 1. В результате получают изделие по варианту 1 в виде элемента конструкции чехла ТУК, обеспечивающий требуемый уровень ядерной и радиационной безопасности в соответствии с нормативными документами по перевозке и хранению ОЯТ. Механические и физические свойства полученных экспериментальных образцов указанного состава представлены в таблице 1.

Пример 4.

По варианту 2 порошок карбида бора и изотопа бора 10 с содержанием 30 и 10 масс. %, соответственно, и порошок карбида кремния содержанием 25 масс. % с размером частиц, не превышающих 200 мкм, обрабатывали и пропитывали по примеру 1. В результате получают изделие по варианту 2 в виде элемента конструкции чехла ТУК, обеспечивающий требуемый уровень ядерной и радиационной безопасности в соответствии с нормативными документами по перевозке и хранению ОЯТ. Механические и физические свойства полученных экспериментальных образцов указанного состава представлены в таблице 1.

Пример 5.

По варианту 2 порошок карбида бора и изотопа бора 10 с содержанием 59 и 1 масс. %, соответственно, и порошок карбида кремния содержанием 5 масс. % с размером частиц, не превышающих 200 мкм, обрабатывали и пропитывали по примеру 1. В результате получают изделие по варианту 2 в виде элемента конструкции чехла ТУК, обеспечивающий требуемый уровень ядерной и радиационной безопасности в соответствии с нормативными документами по перевозке и хранению ОЯТ. Механические и физические свойства полученных экспериментальных образцов указанного состава представлены в таблице 1.

Исходя из полученных данных, предлагаемый композиционный материал на основе алюминия, состоящий из матрицы на основе алюминиевого сплава и смеси карбида бора и карбида кремния, а также композиционный материал на основе алюминия с добавкой, карбида бора, изотопа бора 10 и карбида кремния показали улучшенную теплопроводность и снижение мощности излучения по отношению к металлокерамическому материалу без карбида кремния и изотопа бора 10.

1. Композиционный материал на основе алюминия, состоящий из карбида бора, матрицы на основе алюминия или алюминиевого сплава, отличающийся тем, что он дополнительно содержит карбид кремния при следующем соотношении компонентов, масс. %:

В4С 40-60
SiC 5-25
Матрица из алюминиевого сплава 35-55,

причем размер частиц карбида бора и карбида кремния в материале составляет не более 200 мкм, а суммарное содержания карбида бора и карбида кремния не превышает 65 масс. %, матрица - остальное, где в качестве матрицы используется алюминий или алюминиевые литейные сплавы системы Al-Si, содержащие в сумме по меньшей мере два элемента из группы, масс. %:

железо, кремний, магний, марганец, никель, гадолиний 0,3-12.

2. Композиционный материал на основе алюминия, состоящий из карбида бора, матрицы на основе алюминия или алюминиевого сплава, отличающийся тем, что он дополнительно содержит изотоп бора 10 и карбид кремния при следующем соотношении компонентов, масс. %:

В4С 30-59
10В 1-10
SiC 5-25
Матрица из алюминиевого сплава 35-55,

причем размер частиц карбида бора, изотопа бора 10 и карбида кремния в материале составляет не более 200 мкм, а суммарное содержания карбида бора, изотопа бора 10 и карбида кремния не превышает 65 масс. %, матрица - остальное, где в качестве матрицы используется алюминий или алюминиевые литейные сплавы системы Al-Si, содержащие в сумме по меньшей мере два элемента из группы, масс. %:

железо, кремний, магний, марганец, никель, гадолиний 0,3-12.

3. Изделие, выполненное из композиционного материала на основе алюминия по п. 1.

4. Изделие, выполненное из композиционного материала на основе алюминия по п. 2.



 

Похожие патенты:

Изобретение относится к получению материалов с металлической матрицей из алюминия или его сплавов, содержащих гадолиний, и может быть использовано в атомной энергетике для изготовления нейтронно-поглощающих экранов и перегородок, транспортно-упаковочных контейнеров.

Изобретение относится к ядерной технике, а именно к материалам для защиты от ионизирующего излучения, и предназначено для использования при изготовлении элементов радиационно-защитных экранов.
Изобретение относится к полимерной композиции для радиационной защиты электронных приборов, содержащей полимерное связующее, литий и бор в качестве экранирующих наполнителей (агентов), которая может быть использована для изготовления защитных материалов для биологической защиты, в качестве теневой защиты ядерных энергетических установок, аппаратуры ядерно-опасных объектов.
Изобретение относится к материалам для защиты от ионизирующих излучений и может быть использовано в атомной, радиохимической промышленности, а также в военно-морской и авиакосмической промышленности в целях защиты обслуживающего персонала и окружающей среды.

Изобретение относится к области биологической защиты персонала и окружающей среды от воздействия высокоактивных источников радиоактивного излучения. .

Изобретение относится к области электронной техники. .
Изобретение относится к области производства материалов, поглощающих нейтроны. .
Изобретение относится к порошковой металлургии и может быть использовано для изготовления вкладышей из карбида бора для работы в качестве поглотителей нейтронов в стержнях СУЗ атомных реакторов, например в реакторах БОР-60 и БН-600.
Изобретение относится к рентгенотехнике и касается материалов для защиты от рентгеновского излучения. .

Изобретение относится к области металлургии легких сплавов, в частности сплавов на основе алюминия, и может быть использовано при получении слитков различными методами литья, в частности методом полунепрерывного вертикального литья.
Изобретение относится к области металлургии, в частности к разработке новых нерадиоактивных материалов, и может быть использовано в атомной энергетической промышленности, в частности, для изготовления специального оборудования для влажного и сухого хранения отработанного ядерного топлива и его транспортировки.

