Многокамерное устройство для выращивания крупных кристаллов алмазов без силовой рамы



Многокамерное устройство для выращивания крупных кристаллов алмазов без силовой рамы
Многокамерное устройство для выращивания крупных кристаллов алмазов без силовой рамы
Многокамерное устройство для выращивания крупных кристаллов алмазов без силовой рамы
Y10S423/11 -
Y10S423/11 -

Владельцы патента RU 2699107:

Федеральное государственное бюджетное учреждение науки институт физики высоких давлений им. Л.Ф. Верещагина Российской академии наук (ИФВД РАН) (RU)

Изобретение относится к химическому машиностроению, к технике высоких давлений и может быть использовано для выращивания кристаллов алмазов. Устройство для выращивания кристаллов алмаза содержит установленные в заглублении земли на столе 6 соосно в ряд контейнеры 1, 2 с размещенным в каждом контейнере соответствующим многопуансонным аппаратом 3 высокого давления, а между каждым из крайних контейнеров 1 и 2 и соответствующей стеной 8 заглубления установлена по меньшей мере одна разгрузочная плита 7. Каждый контейнер 1, 2 закрыт по меньшей мере одной из боковых сторон подвижной в осевом направлении пробкой 4, 5. Изобретение позволяет одновременно в одном устройстве в отсутствие силовой рамы выращивать в каждом из контейнеров с камерой высокого давления при разных режимах алмазы c различными характеристиками. 8 з.п. ф-лы, 3 ил.

 

Изобретение относится к химическому машиностроению, к технике высоких давлений и может быть использовано для выращивания крупных кристаллов алмазов и синтеза других материалов при высоком давлении и температуре, процесс производства которых требует продолжительного времени.

В настоящее время синтез (выращивание) крупных кристаллов алмазов осуществляют в основном в многопуансонных аппаратах с камерой высокого давления в форме куба, или октаэдра, или другого правильного многоугольника, а также в камерах типа «тороид» и «белт» (Физика высоких давлений, страница в Интернете http://lomonosov-fand.ru/enc/ru/encyclopedia:01275:article). Для создания и поддержки давления в камерах высокого давления используются индивидуальные силовые рамы. Так для работы на камерах «тороид» и «белт» используются гидравлические прессы. В многопуансонных аппаратах с гидравлическим приводом пуансонов усилие, развиваемое в контейнере, удерживается индивидуальной силовой рамой, либо сам контейнер выполнен в виде силовой рамы (система «БАРС»).

Наиболее близким к предложенному является аппарат высокого давления (RU 2071823, опуб. 20.01.1997), содержащий многопуансонный блок, имеющий наружную поверхность в виде правильного многогранника, каждый пуансон которого представляет собой правильную пирамиду с усеченной вершиной. Основание этой пирамиды служит одной из наружных сторон многопуансонного блока, а усеченная вершина - одной из сторон сжимаемого объема. Контейнер состоит из двух полукорпусов, между которыми заключена внутренняя полость, в которую помещен многопуансонный блок. Она имеет форму обратного многогранника, соответствующего по форме наружной поверхности многопуансонного блока. Многопуансонный блок в эластичном герметизирующем чехле, края которого в области разъема герметично закреплены на поверхности полукорпусов, помещен во внутреннюю полость контейнера. Жидкость высокого давления подается в камеру высокого давления между эластичным чехлом и поверхностью внутренней полости контейнера. Усилие, воспринимаемое наружной поверхностью пуансона, передается на его усеченную вершину, которая имеет меньшую площадь, в результате во внутреннем объеме создается высокое давление. Усилие, создаваемое в контейнере высокого давления этого устройства, удерживается силовыми скобами или рамой пресса.

Развитие производства (выращивания) крупных кристаллов алмазов сдерживает высокая стоимость аппаратуры высокого давления, которая состоит из камеры высокого давления и силового устройства (гидропресс - рама и гидравлический цилиндр) или контейнер и силовая рама, которая удерживает нагрузку, создаваемую в контейнере. Наиболее металлоемкой частью этих устройств является силовая рама.

