Способ эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания

Изобретение относится к электротехнической промышленности и может быть использовано при разработке и эксплуатации литий-ионных аккумуляторных батарей автономных систем электропитания искусственного спутника Земли (ИСЗ). Согласно изобретению способ эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания заключается в проведении зарядов, хранении в заряженном состоянии, подзарядов, при необходимости, разрядов, контроле напряжения аккумуляторов и периодической балансировке аккумуляторов по напряжению путем выбора аккумулятора с наименьшим напряжением, подключения к оставшимся аккумуляторам индивидуальных разрядных резисторов, с последующим отключением соответствующих резисторов при достижении напряжения на соответствующих аккумуляторах уровня напряжения первоначально выбранного аккумулятора, при этом контроль напряжения аккумуляторов и разности поэлементных напряжений наиболее заряженного и наименее заряженного аккумуляторов проводится бортовой ЭВМ, с периодом контроля не реже 1 раза в 32 секунды, и при превышении разности напряжений наиболее заряженного и наименее заряженного аккумуляторов заданной величины, заложенной в бортовой ЭВМ, запускается процесс балансировки по программе в бортовой ЭВМ. Техническим результатом является упрощение эксплуатации и повышение эффективности использования литий-ионной аккумуляторной батареи в автономной системе электропитания. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к электротехнической промышленности и может быть использовано при разработке и эксплуатации литий-ионных аккумуляторных батарей автономных систем электропитания искусственного спутника Земли (ИСЗ).

Известны литий-ионные аккумуляторные батареи и способ их эксплуатации, заключающийся в проведении заряд-разрядных циклов и контроле напряжения аккумуляторов и описанные в книге А.А. Таганова, Ю.И. Бубнова, С.Б. Орлова «Герметичные химические источники тока. Элементы и аккумуляторы. Оборудование для испытаний и эксплуатации», Санкт-Петербург, Химиздат, 2005 г., глава 5, 7.

Однако в данной работе не рассмотрены особенности технологии эксплуатации литий-ионных аккумуляторных батарей.

Известны литий-ионные аккумуляторные батареи и способ их эксплуатации, заключающийся в проведении заряд-разрядных циклов и контроле напряжения аккумуляторов и описанный в книге Д.А. Хрусталева «Аккумуляторы», М., Изумруд, 2003 г., глава 4. В данной работе отмечается очень низкое внутреннее сопротивление аккумуляторов и возможность управления процессами заряда-разряда только по текущим значениям напряжений аккумуляторов. При этом отмечается, что перезаряд и переразряд аккумуляторов категорически недопустим, и в аккумуляторных батареях должны быть предусмотрены средства защиты. Однако известная информация касается в основном наземного применения литий-ионных аккумуляторных батарей в мобильных телефонах и компьютерной технике и не решает вопросов надежной эксплуатации в течение длительного ресурса в составе ИСЗ.

Наиболее близким техническим решением является способ эксплуатации литий-ионной аккумуляторной батареи, заключающийся в проведении заряд-разрядных циклов, контроле напряжения аккумуляторов и проведении в процессе эксплуатации балансировки аккумуляторов по напряжению путем разряда аккумуляторов на резисторы до достижения их напряжения величины напряжения наиболее разряженного (наименее заряженного) аккумулятора («Батарея 6ЛИ-25, ЖЦПИ.563561.002ПС», разработки и изготовления предприятия ОАО "Сатурн", г. Краснодар).

В известной литий-ионной аккумуляторной батарее 6ЛИ-25, согласно ЖЦПИ. 563561.002 ПС, периодически контролируют напряжение аккумуляторов и, если разность поэлементных напряжений наиболее заряженного и наименее заряженного аккумуляторов превышает 25 мВ, проводят выравнивание аккумуляторов по емкости путем разряда более заряженных аккумуляторов на балансировочные резисторы до снижения отличия в напряжениях аккумуляторов не более 10 мВ.

Этот способ принят за прототип заявляемого изобретения.

Известный способ предполагает периодический контроль напряжения аккумуляторов, анализ разности поэлементных напряжений наиболее заряженного и наименее заряженного аккумуляторов и проведение балансировки, но не определяет периодичность и способ контроля, а так же средства для запуска процесса балансировки.

