Способ мониторинга электронно-пучковой технологии поверхностного легирования и термообработки в вакуумных камерах



Способ мониторинга электронно-пучковой технологии поверхностного легирования и термообработки в вакуумных камерах
Способ мониторинга электронно-пучковой технологии поверхностного легирования и термообработки в вакуумных камерах
Способ мониторинга электронно-пучковой технологии поверхностного легирования и термообработки в вакуумных камерах
G01H1/14 - Измерение механических колебаний или ультразвуковых, звуковых или инфразвуковых колебаний (генерирование механических колебаний без измерений B06B,G10K; определение местоположения, направления или измерение скорости объекта G01C,G01S; измерение медленно меняющегося давления жидкости G01L 7/00; измерение дисбаланса G01M 1/14; определение свойств материалов с помощью звуковых или ультразвуковых колебаний, пропускаемых через эти материалы G01N; системы с использованием отражения или переизлучения акустических волн, например формирование акустических изображений G01S 15/00; сейсмология, сейсмическая разведка, акустическая разведка G01V 1/00; акустооптические устройства как таковые G02F; получение

Владельцы патента RU 2698524:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") (RU)

Изобретение относится к области машиностроения. Сущность изобретения заключается в том, что способ мониторинга структурных, фазовых и химических преобразований в приповерхностном слое обрабатываемых объектов в вакуумных камерах под воздействием электронно-пучковых импульсов дополнительно содержит этапы, на которых в качестве волновода используют гибкую проволоку, в качестве датчика колебаний используют акселерометр с частотной характеристикой, охватывающей частотный диапазон до 100 кГц, в процессе воздействия импульса электронного пучка регистрируют зависимости текущих эффективных значений сигналов, поступающих с акселерометра, от времени в двух частотных диапазонах до момента падения амплитуды сигналов до уровня фоновых шумов, в качестве частотных диапазонов выбирают октавную полосу с наибольшим эффективным значением амплитуды сигнала и соседнюю более высокочастотную октаву, сравнивают полученные временные зависимости эффективных значений сигналов с экспериментально полученными эталонными зависимостями и по результатам сравнения судят о достаточности энергии электронно-лучевого импульса или результате протекания фазового превращения. Технический результат – повышение точности настройки аппаратуры, обеспечение производительности электронно-пучковой обработки. 4 ил.

 

Изобретение относится к машиностроению, преимущественно к термической и химико-термической обработке металлов и сплавов в вакуумной камере импульсными электронными пучками, и может быть использовано для оперативного мониторинга результирующих показателей процесса обработки.

Из уровня техники известны способы мониторинга фазовых превращений, сопровождающих термическое воздействие, заключающиеся в том, что границы фазовых переходов определяют с помощью датчика акустической эмиссии, присоединяемого к обрабатываемому образцу (Патент РФ №2433190, опубл. 10.11.2011; 2. Вьюненко Ю.Н., Черняева Е.В. Особенности акустической эмиссии при мартенситных превращениях в сплаве TiNi.//Вестник Тамбовского университета. Серия: естественные и технические науки. Т. 21, №31. 2016. С. 917-921).

Основным недостатком приведенного аналога является то, что датчик акустической эмиссии устанавливается в непосредственной близости от обрабатываемого образца. Такой способ затруднительно использовать в вакуумной камере при подаче высокоэнергетических электронных импульсов, поскольку рядом с электронной пушкой возникают мощные электромагнитные помехи, выводящие из строя и сам датчик, и расположенную рядом аппаратуру. Кроме этого, провода, подсоединяемые к датчику, создают трудности для организации надежного функционирования устройств, установленных в вакуумной камере.

Наиболее близким к предлагаемому способу по количеству общих существенных признаков и достигаемому техническому результату - прототипом - является способ мониторинга фазовых превращений в облучаемом объекте при изменении его температуры, заключающийся в том, что к обрабатываемой заготовке присоединяют волновод, выходящий за пределы зоны обработки, на котором закрепляют датчик виброакустических колебаний, информация с которого обрабатывается с помощью компьютера (Воронцов В.Б., Журавлев Д.В. Связь структуры сигналов акустической эмиссии при кристаллизации А1 с механизмом формирования твердой фазы из расплава.//Вестник Новгородского государственного университета, №67. 2012. С. 8-13).

