Способ контроля качества сварного шва рельсового стыка

Использование: для контроля качества сварного шва рельсового стыка. Сущность изобретения заключается в том, что контроль качества сварного шва первый раз проводят акустико-эмиссионным (АЭ) методом с использованием в качестве нагружающего воздействия градиента температур при остывании сварного шва и второй раз методом ультразвукового контроля, при этом контроль качества сварного шва рельсового стыка проводят на стадии термообработки сварных стыков в процессе воздушно-водяного охлаждения сварного шва, одновременно контролируют температуру остывания сварного шва, при этом датчики контроля устанавливают на головке рельса, регистрируют суммарный счет АЭ, скорость счета АЭ, амплитудное распределение сигналов АЭ, образование мартенситной структуры в сварном шве рельсового стыка оценивают на основе анализа полученных параметров акустико-эмиссионного контроля, заключение о годности сварного шва рельсового стыка делают с учетом результатов ультразвукового контроля. Технический результат: обеспечение возможности выявления зон хрупких закалочных структур (мартенсит) в металле сварного шва головки рельса. 1 з.п. ф-лы, 2 ил., 1 табл.

 

Изобретение относится к области неразрушающего контроля и может быть использовано для контроля качества сварного шва рельсового стыка в условиях рельсосварочного предприятия, когда на первой стадии контроля используется метод акустической эмиссии и на второй стадии ультразвуковой контроль сварного шва готового рельсового стыка.

Уровень техники известен из способа обнаружения и локации дефектов сварки, основанный на использовании акустико-эмиссионного(АЭ) метода, в режиме реального времени, в котором дефекты определяют по АЭ-сигналам выделенным из общей акустической информации путем фильтрации сигналов из зоны сварки по их заданной амплитуде, по заданной полосе частот и по времени прохождения сигнала от источников этих сигналов, до двух приемных преобразователя АС-сигналов, (Патент US 4144766 от 20.03. 1979 г. МПК G01N 29/04),

Недостаток этого способа заключается в том, что он ориентирован на контроль автоматической сварки, в режиме реального времени, где предполагается, что два приемных преобразователя перемещаются по свариваемому объекту вместе с электродом. Остывающая часть шва, расположенная за пределами перемещающихся преобразователей, не попадает в контролируемую зону и соответственно теряется информация о возможных дефектах, образующихся при остывании этой части шва, и, кроме того, применяемая фильтрация сигналов по заданной величине пиковой амплитуды в заданной полосе частот не в состоянии отбраковывать эмиссию, характерную для процесса сварки, связанную с растрескиванием защитной шлаковой пленки, что может привести к ложной информации по дефектам. Данный способ не может быть реализован для контроля сварного шва рельсового стыка.

Известен способ контроля сварных стыков на рельсосварочном предприятии (РСП) на стадии сразу после процесса сваривания и снятия града. Показано, возможность акустико-эмиссионного контроля дефектного состояния объекта при использовании в качестве нагружающего воздействия -градиент температур, который возникает при остывании стыка рельсов на рельсосварочном предприятии сразу после сваривания и снятия грата по изменению потоковых характеристик сигналов АЭ. АЭ наблюдается в диапазоне температур остывания от 500°С до 100°С, что объясняются протеканием фазовых превращений в данном диапазоне температур. (Муравьев В.В., Алексеев А.Б., Муравьев Т.В., Бехер С.А. Контроль сварных соединений акустико-эмиссионным методом в процессе остывания шва после сварки. //Материалы XVII российской научно-технической конференции «Неразрушающий контроль и диагностика». 5-11 сентября 2005 г. Екатеринбург. УПИ - ИФМ УрО РАН. 2005, Т2-35, Д331).