Для заявленного способа эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания выявлены основные общие с прототипом существенные признаки, такие как: проведение зарядов, хранение в заряженном состоянии, подзаряды, при необходимости, разряды, контроль напряжения аккумуляторов и периодическая балансировка аккумуляторов по напряжению путем выбора аккумулятора с наименьшим напряжением, подключения к оставшимся аккумуляторам индивидуальных разрядных резисторов, с последующим отключением соответствующих резисторов при достижении напряжения на соответствующих аккумуляторах уровня напряжения первоначально выбранного аккумулятора

Технической проблемой заявляемого изобретения является упрощение эксплуатации и повышение эффективности использования литий-ионной аккумуляторной батареи в автономной системе электропитания.

Поставленная техническая проблема решается тем, что при проведении зарядов, хранении в заряженном состоянии, подзарядов, при необходимости, разрядов, контроль напряжения аккумуляторов и разности поэлементных напряжений наиболее заряженного и наименее заряженного аккумуляторов проводится бортовой ЭВМ с периодом контроля не реже 1 раза в 32 секунды и при превышении разности напряжений наиболее заряженного и наименее заряженного аккумуляторов заданной величины заложенной в бортовой ЭВМ запускается процесс балансировки по программе в бортовой ЭВМ, кроме того заданную величину разности напряжений наиболее заряженного и наименее заряженного аккумулятора выбирают не более 0,05 В.

Действительно, проведение контроля напряжения аккумуляторов целесообразно проводить с периодом не реже 1 раза в 32 секунды. Это позволяет обеспечить высокую эффективность использования литий-ионной аккумуляторной батареи без существенной загрузки бортовой ЭВМ сложными вычислительными процессами и позволит обеспечить заданную энергоемкость аккумуляторной батарей на весь расчетный период функционирования.

На чертеже, фиг. 1, приведена упрощенная функциональная схема автономной системы электропитания ИСЗ, поясняющая работу по предлагаемому способу.

Устройство содержит солнечную батарею 1, подключенную к нагрузке 2, через преобразователь напряжения 3, аккумуляторную батарею 4, подключенную через зарядный преобразователь 5 к солнечной батарее 1, а через разрядный преобразователь 6 к входу выходного фильтра преобразователя напряжения 3.

При этом нагрузка 2 в своем составе содержит бортовую ЭВМ, систему телеметрии и командно-измерительную радиолинию.

Параллельно аккумуляторной батарее 4 подключено устройство контроля аккумуляторов 7 (в частности, напряжения аккумуляторов) аккумуляторной батареи, связанное входом с аккумуляторной батареей 4, а выходом с нагрузкой 2 (с бортовой ЭВМ).

В цепи заряда-разряда аккумуляторной батареи установлен измерительный шунт 8.

Аккумуляторная батарея состоит из последовательно соединенных аккумуляторов 4-1, параллельно которым подключены балансировочные резисторы 4-2 через замыкающиеся контакты 4-3 реле.

Зарядный преобразователь 5 состоит из регулирующего ключа 9, управляемого схемой управления 10, вольтодобавочного узла, выполненного на трансформаторе 15, транзисторах 16 и выпрямителя на диодах 17.

Разрядный преобразователь 6 состоит из регулирующего ключа 11, управляемого схемой управления 12.

Преобразователь напряжения 3 состоит из регулирующего ключа 13, управляемого схемой управления 14, входного фильтра - конденсатор 18 и выходного фильтра на диоде 19, дросселе 20 и конденсаторе 21.

Схемы управления 10, зарядного преобразователя 5, 12, разрядного преобразователя 6 и 14, преобразователя напряжения 3 выполнены в виде широтно-импульсных модуляторов, входом подключенных к шинам стабилизируемого напряжения. Схема управления 10 зарядного преобразователя 5 дополнительно связана с измерительным шунтом 8 и нагрузкой 2 в качестве обратных связей по величине зарядного тока и напряжения нагрузки соответственно.

Устройство работает следующим образом. В процессе эксплуатации аккумуляторная батарея 4 работает в основном в режиме хранения и периодических подзарядов от солнечной батареи 1 через зарядный преобразователь 5. Такой режим работы позволяет содержать ее в постоянной готовности для прохождения штатных теневых участков орбиты или на случай потери ориентации солнечной батареи ИСЗ на Солнце.

Питание нагрузки 2 осуществляется при этом от солнечной батареи 1 через преобразователь напряжения 3.

При прохождении теневых участков орбиты либо при нарушении ориентации нагрузка 2 питается от аккумуляторной батареи 4 через разрядный преобразователь 6.

