Способ изготовления преобразователя солнечной энергии с высоким кпд



Способ изготовления преобразователя солнечной энергии с высоким кпд
Способ изготовления преобразователя солнечной энергии с высоким кпд
H01L31/202 - Полупроводниковые приборы, чувствительные к инфракрасному излучению, свету, электромагнитному, коротковолновому или корпускулярному излучению, предназначенные либо для преобразования энергии такого излучения в электрическую энергию, либо для управления электрической энергией с помощью такого излучения; способы или устройства, специально предназначенные для изготовления или обработки таких приборов или их частей; конструктивные элементы приборов (H01L 51/00 имеет преимущество; приборы, состоящие из нескольких компонентов на твердом теле, сформированных на общей подложке или внутри нее, кроме приборов, содержащих чувствительные к излучению компоненты, в комбинации с одним или несколькими электрическими источниками света H01L 27/00; кровельные покрытия с приспособлениями для размещения и использования устройств для накопления или концентрирования энергии E04D 13/18; получение тепловой энергии с

Владельцы патента RU 2698491:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Чеченский государственный университет" (RU)

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления преобразователя солнечной энергии. Способ изготовления полупроводникового прибора со структурой с р, i, n слоями, включающий процессы легирования, при этом формирование i-слоя в p-i-n структуре осуществляют в три этапа: первый этап - осаждением пленок Si:H со скоростью 0,3 нм/с, при ВЧ мощности 8 Вт, со скоростью потока SiH4 20 см3/с и давлении 27 Па; второй этап - осаждением пленок Si:H со скоростью 0,6 нм/с, при ВЧ мощности 15 Вт, со скоростью потока SiH4 50 см3/с и давлении 45 Па, третий этап - осаждением пленок Si:H со скоростью 1,0 нм/с, при ВЧ мощности 28 Вт, со скоростью потока SiH4 80 см3/с и давлении 65 Па, с последующим легированием i-слоя бором до 0,05×10-4% при соотношении (B2H6/SiH4) 10-4% в газовой смеси. Изобретение обеспечивает повышение КПД, технологичность, улучшение параметров приборов, повышение качества и увеличение процента выхода годных. 1 табл.

 

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления преобразователя солнечной энергии с высоким КПД.

Известен способ изготовления преобразователя энергии [Заявка 1154572 Япония, МКИ H01L 31/04] содержащий подложку, активный слой из органического полупроводника, контакты к нему и защитный слой. Для повышения фототока и КПД на поверхность органического полупроводника наносят оптически активный слой из соединения трифениламина, включающего атомы галогена, группы азота, циана и замещенные группы алкила, алкоксиарила, фенокси или аминогрупп. В таких приборах при различных температурных режимах и в различных средах повышается дефектность структуры и ухудшаются электрические параметры изделий.

Известен способ изготовления преобразователя солнечной энергии [Патент 4926229 США, МКИ H01L 45/00] с p-i-n структурой, где р- или n- слои из немонокристаллического материала, содержащего (1-4) ат. % Zn, Se, Н и легирующие примеси и i- слоем, содержащий немонокристаллический Si:H, F. Многопереходные солнечные элементы с p-i-n структурой содержат по крайней мере один р- и n- слой, выполненный из пленки ZnSe:H:M, где М-легирующая примесь, р- или n- типа; содержание Н составляет (1-4) ат. %. Легирующая примесь р- типа может быть Li.

Недостатками этого способа являются:

- низкие значения КПД;

- высокая плотность дефектов;

- низкая технологичность.

Задача, решаемая изобретением: повышение КПД, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных.

Задача решается формированием i- слоя в p-i-n структуре в три этапа: первый этап - осаждением пленок Si:H со скоростью 0,3 нм/с, при ВЧ мощности 8 Вт, со скоростью потока SiH4 20 см3/с и давлении 27 Па; второй этап - осаждением пленок Si:H со скоростью 0,6 нм/с, при ВЧ мощности 15 Вт, со скоростью потока SiH4 50 см3/с и давлении 45 Па, третий этап - осаждением пленок Si:H со скоростью 1,0 нм/с, при ВЧ мощности 28 Вт, со скоростью потока SiH4 80 см3/с и давлении 65 Па, с последующим легированием i- слоя бором до 0,05* 10-4% при соотношении (B2H6/SiH4) 10-4% в газовой смеси.