Недостаток предлагаемого способа заключается в том, что не вся информация потоковых характеристик сигналов АЭ может быть использована при анализе качества сварного шва. Это обусловлено технологией сварки стыков рельсовой плети на РСП. После сварки и снятия грата производится правка сварных стыков в горячем состоянии и последующая грубая шлифовка сварного стыка по всему контору. Информация, полученная акустико-эмиссионным методом в процессе остывания шва, после сварки и снятия грата, меняется, так как после сварки и снятия грата проводятся еще операции, которые могут внести дополнительные дефекты в сварной шов, что может привести к ложным выводам. Учитывая важность оценки качества сварного шва, который является особой зоной внимания в рельсовой плети, требующей всестороннего контроля на всех этапах сварки рельсов в плеть, не следует проводить контроль качества сварного шва каким либо одним методом.

Известен способ комплексного контроля качества сварных соединений, заключающийся в том, что на начальной стадии способа неразрушающего контроля используют метод акустической эмиссии, а на последующих стадиях - ультразвуковой метод контроля, при этом акустико-эмиссионный контроль выполняют в процессе сварки на стадии формирования и охлаждения сварного шва, выявляют акустоэмиссионно-активные области, а по окончании сварки неразрушающий контроль осуществляют другими методами в объеме, не превышающем объем акустоэмиссионно-активных областей. (Патент RU №2102740, заявка 94021963 от 05.1994 г. МКИ G01N 29/04).

Недостаток данного способа заключается в том, что он не может быть использован в полном объеме при контроле сварного шва рельсового стыка, метод контроля акустической эмиссией используется в процессе сварки, который не позволяет дополнительно выявлять дефекты которые возникают в процессе других технологических процессов, следующих за процессом сварки рельсов, наиболее важным из которых является термическая обработка сварного шва.

Задачей заявляемого технического решения является повышение качества и надежности сварного шва рельсового стыка.

В процессе решения поставленной задачи достигается технический результат, заключающийся в выявлении зон хрупких закалочных структур (мартенсит) в металле сварного шва головки рельса не равнопрочных с материалом цельных рельсов, приводящих к возникновение термических напряжений имеющих повышенную твердость, которые могут образовываться на стадии термообработки сварных стыков в процессе воздушно-водяного охлаждения сварного шва рельсового стыка.

Технический результат достигается способом контроля качества сварного шва рельсового стыка для бесстыкового пути, заключающимся в том, контроль качества сварного шва первый раз проводят акустико-эмиссионным (АЭ) методом с использованием в качестве нагружающего воздействия - градиент температур при остывании сварного шва и второй раз методом ультразвукового контроля, при этом контроль качества сварного шва рельсового стыка проводят на стадии термообработки сварных стыков в процессе воздушно-водяного охлаждения сварного шва, одновременно контролируют температуру остывания сварного шва, при этом датчики контроля устанавливают на головке рельса, регистрируют:

- число импульсов АЭ,

- активность АЭ,

- суммарный счет АЭ,

- скорость суммарного счета АЭ,

- амплитуду акустического сигнала,

образования зон с мартенситной структурой в сварном шве рельсового стыка оценивают на основе анализа полученных параметров акустико-эмиссионного контроля, заключение о годности сварного шва рельсового стыка делают с учетом результатов ультразвукового контроля. Кроме этого, контроль акустико-эмиссионным методом проводят при температуре от 500°С, датчики АЭ устанавливают симметрично относительно сварного шва с дух сторон на расстоянии не менее 700 мм.

По данным на 2015 год количество изломов рельсов находится на весьма низком уровне (не более 60 изломов в год), одним из главных источников риска для безопасности движения поездов являются случаи внезапных изломов рельсов из-за развития в них дефектов. По результатам последних статистических данных Центральной дирекции инфраструктуры ОАО «РЖД» за период 2010-2015 годы наиболее проблемными являются случаи изломов рельсов (фиг. 1): - в зоне сварных стыков рельсов (более 35%); - из-за поперечных трещин в головке (25%); - из-за трещин коррозионного происхождения в подошве рельсов по коду 69 (20%). http://www.radioavionica.ru/activities/sistemy-nerazrushayushchego-kontrolya/articles/files/razrab/st_2016_1.pdf

Увеличенное количество изломов по сварке, можно объяснить ежегодным увеличением полигона бесстыковых путей (до 70% протяженности главных путей), а так же не возможностью существующих технологий контроля выявить все дефекты, в том числе скрытые дефекты сварного шва, которые проявляются в процессе эксплуатации и приводят к изломам рельсов.