Устройство контроля аккумуляторов 7 контролирует напряжение аккумуляторов и передает информацию об их состоянии в нагрузку 2 (бортовую ЭВМ), в которой реализуются следующие технологические операции:

1. Обрабатываются данные по текущему значению напряжения аккумуляторов и разности поэлементных напряжений наиболее заряженного и наименее заряженного аккумуляторов с периодом контроля не реже 1 раза в 32 секунды.

2. При превышении разности напряжений наиболее заряженного и наименее заряженного аккумуляторов 4-1 заданной величины в бортовой ЭВМ, при наличии избыточной мощности солнечной батареи 1, включается заряд аккумуляторной батареи 4, при этом факт включения заряда фиксируется бортовой ЭВМ по появлению тока заряда -сигнал с шунта 8. После завершения заряда запускается процесс балансировки, по программе в бортовой ЭВМ, аккумуляторов по напряжению. К аккумуляторам 4-1 подключаются индивидуальные разрядные резисторы 4-2 (соответствующие контакты 4-3 замыкаются), за исключением аккумулятора, имеющего самое низкое напряжение (самого разряженного аккумулятора). После достижения напряжения соответствующего аккумулятора текущего значения напряжения самого разряженного аккумулятора соответствующий индивидуальный разрядный резистор 4-2 отключается посредством размыкания соответствующего контакта 4-3 реле

3. В процессе эксплуатации аккумуляторной батареи, по результатам анализа телеметрических данных о величине напряжений аккумуляторов, периодически, по командам с Земли через командно-измерительную радиолинию корректируют при необходимости заданную величину разности напряжений наиболее заряженного и наименее заряженного аккумуляторов, по достижению которой запускается процесс балансировки. При этом заданную величину разности напряжений наиболее заряженного и наименее заряженного аккумулятора выбирают не более 0,05 В.

Таким образом, предлагаемый способ позволяет упростить процесс эксплуатации и повысить эффективность использования литий-ионной аккумуляторной батареи в автономной системе электропитания.

1. Способ эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания, заключающийся в проведении зарядов, хранении в заряженном состоянии, подзарядов, при необходимости разрядов, контроле напряжения аккумуляторов и периодической балансировке аккумуляторов по напряжению путем выбора аккумулятора с наименьшим напряжением, подключения к оставшимся аккумуляторам индивидуальных разрядных резисторов, с последующим отключением соответствующих резисторов при достижении напряжения на соответствующих аккумуляторах уровня напряжения первоначально выбранного аккумулятора, отличающийся тем, что контроль напряжения аккумуляторов и разности поэлементных напряжений наиболее заряженного и наименее заряженного аккумуляторов проводят бортовой ЭВМ, с периодом контроля не реже 1 раза в 32 секунды, и при превышении разности напряжений наиболее заряженного и наименее заряженного аккумуляторов заданной величины, заложенной в бортовой ЭВМ, запускают процесс балансировки по программе в бортовой ЭВМ.

2. Способ эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания по п. 1, отличающийся тем, что заданную величину разности напряжений наиболее заряженного и наименее заряженного аккумуляторов выбирают не более 0,05 В.



 

Похожие патенты:

Изобретение относится к области электротехники, а именно к аккумуляторной системе и способу восстановления емкости вторичного литий-ионного аккумулятора. Вторичный литий-ионный аккумулятор содержит положительный электрод и отрицательный электрод, расположенные напротив друг друга, и разделитель, расположенный между ними, при этом ширина слоя активного материала отрицательного электрода превышает ширину слоя активного материала положительного электрода, и на конце слоя активного материала отрицательного электрода имеется неориентированный участок, не обращенный к слою активного материала положительного электрода, где в период зарядки аккумуляторной системы накапливаются ионы лития, тем самым снижая емкость аккумулятора.

Изобретение относится к способу проверки электрического накопительного устройства, которое включает: составление цепи с заряжаемым электрическим накопительным устройством и источником мощности и пропускание тока посредством источника мощности в цепь в направлении заряда или разряда электрического накопительного устройства; и при пропускании тока определение качества электрического накопительного устройства на основе состояния схождения проходящего тока.

Изобретение относится к блоку аккумуляторных батарей, который содержит стопу сборок, выполненных на основе плат и аккумуляторных батарей. Каждая сборка, выполненная на основе плат и аккумуляторных батарей, содержит схемную плату, электрический соединитель, установленный на схемной плате, и элемент аккумуляторной батареи, прикрепленный к стороне схемной платы.