Основным недостатком известного технического решения является то, что оно не предназначено для работы в вакуумной камере в условиях мощных электромагнитных помех. Волновод, выполненный в виде полого цилиндрического стержня с прямолинейной осью, предназначен для установки внутри его рабочей зоны термопары и вывода необходимой проводки к регистрирующей аппаратуре, а также для безопасного контакта датчика акустической эмиссии с зоной высоких температур. С помощью описанного волновода нельзя вывести датчик акустической эмиссии из зоны электромагнитных помех на достаточное расстояние. Это связано с невозможностью его изгиба, большим диаметром и быстрым затуханием высокочастотных колебаний (акустическая эмиссия предполагает регистрацию колебаний в частотном диапазоне от 50 до 1000 кГц) с ростом расстояния до источника вибраций. Эксперименты показали, что для надежной регистрации колебаний при работе электронной пушки необходимо регистрирующую аппаратуру относить на 2 и более метров от зоны обработки.

Технической проблемой, на решение которой направленно заявленное изобретение, является уменьшение влияния электромагнитных помех, упрощение процедуры регистрации сигналов вибраций при облучении деталей в вакуумной камере с помощью электронной пушки, упрощение процедуры сравнения объемов происходящих в детали превращений с эталонным значением по параметрам сигналов вибраций.

Технический результат заключается в повышении точности настройки аппаратуры, определяющей параметры импульсов электронного пучка воздействующего на объект, и обеспечении производительности электронно-пучковой обработки.

Поставленный технический результат достигается тем, что в способе мониторинга структурных, фазовых и химических преобразований в приповерхностном слое обрабатываемых объектов в вакуумных камерах под воздействием электронно-пучковых импульсов, заключающемся в том, что к обрабатываемому объекту присоединяют волновод, выходящий за пределы вакуумной камеры через вакуумный ввод, на волноводе закрепляют датчик колебаний, информация с которого обрабатывается с помощью компьютера, в качестве волновода используют гибкую проволоку, в качестве датчика колебаний используют акселерометр с частотной характеристикой, охватывающей частотный диапазон до 100 кГц, в процессе выполнения технологической операции регистрируют зависимости текущих эффективных значений сигналов, поступающих с акселерометра, от времени в нескольких частотных диапазонах с момента подачи электронно-лучевого импульса до момента падения амплитуды сигналов до уровня фоновых шумов, в качестве частотных диапазонов выбирают октавную полосу, где присутствуют наибольшие эффективные значения амплитуды сигнала, и соседнюю более высокую октаву, сравнивают полученные временные зависимости эффективных значений сигналов с экспериментально полученными эталонными зависимостями, по результатам сравнения судят о достаточности энергии электронно-лучевого импульса или результате протекания превращения.

Сущность заявленного изобретения поясняется следующим:

на фиг. 1 - схема установки аппаратуры для записи и анализа виброакустических (ВА) сигналов с акселерометра, возникающих после подачи электронного импульса;

на фиг. 2 - пример ВА сигнала, возникшего после подачи электронного импульса;

на фиг. 3 - пример изменения эффективной амплитуды в частотном диапазоне 11-22 кГц (фиг. 3а) и 22-44 кГц (фиг. 3б) при нормальном ходе мартенситного превращения, запускающегося в результате реакции образования нитридной фазы (NbHf)N;

на фиг. 4 - пример изменения эффективной амплитуды в частотном диапазоне 11-22 кГц (фиг. 4а) и 22-44 кГц (фиг. 4б) при вялой реакции образования мартенсита.