Технической проблемой, решаемой изобретением, является создание простого, неметаллоемкого многокамерного устройства, удерживающего большие нагрузки продолжительное время, для выращивания крупных кристаллов алмазов и других материалов в большом объеме, процесс выращивания которых требует продолжительного времени, в камерах высокого давления с большим рабочим объемом.

Техническая проблема решается устройством для выращивания кристаллов алмаза, содержащим установленные в заглублении земли соосно в ряд контейнеры с размещенным в каждом контейнере соответствующим многопуансонным аппаратом высокого давления, а между каждым из крайних контейнеров и соответствующей стеной заглубления установлена по меньшей мере одна разгрузочная плита.

Контейнеры целесообразно устанавливать на столе.

Кроме того, каждый контейнер закрыт по меньшей мере одной из боковых сторон подвижной в осевом направлении пробкой.

В другом варианте каждая пара соседних контейнеров могут быть закрыты с обращенных друг к другу боковых сторон одной подвижной в осевом направлении пробкой.

Для обеспечения уплотнения пакета контейнеров на оси силовой рамы и удерживания контейнеров закрытыми в процессе синтеза один из контейнеров имеет внутренний диаметр больше чем остальные контейнеры, а длина цилиндра, то есть рабочий ход подвижной пробки этого контейнера равен суммарной ширине всех зазоров между контейнерами при первоначальной установке их на ось рамы.

Кроме того, в каждом контейнере между многопуансонным аппаратом и внутренней цилиндрической поверхностью контейнера могут быть расположены вкладыши, которые зафиксированы на цилиндрической стенке контейнера.

Кроме того, в каждом контейнере многопуансонный аппарат может быть установлен на салазках.

Кроме того, в одной из пробок каждого контейнера могут быть выполнены герметично электрические вводы, вводы охлаждающей среды, вводы среды высокого давления, а также вводы датчиков контроля за процессом синтеза.

Технический результат изобретения заключается в обеспечении возможности одновременного выращивания нескольких характеристик алмазов и других материалов в одной установке в отсутствии силовой рамы. Это достигается за счет того, что используют соосно установленные в ряд в заглублении земли несколько контейнеров с многопуансонными аппаратами высокого давления для выращивания алмазов. При этом осевое усилие, создаваемое в контейнерах высокого давления, сдерживает реакция массы породы земли и трение через две противоположно расположенные параллельные стены, например, железобетонные, установленные в заглублении земли или шахте, и через разгрузочные плиты. В результате на малой площади размещается большое количество аппаратов высокого давления. Раздельное управление каждым из контейнеров, позволяет вести одновременно процесс синтеза различных материалов при разных режимах и синтезировать различные материалы.

Изобретение поясняется чертежами.

На фиг. 1 показано предложенное устройство, вид спереди в разрезе.

На фиг. 2 показано предложенное устройство, вид сверху.

На фиг. 3 показан многопуансонный аппарат в разрезе.

На фиг. 1 показано многокамерное устройство для выращивания крупных кристаллов алмаза, расположенное в заглублении земли. В нем отсутствует силовая рама. Устройство состоит из пакета контейнеров 1, 2 высокого давления, в которых размещены многопуансонные аппараты 3 высокого давления. Контейнеры 1, 2 закрыты подвижными пробками 4, 5 и установлены соосно в ряд на рабочем столе 6 между разгрузочными плитами 7. Разгрузочные плиты 7 выполнены из металла и железобетона и служат для уменьшения удельного давления на единицу площади земли.

Один из крайних контейнеров 2 имеет большую длину и больший ход подвижной пробки 5 по сравнению с остальными контейнерами 1, для того чтобы выбрать зазоры, образующиеся при сборке пакета из контейнеров 1, 2 и компенсировать деформационную составляющую, которая возникает при нагрузках.