Изобретение относится к области электротехники, а именно к быстрозарядной системе (20), включающей быстрозарядный композит (60) и вторичную батарею (22). Быстрозарядный композит (60) включает целлюлозный сепаратор (62), смачиваемый вторым электролитом (64), содержащим третьи ионы (94), имеющие положительный заряд, и четвертые ионы(96), имеющие отрицательный заряд, находящиеся в контакте с указанными смежными электродами (32), (46) батареи (22).

Использование: в области электротехники. Технический результат – обеспечение восстановления полной энергоемкости аккумуляторных батарей (АБ), что приведет к повышению живучести искусственного спутника Земли (ИСЗ), а также обеспечит преемственность зарядных устройств, что позволит снизить его конечную стоимость и сроки его изготовления.

Использование: в области электротехники для восстановления технических характеристик и заряда аккумуляторных батарей. Технический результат – обеспечение восстановления емкостных характеристик аккумуляторной батареи.

Изобретение относится к способу автоматического предотвращения теплового разгона никель-кадмиевой аккумуляторной батареи на борту воздушного судна. Для этого измеряют значение температуры аккумуляторной батареи, записывают его в бортовое устройство регистрации, сравнивают его с заданным значением критической температуры, при превышении формируют команду на отключение аккумуляторной батареи от источника заряда, формируют предупредительный сигнал и оповещают экипаж воздушного судна.

Использование: в области электротехники. Технический результат - повышение живучести и надежности функционирования автономной системы электропитания (СЭП) космических аппаратов (КА).

Изобретение относится к области электротехники, а именно к упаковке сигарет для размещения в ней и перезарядки электронной сигареты. Упаковка содержит перезаряжаемую батарею упаковки сигарет; первый разъем, который может электрически присоединяться к внешнему источнику питания; первый перезаряжающий механизм для перезарядки батареи упаковки сигарет, использующий внешний источник питания, когда первый разъем электрически присоединяется к внешнему источнику питания; второй разъем, который может электрически присоединяться к электронной сигарете, содержащейся внутри упаковки сигарет; и второй перезаряжающий механизм для перезарядки электронной сигареты, когда электронная сигарета электрически присоединяется ко второму разъему.

Изобретение относится к области электротехники, а именно к заряжаемому контейнеру, предназначенному для хранения в нем и зарядки электронной сигареты. Контейнер содержит батарею контейнера; первый разъем, который электрически соединяют с внешним источником питания; первый механизм зарядки для зарядки батареи контейнера, использующий внешний источник питания, когда первый разъем электрически соединен с внешним источником питания; трубку, в которую вставляют электронную сигарету, так чтобы электронная сигарета могла содержаться внутри заряжаемого контейнера; второй разъем, который электрически соединяют с электронной сигаретой, когда электронная сигарета вставлена в трубку; и второй механизм зарядки для зарядки электронной сигареты, использующий батарею контейнера, когда электронная сигарета электрически соединена со вторым разъемом.

Изобретение относится к перезаряжаемой аккумуляторной батарее и способу ее изготовления. Согласно изобретению, перезаряжаемая батарея содержит, по меньшей мере, пористую основу (10), первый электродный слой (11), ионный проводящий слой (13) и второй электродный слой (12), пористая основа (10) содержит электропроводящий каркас (1), каркас (1) имеет пространственную сетчатую структуру, по меньшей мере, на части поверхности каркаса (1) внутри пористой основы (10) первый электродный слой (11), ионный проводящий слой (13) и второй электродный слой (12) уложены слоями в указанном порядке, первый электродный слой (11) и второй электродный слой (12) имеют противоположную полярность.

Изобретение относится к области электротехники, а именно, к способу и устройству для ограничения тока аккумулятора электрической энергии в зависимости от температуры.

Изобретение относится к области электротехники, а именно к аккумуляторной системе и способу восстановления емкости вторичного литий-ионного аккумулятора. Вторичный литий-ионный аккумулятор содержит положительный электрод и отрицательный электрод, расположенные напротив друг друга, и разделитель, расположенный между ними, при этом ширина слоя активного материала отрицательного электрода превышает ширину слоя активного материала положительного электрода, и на конце слоя активного материала отрицательного электрода имеется неориентированный участок, не обращенный к слою активного материала положительного электрода, где в период зарядки аккумуляторной системы накапливаются ионы лития, тем самым снижая емкость аккумулятора.