Контроль качества сварных стыков рельсов на рельсосварочных предприятиях (РСП) осуществляется автоматизированным многоканальным дефектоскопом ультразвукового контроля МИГ-УКС. Дефектоскоп производит проверку всего сечения рельса (в том числе перьев подошвы) 86-ю каналами контроля. Схема ультразвуковой проверки стыка делает возможным обнаружение дефектов различной формы и ориентации. Искательная система включает в себя пять блоков резонаторов, один из которых располагается на поверхности катания головки рельса, два на боковых поверхностях головки и два на верхних поверхностях перьев подошвы. Перед контролем сварного стыка производится автоматическая проверка наличия акустического контакта под каждым датчиком. Результаты контроля каждого стыка сохраняются в памяти дефектоскопа в виде протоколов. Программа отображения дефектоскопа МИГ-УКС позволяет просматривать и распечатывать протоколы контроля, содержащие подробную дефектоскопическую и служебную информацию по всем каналам и сформировать электронный паспорт плети http://pskovelectrosvar.ru/products/l_105/.

Одним из дефектов скрытого типа, который не определяется УЗК, является хрупкая закалочная структура (мартенсит) в металле головки рельса в области сварного шва, с твердостью, превышающей твердость основного металла рельсов, который может приводить к разрушению сварного шва в процессе эксплуатации. Образование в сварных швах рельсов зон, не равнопрочных с материалом цельных рельсов, приводит возникновение термических напряжений. При эксплуатации рельсов бесстыкового пути с таким дефектом сварного соединения происходит выкрашивание областей металла с закалочными структурами с последующим изломом.

В закаленном слое сварного шва не должно быть структур перегрева, участков мартенсита, закалочных трещин. Образование мартенсита в поверхностном слое металла головки сварного стыка рельсов происходит вследствие превышения скорости охлаждения металла (выше 40°С/с) при закалке в струях воды не распыленных воздухом под давлением. Такие явления могут происходить по различным техническим причинам, включая засорения форсунок закалочного устройства, изменение давления подачи охлаждающей среды, нарушение временного режима термообработки и др. Для рельсовых сталей содержащих углерод в своем составе в количестве (0,71-0,82)% процесс начала мартенситного превращения начинается при температуре Мн=(250-300)°С, и может продолжаться даже при отрицательных температурах. https://malishev.info/exams/matved/sem2/44/

В предлагаемом техническом решении предлагается акустико-эмиссионный (АЭ) контроль проводить при охлаждении сварного шва с температуры равной 500°С, что позволит дополнительно контролировать возникновение микротрещин термического происхождения.

Предлагается регистрировать следующие параметры АЭ:

- число импульсов АЭ NΣ;

- активность АЭΣ 1/с;

- суммарный счет АЭ N;

- скорость суммарного счета N, 1/с

- амплитуда акустического сигнала, А, дБ.

Мартенситные превращения в сталях вызывают интенсивную АЭ с высокой амплитудой, тогда как при ферритных, перлитных, бейнитных превращениях интенсивность АЭ низкая с малой амплитудой. Это объясняется тем, что мартенситные превращения происходят при относительно низкой температуре с высокой скоростью, близкой к скорости сдвиговых волн.

Мартенсит отличается высокой твердостью по сравнению с остальными фазами. Структура мартенсита имеет блочный характер с малыми размерами блоков. В случае воздействия пластической деформации выделяются мельчайшие твердые частицы, блокирующие скольжение слоев относительно друг друга и повышающие твердость сплава. Как следствие, образование мартенсита сопровождается значительным изменением свойств стали в объеме. Это проводит к нежелательному повышению напряженности в структуре стали, которая впоследствии может стать очагом зарождения микротрещин.