В соответствии с изобретением на фиг. 1 показана схема, реализующая аппаратную часть предлагаемого способа, где с обрабатываемым образцом 1 контактирует волновод 2, выполненный из гибкой проволоки, противоположный конец которого присоединен к принимающей пластине 3, на которой установлен акселерометр 4, выход которого подключен к предусилителю 5, подключаемому к аналоговому усилителю 6, на выходе которого установлен аналого-цифровой преобразователь (АЦП) 7, данные которого с помощью компьютера 8 сохраняются для последующей обработки и для вывода изображения на монитор компьютера 8.

На фиг. 2 показан пример ВА сигнала, возникшего в результате подачи электронного импульса на обрабатываемый образец 1. На примере показан короткий импульс 9, возникший в результате электромагнитной помехи в момент подачи электронного импульса, и временной участок в 1,2 мс, соответствующий запаздыванию ВА сигнала по отношению к электронному импульсу. На протяжении последующих 36 мс происходит выброс основной энергии ВА сигнала.

На фиг. 3 показан пример изменения эффективного значения ВА сигнала в диапазонах 11-22 кГц (фиг. 3а) и 22-44 кГц (фиг. 3б) при воздействии рабочего импульса на азотированную стальную пластину с нанесенным на ней слоем пленки, содержащей Nb и Hf при зарядном напряжении электронной пушки 22 кВ. После облучения такого образца электронным пучком происходит экзотермическая химическая реакция с образованием нитридной фазы (NbHf)N, которая, в свою очередь, запускает мартенситное превращение в модифицированном слое. Объемное содержание мартенситной фазы зависело от величины зарядного напряжения и имело случайный разброс. Однако экспериментальные исследования показали, что существует положительная корреляция между количественными показателями результатов реакции и эффективными значениями ВА сигнала.

На фиг. 4 показан аналогичный фиг. 3 пример прохождения вышеописанной реакции, но при зарядном напряжении 16 кВ. Если сравнивать графики изменения эффективной амплитуды на фиг. 3а и 4а, а также 3б и 4б, то видно, что качественно графики похожи, но их амплитуды различаются в 8-10 раз для полосы 11-22 кГц и в 3-5 раз для полосы 22-44 кГц.

В соответствии с фиг. 1 с обрабатываемого образца 1, установленного в вакуумной камере (на фиг. не показана) выводится гибкий волновод 2. Для вывода из вакуумной камеры участок волновода 2 уплотняется. Противоположный конец волновода 2 присоединен к принимающей пластине 3, на которой установлен датчик 4 колебаний, выполненный в виде акселерометра, выход которого подключен к предусилителю 5, подключаемому к аналоговому усилителю 6, на выходе которого установлен аналого-цифровой преобразователь (АЦП) 7, данные которого с помощью компьютера 8 сохраняются для последующей обработки и для вывода изображения на монитор компьютера 8.

Способ мониторинга структурных, фазовых и химических преобразований в приповерхностном слое обрабатываемых объектов 1 в вакуумных камерах под воздействием электронно-пучковых импульсов осуществляется следующим образом: к обрабатываемому объекту 1 присоединяют волновод 2, выходящий за пределы вакуумной камеры через вакуумный ввод, на волноводе 2 закрепляют на принимающей пластине 3 датчик 4 колебаний, информация с которого обрабатывается с помощью компьютера 8. В качестве волновода 2 используют гибкую проволоку, в качестве датчика колебаний используют акселерометр с частотной характеристикой, охватывающей частотный диапазон до 100 кГц, в процессе выполнения технологической операции регистрируют зависимости текущих эффективных значений сигналов, поступающих с акселерометра, от времени в двух частотных диапазонах с момента подачи электронно-лучевого импульса до момента падения амплитуды сигналов до уровня фоновых шумов, в качестве частотных диапазонов выбирают октавную полосу, где присутствуют наибольшие эффективные значения амплитуды сигнала, и соседнюю более высокую октаву, сравнивают полученные временные зависимости эффективных значений сигналов с экспериментально полученными эталонными зависимостями, по результатам сравнения судят о достаточности энергии электронно-лучевого импульса или результате протекания превращения.