Технология способа состоит в следующем: пленки Si:H осаждались разложением SiH4 в установке ВЧ плазменного осаждения. Для создания i-слоя в близи границы раздела p/i слоев осаждение i- слоя проводилось в три этапа: первый этап - со скоростью 0,3 нм/с, при ВЧ мощности 8 Вт, со скоростью потока SiH4 20 см3/с и давлении 27 Па; второй этап - со скоростью 0,6 нм/с, при ВЧ мощности 15 Вт, со скоростью потока SiH4 50 см3/с и давлении 45 Па, третий этап - со скоростью 1,0 нм/с, при ВЧ мощности 28 Вт, со скоростью потока SiH4 80 см3/с и давлении 65 Па, с последующим легированием i- слоя бором до 0,05*10-4% при соотношении (B2H6/SiH4) 10-4% в газовой смеси.

По предлагаемому способу были изготовлены и исследованы полупроводниковые приборы. Результаты обработки представлены в таблице.

Экспериментальные исследования показали, что выход годных структур на партии пластин, сформированных в оптимальном режиме, увеличился на 24,9%.

Технический результат: повышение КПД, обеспечение технологичности, улучшение параметров структур, повышение качества и увеличения процента выхода годных.

Предложенный способ формирования i- слоя в p-i-n структуре в три этапа: первый этап - осаждением пленок Si:H со скоростью 0,3 нм/с, при ВЧ мощности 8 Вт, со скоростью потока SiH4 20 см3/с и давлении 27 Па; второй этап - осаждением пленок Si:H со скоростью 0,6 нм/с, при ВЧ мощности 15 Вт, со скоростью потока SiH4 50 см3/с и давлении 45 Па, третий этап - осаждением пленок Si:H со скоростью 1,0 нм/с, при ВЧ мощности 28 Вт, со скоростью потока SiH4 80 см3/с и давлении 65 Па, с последующим легированием i- слоя бором до 0,05*10-4% при соотношении B2H6/SiH4 10-4% в газовой смеси, позволяет повысит процент выхода годных приборов и улучшит их надежность.

Способ изготовления полупроводникового прибора со структурой с р, i, n слоями, включающий процессы легирования, отличающийся тем, что i-слой в p-i-n структуре формируют в три этапа: первый этап - осаждением пленок Si:H со скоростью 0,3 нм/с, при ВЧ мощности 8 Вт, со скоростью потока SiH4 20 см3/с и давлении 27 Па; второй этап - осаждением пленок Si:H со скоростью 0,6 нм/с, при ВЧ мощности 15 Вт, со скоростью потока SiH4 50 см3/с и давлении 45 Па, третий этап - осаждением пленок Si:H со скоростью 1,0 нм/с, при ВЧ мощности 28 Вт, со скоростью потока SiH4 80 см3/с и давлении 65 Па, с последующим легированием i-слоя бором до 0,05×10-4% при соотношении B2H6/SiH4 10-4% в газовой смеси.



 

Похожие патенты:

Устройство солнечных элементов с батареей тонкопленочных солнечных элементов на подложке (5) выполнено так, что каждый солнечный элемент сформирован слоями, представляющими собой нижний электрод (6), фотоактивный слой (7), верхний электрод (8) и изолирующий слой (9).

Изобретение относится к области электротехники, а именно к способам изготовления гибких фотоэлектрических модулей для преобразования энергии солнечного излучения в электричество, которые могут быть использованы для электропитания потребителей и заряда аккумуляторов на борту электрических и гибридных транспортных средств морского и воздушного применения.

Изобретение относится к области приема оптического излучения и касается импульсного фотоприемного устройства. Устройство включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом.

Изобретение относится к области приема оптического излучения и касается приемника лазерных импульсов. Приемник включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом.

Концентраторно-планарный фотоэлектрический модуль (1) содержит фронтальную светопрозрачную панель (2) с концентрирующими оптическими элементами (4), светопрозрачную тыльную панель (5), на которой сформированы планарные неконцентраторные фотоэлектрические преобразователи (6) с окнами (10), противолежащими концентрирующим оптическим элементам (4), в которых размещены концентраторные фотопреобразователи (8), и элементы крепления (11).

Изобретение относится к области приема оптического излучения и касается приемника оптического излучения. Приемник включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор.