Реализация предлагаемого способа

В лабораторных условиях были изготовлены образцы - головная часть рельса со сварным швом, выполненным электроконтактным способом. В средней части образец имел бездефектный сварной шов, выполненный в условиях РСП и прошедший УЗК. Выявленных дефектов УЗК не наблюдалось. Термообработке сварные швы в условиях РСП не подвергались. На подготовленных образцах индукционным способом проводили нагрев зоны сварного шва до температуры 600°С с последующим охлаждением с различной скоростью. Для охлаждения использовали: сжатый воздух, воду различной температуры. Для регистрации сигналов АЭ использовался портативный акустико-эмиссионный диагностический комплекс «Эксперт 2014» производство Научно-производственного объединения «Алькор». Уровень собственных пиковых шумов комплекса, не более 20 дБ. В зависимости от акустических шумов, возникавших при испытаниях, порог регистрации сигналов АЭ устанавливался в пределах от 20 до 60 дБ. Структуру сварного шва исследовали на электронном Микроскопе "МЕТАМ РВ-21-2. На рис 2. приведена структура мартенсита полученного при охлаждении холодной водой.

В таблице 1 представлены результаты эксперимента.

Суммарный счет и скорость суммарного счета АЭ - это характеристики, эквивалентные числу импульсов и активности. При вычислении суммарного счета и его скорости определяется суммарное количество превышений сигналом порогового уровня в 20 дБ, а не количество импульсов. Это связано с тем, что область применения этих характеристик - анализ непрерывной АЭ, в сигнале которой невозможно однозначно выделить импульсы. Суммарный счет - это число зарегистрированных превышений сигналом установленного уровня дискриминации за интервал наблюдения, а скорость суммарного счета - это отношение числа превышений к интервалу времени (число превышений, приведенных к единице времени). Суммарный счет несет информацию об интегральном образовании участков мартенсита, в процессе охлаждения сварного шва. Поскольку мартенситные превращения носят автокаталитический характер увеличения мартенситных пластин, то по информации суммарного счета судят об активности образования и определяют момент образования участков мартенсита. Максимум АЭ сигналов достигался при температуре на 50 градусов ниже температуры мартенситного превращения Мн. Сопоставляя максимум сигналов АЭ с графиком температуры остывания сварного шва судят начале образования участков мартенсита. Скорость счета АЭ это отношение суммарного счета акустической эмиссии к интервалу времени наблюдения. За интервал времени скорости счета принята 1 сек. Является производной от суммарного счета и отражает скорость развития образования участков мартенсита в материале в данный момент времени. Этот параметр регистрируют совместно с суммарным счетом, и они дополняют друг друга в процессе анализа результатов эксперимента.

Числом импульсов АЭ это количество импульсов, зарегистрированных за определенный интервал времени, отсчитываемый от начала наблюдения. Число импульсов характеризует развитие эмиссионной способности источника АЭ во времени. Например, если число импульсов возрастает, то источник является активным, напротив, если число импульсов является постоянной величиной, то источник пассивный. Сопоставляя температуру в области сварного шва, с числом импульсов АЭ можно судить о процессе образования мартенсита. По зависимости числа импульсов от времени можно построить другой параметр, характеризующий свойства источника АЭ, - активность, которая является производной числа импульсов по времени. Активностью называют число импульсов АЭ, зарегистрированных за единицу времени. Для анализа результатов контроля, а в данном случае предпочтительнее использовать зависимость числа импульсов АЭ от времени. Амплитудное распределение сигналов АЭ, это распределение количества сигналов АЭ по их максимальным амплитудам. Является одним из наиболее важных параметров АЭ температурной деформации, показывающее, какое число сигналов определенной амплитуды регистрируется при остывании сварного шва. По этому параметру судят о виде дефектов, включая образование термических трещин. Общее количество импульсов, зарегистрированных за определенный интервал времени, может характеризовать количество источников АЭ в материале сварного шва. Разделение же импульсов по амплитудным диапазонам позволяет условно классифицировать источники АЭ по физическим процессам, происходящим в материале объекта контроля.