Длина волновода должна быть достаточной, чтобы обеспечить приемлемый уровень электромагнитных помех. При необходимости регистрирующая аппаратура может размещаться за защитным экраном, уменьшающим электромагнитное воздействие на аппаратуру. В качестве волновода может использоваться, например, медная проволока диаметром 2-3 мм, которую легко уплотнить при выводе из вакуумной камеры и завести за защитный экран, где устанавливают регистрирующую аппаратуру.

Практика показала, что с увеличением длины волновода быстрее затухают относительно высокочастотные колебания. При одинаковой скорости распространения продольных волн за время движения колебательной энергии от источника до противоположного конца волновода высокочастотные составляющие совершат во столько раз больше циклов колебаний, во сколько раз их частота выше. Если на интервале 1,2 мс составляющая колебаний на частоте 500 кГц совершит 600 циклов колебаний, то составляющая на 50 кГц совершит только 60 циклов. Если доля потерь на каждом цикле одинакова, то очевидно, что на более низкой частоте энергии сохранится больше. Например, при одинаковой начальной амплитуде колебаний на 500 кГц и на 50 кГц и при одинаковом отношении q=ai+l/ai (отношение амплитуд в конце единичного цикла к амплитуде в начале цикла) отношение амплитуд на противоположном конце волновода будет q540. Это означает, что при q=0,9 на приемной пластине амплитуда высокочастотной составляющей (500 кГц) будет относиться к амплитуде низкочастотной составляющей (50 кГц), как 10-25. Практика тоже показала, что на большом удалении от источника возмущений в спектре колебаний пропадают или ослабляются высокочастотные составляющие. Эксперименты также показали, что, если при параллельной записи вибраций в диапазонах низких (от 4-х до 20 кГц) и высоких (до 1МГц) частот потом построить их огибающие (вся запись разбивается на небольшие участки времени, для каждого участка определяется эффективное значение, совокупность эффективных значений формирует огибающую), то они оказываются в значительной степени подобными. Это означает, что когда вибрации возбуждаются совокупностями очень коротких импульсов, то они формируют импульсы и на высоких, и на низких частотах. Поскольку при длинном волноводе вибрации на высоких частотах не удается выделить на фоне помех, то контроль сравнительно низкочастотных составляющих вибраций может осуществляться акселерометром. Большинство выпускаемых промышленностью акселерометров имеют резонансную частоту не более 100 кГц (Акселерометры пьезоэлектрические фирмы Брюль и Къер. http://asm-tm.ru/wp-content/uploads/2014/08/8309.pdf). Их линейная характеристика, которую допускается использовать в метрологических целях, значительно уже. Для целей мониторинга можно использовать весь частотный диапазон, но тогда допустимо давать оценку не в единицах ускорения, а в приращениях по отношению к предыдущему замеру или эталонному значению. Эти соображения и данные экспериментов показали, что достаточно использовать акселерометр с частотной характеристикой до 100 кГц.

Пример:

На фиг. 3 показан пример изменения эффективного значения ВА сигнала в октавных диапазонах 11-22 кГц (фиг. 3а) и 22-44 кГц (фиг. 3б) при воздействии рабочего импульса на азотированную пластину из стали 08Х17Т с нанесенным на ней слоем пленки, содержащей Nb и Hf при зарядном напряжении электронной пушки 22 кВ. После облучения такого образца электронным пучком запускается экзотермическая химическая реакция с образованием нитридной фазы (NbHf)N, которая в свою очередь вызывает мартенситное превращение в модифицированном слое. Объемное содержание мартенситной фазы зависело от величины зарядного напряжения и имело случайный разброс. Однако экспериментальные исследования показали, что существует положительная корреляция между количественными показателями результатов реакции и эффективными значениями ВА сигнала. На фиг. 4 показан другой пример прохождения реакции с образованием нитридной фазы при тех же условиях, как и на рис. 3, но при зарядном напряжении 16 кВ. Если сравнивать графики изменения эффективной амплитуды на фиг. 3а и 4а, а также 3б и 4б, то видно, что качественно графики похожи, но их амплитуды различаются в 8-10 раз для полосы 11-22 кГц и в 3-5 раз для полосы 22-44 кГц. Если заранее с помощью экспериментов были установлены эталонные значения эффективных амплитуд для обеих октав или одной, то в дальнейшем можно следить за отклонениями зависимостей эффективных значений от эталонных характеристик. Дело в том, что даже при постоянном зарядном напряжении энергетические характеристики могут иметь значительный разброс, что скажется на количестве новой фазы.