Изобретение относится к печатной плате, содержащей проводящую дорожку, имеющую выемку, в которой расположен имплантат с левым, правым, нижним и верхним краем, служащий для измерения проходящего в проводящей дорожке тока.

Изобретение относится к толстопленочной микроэлектронике. Алюминиевая паста для изготовления тыльного контакта кремниевых солнечных элементов c тыльной диэлектрической пассивацией включает порошок алюминия, органическое связующее, порошок стекла, причем паста дополнительно содержит одно или смесь металлоорганических соединений щелочноземельных металлов, при следующем соотношении компонентов, масс.

Изобретение относится к технологии изготовления многоэлементных матриц фотоприемников на пластине с тонкими функциональными слоями может использоваться для создания матричных фотоприемников (МФП) различного назначения.

Изобретение относится к технологии изготовления кремниевых фотодиодов (ФД), чувствительных к излучению с длинами волн 0,3-1,06 мкм, которые могут быть использованы в электронно-оптической аппаратуре.

Изобретение относится к области оптоэлектронной техники и может быть использовано для создания дешевых и эффективных солнечных элементов на основе слоев аморфного гидрогенизированного кремния.

Изобретение относится к структуре двухкаскадного тонкопленочного солнечного модуля (фотопреобразователя) на основе аморфного и микрокристаллического кремния. Тонкопленочный солнечный модуль состоит из последовательно расположенных: фронтальной стеклянной подложки, фронтального контактного слоя из прозрачного проводящего оксида, подслоя из нестехиометрического карбида кремния р-типа, аморфного и микрокристаллического каскадов, соединенных последовательно.

Изобретение относится к области фотоэлектрического преобразования солнечной энергии. Фотоэлектрический элемент согласно изобретению содержит электродный слой из прозрачного электропроводящего оксида, который осажден на прозрачной несущей подложке, контактный слой из легированного аморфного кремния первого типа и имеющий толщину, самое большее 10 нм, первый активный слой из легированного аморфного соединения кремния первого типа, который имеет запрещенную зону, которая больше, чем запрещенная зона материала указанного контактного слоя, второй активный слой из соединения кремния с собственной проводимостью и третий активный слой из легированного соединения кремния второго типа.

Изобретение относится к химической технологии, а именно к способу получения тетрафторсилана и газу на его основе. .

Изобретение относится к области солнечной фотоэнергетики, в частности к устройствам для прямого преобразования солнечной энергии. Предложен металлооксидный солнечный элемент на основе наноструктурированных слоев металлооксида, сенсибилизированного поглощающей свет субстанцией, включающий проводящий слой из оксида олова, допированного фтором или индием, и противоэлектрод, при этом в качестве поглощающей свет субстанции он содержит органический краситель или квантовые точки, а противоэлектрод выполнен в виде пленки из композитного материала на основе графена и наночастиц редкоземельного элемента, нанесенной на проводящее покрытие из оксида олова, допированного фтором или индием. Органический краситель поглощает свет в диапазоне 400-750 нм, а квантовые точки - в диапазоне 500-1300 нм солнечного спектра. Изобретение обеспечивает стабильную работу металлооксидного солнечного элемента, высокую эффективность преобразования солнечной энергии в электрическую, позволяет существенно уменьшить стоимость солнечного элемента и упростить процесс его конструирования. 3 з.п. ф-лы, 1 ил.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления преобразователя солнечной энергии. Способ изготовления полупроводникового прибора со структурой с р, i, n слоями, включающий процессы легирования, при этом формирование i-слоя в p-i-n структуре осуществляют в три этапа: первый этап - осаждением пленок Si:H со скоростью 0,3 нмс, при ВЧ мощности 8 Вт, со скоростью потока SiH4 20 см3с и давлении 27 Па; второй этап - осаждением пленок Si:H со скоростью 0,6 нмс, при ВЧ мощности 15 Вт, со скоростью потока SiH4 50 см3с и давлении 45 Па, третий этап - осаждением пленок Si:H со скоростью 1,0 нмс, при ВЧ мощности 28 Вт, со скоростью потока SiH4 80 см3с и давлении 65 Па, с последующим легированием i-слоя бором до 0,05×10-4 при соотношении 10-4 в газовой смеси. Изобретение обеспечивает повышение КПД, технологичность, улучшение параметров приборов, повышение качества и увеличение процента выхода годных. 1 табл.

Наверх