Необходимо отметить, что практически во всех терморежимах мартенситное превращение сопровождается большим числом акустических сигналов. При термонагружении исследуемых образцов, в температурных интервалах, где протекают мартенситные превращения, возрастает акустическое излучение. Максимум спектральной плотности акустического излучения при охлаждении сварного шва холодной водой лежит в диапазоне 100-300 кГц.

Сопоставление сигналов АЭ от образцов сварных швов, охлаждаемых с различной скоростью, показывает, что высокая скорость охлаждения приводит к образованию мартенситной структуры, о чем свидетельствуют все параметры АЭ. Сигнал АЭ отражает процесс зарождения и развития мартенситной структуры, причем, чем выше скорость охлаждения, тем больше амплитуда импульсов, выше число импульсов и больше скорость суммарного счета.

Предлагаемый способ контроля обеспечивает возможность обнаружения и регистрации дефектов в виде образования мартенситных структур и может быть использован при оценке степени опасности скрытых дефектов в зоне сварного шва на головке рельсов, которые не фиксируются УЗК. Набрав статистику, можно будет определить критерии дефектности, соответствующие образованию мартенсита в материале объекта контроля.

1. Способ контроля качества сварного шва рельсового стыка, заключающийся в том, что контроль качества сварного шва первый раз проводят акустико-эмиссионным (АЭ) методом с использованием в качестве нагружающего воздействия градиента температур при остывании сварного шва и второй раз методом ультразвукового контроля, отличающийся тем, что контроль качества сварного шва рельсового стыка проводят на стадии термообработки сварных стыков в процессе воздушно-водяного охлаждения сварного шва, одновременно контролируют температуру остывания сварного шва, при этом датчики контроля устанавливают на головке рельса, регистрируют:

- число импульсов АЭ,

- активность АЭ,

- суммарный счет АЭ,

- скорость суммарного счета АЭ,

- амплитуду акустического сигнала,

образования зон с мартенситной структурой в сварном шве рельсового стыка оценивают на основе анализа полученных параметров акустико-эмиссионного контроля, заключение о годности сварного шва рельсового стыка делают с учетом результатов ультразвукового контроля.

2. Способ по п. 1, отличающийся тем, что контроль акустико-эмиссионным методом проводят при температуре от 500°С, датчики АЭ устанавливают симметрично относительно сварного шва с дух сторон на расстоянии не менее 700 мм.



 

Похожие патенты:

Использование: для гибридной ультраструйно-эмиссионной диагностики качества конструкционных материалов. Сущность изобретения заключается в том, что осуществляют воздействие на испытуемый образец струей жидкости под давлением 350…380 МПа при скорости 800…850 м/с, при этом на испытуемый образец устанавливают один или несколько датчиков акустической эмиссии и регистрируют параметры акустической эмиссии в течение времени воздействия струи жидкости, проводят оценку качества его конструкционного материала, при этом оценку качества конструкционного материала образца осуществляют путем сравнения периода активации трещин, о котором судят по текущей скорости подачи S, изменяющейся по закону равнозамедленного движения, и наличию частотного спектра резонатора типа Гартмана акустико-эмиссионного сигнала из зоны воздействия струи на мишень, с соответствующими характеристиками эталонного образца либо с имеющимися значениями ранее продиагностированных образцов.

Изобретение относится к неразрушающему контролю технического состояния колес подвижного состава в процессе движения. Согласно способу мониторинга технического состояния колес принимают сигналы акустической эмиссии вращающейся колесной пары на правом и левом рельсах железнодорожного пути.

Использование: для внутритрубного диагностирования промысловых транспортных и магистральных жидкостных трубопроводов, перекачивающих неагрессивные жидкости, нефть, нефтепродукты и газ.

Использование: для мониторинга степени деградации структуры материала и прогнозирования остаточной прочности изделия с применением акустико-эмиссионной диагностики.