Изобретение относится к области металлургии, в частности к алюминиевым сплавам, используемым в качестве электротехнической катанки и проводов для линий электропередач.

Изобретение относится к области металлургии, а именно к способам получения изделий электротехнического назначения на основе алюминия, применяемых для изготовления электротехнической катанки и проводов высоковольтных линий электропередач.

Изобретение относится к металлургии, а именно к получению слоистого материала на основе алюминия и его сплавов, содержащего слои с карбидом бора, и может использоваться в качестве конструкционных материалов для авиации и в атомной промышленности, которые сочетают низкую удельную массу с эффективным поглощением нейтронного излучения.

Изобретение относится к металлургии, а именно к получению слоистого материала на основе алюминия и его сплавов, содержащего слои с диборидом титана, и может использоваться в качестве конструкционных материалов в авиации и в атомной промышленности, которые сочетают низкую удельную массу с эффективным поглощением нейтронного излучения.

Изобретение относится к металлургии, а именно к обработке кристаллизующегося металла давлением, в частности к получению слитков из деформируемых алюминиевых сплавов.

Изобретение относится к алюминиевым сплавам, используемым в промышленности автотранспортных средств. Способ получения изделия из алюминиевого сплава включает формование листа из дисперсионно-твердеющего термически обрабатываемого алюминиевого сплава для получения из алюминиевого сплава формованного изделия, имеющего одну или более частей; нагревание по меньшей мере одной части формованного изделия из алюминиевого сплава, имеющего одну или более частей, два или более раз до температуры термообработки от 250 до 300°С при скорости нагревания от 10 до 220°С/с и поддерживание температуры каждой термообработки в течение 60 с или менее, причем по меньшей мере одна часть формованного изделия из алюминиевого сплава содержит дисперсионно-твердеющий термически обрабатываемый алюминиевый сплав.

Изобретение относится к получению и применению листа из алюминиевого сплава для изготовления штампованной конструкции кузова или конструкционной детали кузова автомобиля, называемой еще «неокрашенный кузов», причем лист имеет предел текучести Rp0i2 не ниже чем 60 МПа, и удлинение при одноосном растяжении Ag0, не ниже чем 34%.Способ получения листа из алюминиевого сплава для изготовления штампованной конструкции кузова или конструкционной детали кузова автомобиля, включает вертикальную непрерывную или полунепрерывную разливку сляба, имеющего состав, в мас.%: Si: 0,15-0,50; Fe: 0,3-0,7; Cu: 0,05-0,10; Mn: 1,0-1,5; другие элементы <0,05 каждый и <0,15 в общем, остальное алюминий, и обдирку сляба, гомогенизацию при температуре, по меньшей мере, 600°С в течение, по меньшей мере, 5 часов с последующим регулируемым охлаждением до температуры 550°С-450°С за по меньшей мере 7 часов, затем охлаждением до комнатной температуры за по меньшей мере 24 часа, нагрев до температуры 480°С-530°С с подъемом температуры за, по меньшей мере, 8 часов, горячую прокатку, охлаждение, холодную прокатку и отжиг при температуре, по меньшей мере, 350°С ,упрочняющую обработку, со степенью деформации между 1% и 10%,химическое травление механически нарушенного слоя.

Изобретение относится к алюминиевым сплавам, предназначенным для изготовления изделий сложной формы, в частности банок и бутылок. Алюминиевый сплав представляет собой сплав с кристаллографической структурой, содержащей: меньшее или равное 10 об.% количество взятых вместе компонентов текстуры Госса и перевернутой текстуры Госса; меньшее или равное 20 об.% количество компонентов текстуры латуни; большее или равное 10 об.% количество взятых вместе компонентов S-текстуры и текстуры меди; микроструктуры алюминия в виде случайных или второстепенных ориентаций - остальное, при этом отношение плотности α-волокон низкого уровня к плотности α-волокон высокого уровня меньше или равно 0,40; а отношение плотности α-волокон низкого уровня к плотности β-волокон меньше или равно 0,15.

Изобретение относится к спинодальным сплавам медь-никель-олово и способам их получения. Сплав медь-никель-олово, содержащий 8-20 мас.% никеля и 5-11 мас.% олова, получен литьем под давлением и имеет по меньшей мере 40%-ную пластичность и 0,2% условный предел текучести по меньшей мере 25 ksi.

Изобретение относится к материалам для защиты от радиационного излучения, обладающим повышенной теплопроводностью, термостойкостью до 400°С и низким значением коэффициента термического расширения, и может быть использовано в атомной, радиохимической промышленности, а также в военно-морской и авиакосмической промышленности в целях защиты обслуживающего персонала и окружающей среды. Композиционный материал на основе алюминия состоит из карбида бора с содержанием от 40 до 60 масс. и карбида кремния от 5 до 25 масс. , остальное - матрица из алюминия или литейного алюминиевого сплава системы Al-Si, а также изделие из него. Композиционный материал на основе алюминия состоит из карбида бора с содержанием от 30 до 59 масс. , изотопа бора 10 с содержанием от 1 до 10 масс. и карбида кремния от 5 до 25 масс. , остальное - матрица из алюминия или литейного алюминиевого сплава системы Al-Si, а также изделие из него. Изобретение позволяет повысить теплопроводность и защиту от радиационного излучения. 4 н.п. ф-лы, 1 табл.

Наверх