Изобретение относится к аноду и сульфидной твердотельной аккумуляторной батарее, в которой используется сульфидный твердый электролит. Согласно изобретению анод содержит: смешанный анодный слой и токосъемный анодный слой, находящийся в контакте со смешанным анодным слоем, причем смешанный анодный слой содержит активный анодный материал и сульфидный твердый электролит, причем, по меньшей мере, поверхность токосъемного анодного слоя выполнена из материала, содержащего сплав меди и металл, склонность которого к ионизации превышает соответствующий параметр меди, причем поверхность находится в контакте со смешанным анодным слоем.

Изобретение относится к способу изготовления сульфидной твердотельной батареи. Способ изготовления сульфидной твердотельной батареи содержит первый этап легирования литием по меньшей мере одного материала, выбранного из графита и титаната лития, с получением предварительно легированного материала; второй этап смешивания сульфидного твердого электролита, активного материала на основе кремния и предварительно легированного материала с получением анодной смеси; третий этап нанесения анодной смеси в виде покрытия на поверхность анодного токоприемника, содержащего медь, для получения анода.

Группа изобретений относится к конструктивным элементам батарей. Блок питания содержит нижний корпус и верхний корпус.

Изобретение относится к области электротехники, а именно к водным литий-ионным аккумуляторам, которые отличаются более высокой плотностью энергии на единицу объема.

Изобретение относится к катодному материалу твердотельной батареи, к способу его изготовления, а также к содержащей его батарее. Согласно изобретению при получении катодной смеси путем смешивания катодного активного материала со слоистой структурой каменной соли и сульфидного твердого электролита и при изготовлении полностью твердотельной батареи с использованием катодной смеси во время зарядки полностью твердотельной батареи из катодного активного материала выделяется кислород, а сульфидный твердый электролит окисляется, что приводит к повышению внутреннего сопротивления полностью твердотельной батареи.

Изобретение относится к водному электролитическому раствору, используемому для водной литий-ионной аккумуляторной батареи. Согласно изобретению водный электролитический раствор содержит по меньшей мере один катион металла, выбранный из иона алюминия, иона титана, иона марганца, иона цинка, иона галлия, иона иттрия, иона циркония, иона индия, иона лантана, иона церия, иона неодима и иона гафния, в таком количестве, что его содержание составляет более 0 моль и не более 0,01 моль на килограмм водного электролитического раствора, в дополнение к иону лития и по меньшей мере одному аниону на основе имида.

Изобретение относится к батарее и способу изготовления батареи. Согласно изобретению, батарея включает в себя корпусной компонент батареи, имеющий монтажное отверстие, внутренний терминал, внешний терминал, и изолирующий элемент; способ изготовления батареи включает в себя этап сборки внутреннего терминала, прокладки, корпусного компонента батареи, изолятора, и внешнего терминала в состоянии, при котором цилиндрическая часть прокладки установлена в монтажное отверстие корпусного компонента батареи, выступающая часть внутреннего терминала установлена в цилиндрическую часть прокладки, изолятор расположен на внешней поверхности корпусного компонента батареи с выступающей частью, установленной в сквозном отверстии, и внешний терминал расположен поверх изолятора таким образом, что он расположен на выступающей части.

Изобретение относится к электротехнической промышленности и может быть использовано при разработке и эксплуатации литий-ионных аккумуляторных батарей автономных систем электропитания искусственного спутника Земли. Согласно изобретению способ эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания заключается в проведении зарядов, хранении в заряженном состоянии, подзарядов, при необходимости, разрядов, контроле напряжения аккумуляторов и периодической балансировке аккумуляторов по напряжению путем выбора аккумулятора с наименьшим напряжением, подключения к оставшимся аккумуляторам индивидуальных разрядных резисторов, с последующим отключением соответствующих резисторов при достижении напряжения на соответствующих аккумуляторах уровня напряжения первоначально выбранного аккумулятора, при этом контроль напряжения аккумуляторов и разности поэлементных напряжений наиболее заряженного и наименее заряженного аккумуляторов проводится бортовой ЭВМ, с периодом контроля не реже 1 раза в 32 секунды, и при превышении разности напряжений наиболее заряженного и наименее заряженного аккумуляторов заданной величины, заложенной в бортовой ЭВМ, запускается процесс балансировки по программе в бортовой ЭВМ. Техническим результатом является упрощение эксплуатации и повышение эффективности использования литий-ионной аккумуляторной батареи в автономной системе электропитания. 1 з.п. ф-лы, 1 ил.

Наверх