Использование: для испытаний трубчатого компонента. Сущность изобретения заключается в том, что акустико-эмиссионный датчик помещают на трубчатый компонент, и компонент подвергается воздействию возрастающего давления при получении показаний.

Использование: для акустико-эмиссионной диагностики промышленного оборудования. Сущность изобретения заключается в том, что выполняют запись и обработку данных акустической эмиссии беспороговым способом, при этом распознавание вида повреждения и оценка годности оборудования к эксплуатации проводится на основании сравнения подобия информативных параметров акустической эмиссии за каждый период работы диагностируемого оборудования.

Изобретение относится к неразрушающему контролю металлических конструкций с использованием метода акустической эмиссии. Способ включает установку n акустических преобразователей, образующих пьезоантенну, калибровку конструкции, регистрацию сигналов акустической эмиссии каждым измерительным каналом, определение скорости распространения сигналов и разности их времен прихода на акустические преобразователи и вычисление по ним координат дефектов.
Использование: для мониторинга в реальном времени ходовой части транспортных средств. Сущность изобретения заключается в том, что осуществляют получение информации в виде акустического сигнала с ходовой части транспортного средства посредством установленных на ее элементах акустических датчиков, передающих получаемый акустический сигнал в вычислительный модуль, обработку сигнала, получение сведений о состоянии ходовой части, сравнение их с нормативными значениями, выдачу результата, при этом получаемый акустический сигнал разделяют на группы по принципу локализации и относят каждую группу к соответствующему узлу ходовой части, далее обрабатывают сигналы каждой группы в отдельности по индивидуальному алгоритму, получают сведения о характеристиках звукового сигнала и его источнике, о состоянии узлов ходовой части, сравнивают с нормативными значениями для каждого узла, полученными ранее на исправном транспортном средстве, выводят результаты для каждого узла с возможностью вывода информации по каждому элементу узла.

Использование: для неразрушающего контроля и обнаружения дефектов магистральных трубопроводов при их сложнонапряженном состоянии. Сущность изобретения заключается в том, что осуществляют первичное преобразование акустических колебаний с применением бинарного знакового аналого-стохастического квантования.

Использование: для диагностики и неразрушающего контроля конструкций, включая изделия из хрупких материалов. Сущность изобретения заключается в том, что осуществляют прием, регистрацию и оценку параметров сигналов акустической эмиссии в момент нагружения контролируемого объекта, оцифровку акустических сигналов, их предварительную обработку, фильтрацию помех, при этом предварительно устанавливают порог деформации, равный среднеквадратическому значению деформации при отсутствии внешних воздействий на контролируемый объект, и критическое значение амплитуды сигнала акустической эмиссии, которое определяют как среднее значение амплитуды сигналов от развивающегося дефекта, нагружение контролируемого объекта осуществляют ударной нагрузкой, регистрируют динамические деформации, определяют максимальное значение деформации от удара, по которому оценивают силу воздействия на контролируемый объект, затем постепенно увеличивают ударную нагрузку, но не более 150% от эксплуатационной нагрузки, фиксируют последнее превышение порога деформации, после чего производят регистрацию акустико-эмиссионных сигналов в течение времени релаксации упругих напряжений в контролируемом объекте и при превышении амплитуды сигнала ее критического значения изделие бракуют.

Изобретение относится к атомной технике. Система ультразвукового контроля надзонного пространства ядерного реактора с жидкометаллическим теплоносителем включает отражатель ультразвука и сканирующий ультразвуковой механизм с приводами, включающий несущую штангу с герметичными ультразвуковыми преобразователями акустическая ось которых совпадает с одной из горизонтальных плоскостей, пересекающей заполненное жидкометаллическим теплоносителем пространство - контролируемый зазор между нижними отметками расцепленных органов СУЗ и верхними отметками головок ТВС.