Кроме того, характер изменения эффективной амплитуды ВА сигналов после рабочего импульса может нести дополнительную информацию о протекании процесса преобразования в материале заготовки. Например, на фиг. 3а видно, что эффективная амплитуда до 10-ой мс находится на невысоком уровне и только потом переходит в быстрый рост. Начало основной реакции предваряло плавление и испарение материала, сопровождаемое короткими импульсами отдачи. Эти короткие импульсы и определили бурный рост амплитуды в диапазоне 22-44 кГц до 5-ой мс. (Чем короче импульсы, тем выше их амплитуда в высокочастотном диапазоне). На фиг. 4б тоже присутствует рост в октаве 22-44 кГц, но его амплитуда в 4 раза меньше, что и определило низкую активность дальнейшей реакции. Это отразилось на фиг. 4а. На основании таких данных можно принять решение о необходимости повторного импульса, возможно, с большим зарядным напряжением. Если нет возможностей мониторинга последствий облучения, установить недостатки обработки можно будет только с помощью дополнительных анализов состава поверхностного слоя изделия. Это существенно снижает производительность технологической операции.

С учетом изложенного можно сделать вывод о том, что поставленная задача - уменьшение влияния электромагнитных помех, упрощение процедуры регистрации сигналов вибраций при облучении деталей в вакуумной камере с помощью электронной пушки, упрощение процедуры сравнения объемов происходящих в детали превращений с эталонным значением по параметрам сигналов вибраций - решена, а заявленный технический результат - повышение точности настройки аппаратуры, определяющей параметры импульсов электронного пучка, воздействующего на объект, и обеспечении производительности электронно-пучковой обработки - достигнут.

Анализ заявленного технического решения на соответствие условиям патентоспособности показал, что указанные в независимом пункте формулы признаки являются существенными и взаимосвязаны между собой с образованием устойчивой совокупности неизвестной на дату приоритета из уровня техники необходимых признаков, достаточной для получения требуемого синергетического (сверхсуммарного) технического результата.

Таким образом, вышеизложенные сведения свидетельствуют о выполнении при использовании заявленного технического решения следующей совокупности условий:

- объект, воплощающий заявленное техническое решение, при его осуществлении относится к электрофизическим методам обработки, в частности к электронно-пучковой обработке в вакуумных камерах;

- для заявленного объекта в том виде, как он охарактеризован в независимом пункте нижеизложенной формулы, подтверждена возможность его осуществления с помощью вышеописанных в заявке и/или известных из уровня техники на дату приоритета средств и методов;

- объект, воплощающий заявленное техническое решение, при его осуществлении способен обеспечить достижение усматриваемого заявителем технического результата.

Следовательно, заявленный объект соответствует критериям патентоспособности «новизна», «изобретательский уровень» и «промышленная применимость» по действующему законодательству.