Использование: для внутритрубной диагностики технического состояния трубопровода. Сущность изобретения заключается в том, что осуществляют перемещение внутри трубопровода между смотровыми люками под давлением транспортируемой по трубопроводу жидкости устройства, представляющего собой разъемный корпус сферической формы с размещенными внутри него датчиками магнитного поля, температуры, давления и акустическими датчиками, акселерометрами и устройством записи данных, измеренных датчиками, при этом в устройство введены источник питания и генератор тактовой частоты, при этом датчики акустической эмиссии выполнены с возможностью приема сигналы эмиссии в звуковой и сверхзвуковой областях частот, в качестве датчиков магнитного поля использованы не менее четырнадцати однокомпонентных датчиков постоянного магнитного поля, равномерно и симметрично расположенных по внутренней поверхности корпуса таким образом, чтобы была обеспечена высокая степень их взаимной соосности, перед началом измерений проводят итеративную высокоточную калибровку устройства, обеспечивающую соосность симметрично расположенных однокомпонентных датчиков, измеряют не менее 14 компонент магнитной индукции этого поля в различных точках внутритрубного пространства, по которым производят вычисление не менее 7 градиентов магнитной индукции внутреннего поля трубы, измеряют не менее двух параметров поля акустической эмиссии и температуры теплового поля и давления транспортируемой жидкости в различных точках внутритрубного пространства, вычисляют на основе полученных данных диагностические параметры трубопровода.

Использование: для дефектоскопии металлических изделий сложной формы. Сущность изобретения заключается в том, что способ ультразвукового контроля дефектности металлических изделий включает измерение двумерного профиля поверхности изделия с помощью электрического щупа, выбирая три реперные точки на ярко выраженных углах изделия контроля.

Изобретение относится к нефтегазоперерабатывающей, химической и другим отраслям промышленности, использующим теплоизолированное ёмкостное оборудование, например сепараторы, реакторные колонны и трубопроводы, проходящие регулярную техническую диагностику.

Использование: для ультразвукового контроля. Сущность изобретения заключается в том, что устройство ультразвукового контроля с линейным сканированием содержит: ультразвуковой решеточный зонд, имеющий множество ультразвуковых элементов, выровненных в первом направлении; вычислитель времени задержки, выполненный с возможностью вычисления, относительно формы поверхности контролируемого объекта, значений времени задержки по меньшей мере одного из передачи и приема ультразвуковой волны; регулятор области перекрытия, выполненный с возможностью установления условий для генерирования изображения области перекрытия; и генератор интегрированного изображения, выполненный с возможностью генерирования первых данных изображения области, включающей в себя область перекрытия.

Изобретение относится к области теплоэнергетики. Прибор содержит процессорный блок (ПБ) 10 с узлом определения полного и остаточного ресурса (УОР) 17 и с клеммными разъемами (КР) 11, 12 для подключения выносного ферритометрического наконечника (ВФН) 20 и выносного ультразвукового толщиномера (ВУЗТ) 30, клавиатуру 40 для ввода необходимых дополнительных величин, а также данных необходимых измерений штатными измерительными средствами электростанции и дисплей 50 для визуализации выходных данных.

Изобретение относится к области теплоэнергетики. Прибор содержит процессорный блок (ПБ) 10 с узлом определения полного и остаточного ресурса (УОР) 17 и с клеммными разъемами (КР) 11, 12 для подключения выносного ферритометрического наконечника (ВФН) 20 и выносного ультразвукового толщиномера (ВУЗТ) 30, клавиатуру 40 для ввода необходимых дополнительных величин, а также данных необходимых измерений штатными измерительными средствами электростанции и дисплей 50 для визуализации выходных данных.

Использование: для определения утечек в трубопроводах. Сущность изобретения заключается в том, что выполняют измерение звуковой волны на концах контролируемого участка трубопровода и определение координаты утечки на указанном участке за фиксированный промежуток времени путем сравнения акустических сигналов, отправленных от места деформации и полученных приемником с разностью по времени, обработку сигналов и их анализ, при этом осуществляют непрерывное измерение звуковых сигналов, посылаемых генератором, по измеренным значениям звуковых импульсов на конце контролируемого участка трубопровода вычисляют отношения между прогнозируемыми и измеренными значениями звуковой волны, при этом способ включает следующие операции: исследование трубопроводной системы звуковыми импульсами, посылаемыми генератором, прием звуковых импульсов, отраженных от места неоднородности и конца трубопровода, анализ полученных звуковых импульсов с использованием двухслойной нейронной сети с прямой передачей данных, определение ложных срабатываний и помех, определение координаты утечки по временной задержке отраженных звуковых импульсов относительно эталона, в результате принимают решение о факте возникновения или отсутствия утечки.

Использование: для определения прочностных характеристик полимерных композиционных материалов. Сущность изобретения заключается в том, что при определении прочностных характеристик полимерных композиционных материалов выполняют измерение скоростей стержневой и крутильной волн в прутках с последующим расчетом модуля сдвига G и модуля Юнга Е, при этом используют прутки длиной, многократно превышающей их диаметр, а прозвучивание прутков производят с их торцевой части стержневой и крутильной волнами с длиной волны, значительно большей диаметра прутка в условиях незначительного затухания, отсутствующей или низкой дисперсии скорости.

Использование: для ультразвукового контроля толщины стенки трубопровода. Сущность изобретения заключается в том, что при перемещении вдоль трубопровода диагностического устройства периодически возбуждают импульсы УЗ-колебаний касательными к поверхности трубопровода колебательными силами в точках акустических контактов приёмно-излучающих элементов, в выбранном интервале времени принимают из этих же точек реализации УЗ-колебаний стенок трубопровода и с помощью совместной обработки принятых реализаций определяют толщину стенки трубопровода и скорость распространения поперечных УЗ-волн в ней.

Использование: для комплексного контроля качества сварного шва рельсового стыка. Сущность изобретения заключается в том, что осуществляют проведение сплошного контроля сварных стыков ультразвуковым (УЗК) методом и выборочного контроля соблюдения заданного режима сварки путем испытания контрольных натурных образцов на статический поперечный изгиб на прессе и измерений твердости металла в сварных стыках рельсов, при этом дополнительно проводят сплошной контроль на наличие зон с мартенситной структурой металла в сварном шве, акустико-эмиссионным (АЭ) методом на стадии термообработки сварных стыков в процессе воздушно-водяного охлаждения сварного шва, одновременно контролируют температуру остывания сварного шва, и контроль, методом магнитной памяти металла (МПМ), сварных швов на головке и на перьях подошвы рельса, при этом заключение о режимах сварки рельсового стыка, параметрах термической обработки сварного стыка делают на основании анализа результатов, полученных от всех видов контроля, МПМ проводят определение зон концентрации напряжений (ЗКН) в зоне термического влияния (ЗТВ) сварного шва, по собственному магнитному полю рассеяния (СМПР) путем сканирования датчиком магнитометра вдоль сварного шва поверхности головки рельса и перьев подошвы рельсов, в ЗКН определяют Hp - напряженность магнитного поля, А/м, и градиент магнитного поля рассеяния Hp (dHp/dx), где х - линия обследования в ЗКН, полученную информацию хранят как исходную, далее проводят повторную диагностику в плети в ЗКН с определением Hp и его градиента dH/dx, при прохождении по пути 50-150 млн. тонн груза, полученную информацию хранят как полученную после прохождения по пути 50-150 млн. тонн, сравнивают полученные данные с исходными данными, полученными ранее, в случае роста параметров МПМ данные определяют как максимально предрасположенные к разрушению, выявленные сварные швы подвергают дополнительному комплексному периодическому контролю, в случае устойчивого повышения параметров МПМ и при обнаружении дефекта другими методами неразрушающего контроля проводят вырезание шва. Технический результат: обеспечение возможности выявления зон хрупких закалочных структур (мартенсит) в металле сварного шва головки рельса. 4 з.п. ф-лы, 8 ил., 2 табл.
Наверх