Способ мониторинга структурных, фазовых и химических преобразований в приповерхностном слое обрабатываемых объектов в вакуумных камерах под воздействием электронно-пучковых импульсов, заключающийся в присоединении к обрабатываемому объекту волновода, выходящего за пределы вакуумной камеры через вакуумный ввод, закреплении на волноводе датчика колебаний и обработке информации с последнего с помощью компьютера, отличающийся тем, что в качестве волновода используют гибкую проволоку, в качестве датчика колебаний используют акселерометр с частотной характеристикой, охватывающей частотный диапазон до 100 кГц, в процессе воздействия импульса электронного пучка регистрируют зависимости текущих эффективных значений сигналов, поступающих с акселерометра, от времени в двух частотных диапазонах до момента падения амплитуды сигналов до уровня фоновых шумов, в качестве частотных диапазонов выбирают октавную полосу с наибольшим эффективным значением амплитуды сигнала и соседнюю более высокочастотную октаву, сравнивают полученные временные зависимости эффективных значений сигналов с экспериментально полученными эталонными зависимостями и по результатам сравнения судят о достаточности энергии электронно-лучевого импульса или результате протекания фазового превращения.



 

Похожие патенты:

Устройство для диагностики технического состояния механизмов относится к измерительной технике и может быть использовано для диагностики технического состояния возвратно-поступательных механизмов и других механизмов циклического действия по их вибрационным характеристикам как в автомобильном, железнодорожном, авиационном, морском, речном и других видах транспорта, так и в различной механической технике.

Изобретение относится к области экологии и охране окружающей среды и может быть использовано для наблюдения за экологическим состоянием акваторий с помощью биоиндикаторов, например планктона.

Способ контроля подсинхронных крутильных колебаний валопровода паровой турбины, содержащий этапы: измерения (112) скорости вращения упомянутого валопровода в течение периода времени и генерации сигнала, указывающего на упомянутую скорость вращения в течение упомянутого периода времени, исходя из измеренной скорости вращения; осуществления (122) анализа спектра упомянутого сигнала, чтобы определить для по меньшей мере одной данной частоты амплитуду изменения упомянутой скорости вращения на упомянутой данной частоте; сравнения (124) упомянутой амплитуды с по меньшей мере одним заранее заданным пороговым значением амплитуды для упомянутой частоты; генерации (126) сигнала тревоги, если упомянутая амплитуда превышает по меньшей мере одно заранее заданное пороговое значение амплитуды.

Изобретение относится к измерительной технике, в частности к устройству контроля вибраций узла турбомашины. Машина содержит корпус и подвижное рабочее колесо, вращающееся в корпусе.

Изобретение относится к области метрологии, в частности к пьезотехнике. Пьезоэлектрический преобразователь состоит из пьезоэлектрического элемента, закрепленного внутри корпуса, один вывод которого заземлен, и предусилителя.

Изобретение относится к методам и средствам диагностики состояния упругости защитных заграждений, в частности используемых в качестве физического препятствия для защиты от несанкционированного проникновения на территорию охраняемого объекта.

Группа изобретений относится к области вращающихся лопаток, в частности к области характеризации вибраций, действию которых подвергаются такие лопатки, когда они находятся во вращении.

Изобретение относится к электротехнике и предназначено для контроля ресурса электрической изоляции сухих силовых трансформаторов. Сигналы с датчика температуры наиболее нагретой точки трансформатора 5, датчика амплитуды вибрации 6 и блок-контакта 3 автоматического выключателя 1 поступают на входы контроллера 8.

Изобретение относится к области приборостроения и может быть использовано в системах контроля технологических процессов. Система датчиков содержит технологический измерительный преобразователь, вибродатчик без внешнего питания и технологический трансмиттер.

Изобретение относится к метрологии, в частности, к способам измерения добротности механической колебательной системы. Способ определения добротности механической колебательной системы, снабженной датчиком положения, заключается в том, что экспериментально определяют частоту собственных колебаний механической колебательной системы ω0 из условия сдвига фазы между вынуждающей силой и выходным сигналом датчика положения, равного π/2, экспериментально устанавливают частоту ω1 вынуждающей силы из условия сдвига фазы между вынуждающей силой и выходным сигналом датчика положения, равного π/2+ϕ1, при этом модуль фазового сдвига |ϕ1|<π/2, и добротность Q механической колебательной системы определяют по известной формуле, учитывающей тангенс сдвига фаз, частоту собственных колебаний механической системы, частоту вынуждающей силы.
Наверх