Работа устройства организована следующим образом. В помещении, выполненном в заглублении земли или в шахте, между двух противоположных параллельных стен 8 установлены разгрузочные плиты 7 по одной или несколько с каждой стороны. Между ними находится рабочий стол 6. На столе 6 соосно разгрузочным плитам 7 размещают в собранном виде контейнеры 1 и 2 высокого давления с многопуансонными аппаратами 3 для выращивания кристаллов. Контейнером 2 высокого давления осуществляется уплотнение пакета контейнеров 1 на оси разгрузочных плит 7, внутренний канал которого имеет большую площадь или большее давление внутри по сравнению с остальными, а одна из его подвижных пробок 6 имеет ход, позволяющий уплотнить пакет контейнеров 1, 2 высокого давления и компенсировать деформационную составляющую пакета и разгрузочных плит 7 при максимальной нагрузке.

На фиг. 3 показан пример контейнера 2 высокого давления с многопуансонным аппаратом 3 для синтеза алмазов. В контейнерах 1, 2 высокого давления цилиндрической формы размещены многопуансонные аппараты 3 высокого давления в форме куба. Между поверхностями многопуансонного аппарата 3 и внутренней цилиндрической поверхностью контейнера 1, 2 установлены на шпонках 9 по четыре вкладыша 10, имеющих внешнюю поверхность, ответную внутренней поверхности контейнера 1, 2. Контейнеры 1, 2 закрываются с обеих сторон подвижными пробками 4 и 5. В другом варианте пары соседних контейнеров 2, 3 закрыты одной общей пробкой. В пробках 4 и 5 напротив вкладышей 10 выполнены по четыре отверстия, в которых находятся поршни, образующие гидроцилиндры 11 для выталкивания пробок 4 и 5 при разборке контейнеров 1 и 2. В пробках 5 выполнены электрические вводы 12 для нагрева и для контроля за температурой и давлением, вводы 13 охлаждающей среды, вводы 14 среды высокого давления.

Уплотнение пакета контейнеров 1, 2 реализуется с помощью контейнера 2 (фиг. 1), который имеет больший внутренний диаметр (или большее давление внутри) по сравнению с остальными контейнерами 1, а одна из его подвижных пробок - пробка 5 имеет ход, равный суммарному зазору между контейнерами 1, 2 после их установки на стол 5, позволяющий уплотнить пакет контейнеров 1, 2.

Гидравлическая система устройства высокого давления состоит из насосной станции 15 высокого давления, мультипликатора - аккумулятора 16, соединенного с ней коллектора высокого давления с управляемыми клапанами и вентилями 17. Система 18 управления процессом синтеза соединена посредством электроразъемов 19 с датчиками 20 контроля, установленными в многопуансонных аппаратах 3. Давление в каждом контейнере 1, 2 поддерживается посредством индивидуального контроллера высокого давления. Электропитание подводится посредством электроразъемов 19. Процесс синтеза в каждом аппарате 3 контролируется известным способом.

Устройство работает следующим образом.

Кубическая ячейка 21 для выращивания алмазов собирается известным способом. На ней устанавливают датчики 20 для контроля за процессом синтеза, ячейку 21 помещают в центре многопуансонного аппарата 3, размещенного на салазках 22, которые прикреплены к подвижной пробке 5. Камеру для синтеза вначале образуют пять пуансонов 23, разделенных эластичными прокладками 24. Датчики 20 контроля за процессом синтеза и кабели нагревателя ячейки 21 соединяют через герметичные вводы 12 в подвижной пробке 5 с внешними кабелями. Устанавливают последний шестой пуансон 23, и весь многопуансонный аппарат 3 герметизируют эластичным чехлом 25. Многопуансонный аппарат 3 помещают в контейнер 1, 2 и закрывают контейнер 1, 2 подвижными пробками 4 и 5.

Контейнеры 1, 2 поочередно устанавливают на стол 5 на ось разгрузочных плит 7, и весь пакет уплотняется посредством контейнера 2. Этим контейнером 2 создается осевое усилие, превышающее усилие необходимое для синтеза в остальных контейнерах 1 высокого давления. Каждый контейнер 1, 2 высокого давления подсоединяется к известному устройству автоматического контроля за процессом синтеза к коллектору высокого давления, охлаждения и сети электропитания. При достижении необходимого давления в многопуансонном аппарате 3 в ячейке 21 поднимается температура и начинается процесс синтеза алмазов. Процедура подключения повторяется последовательно со всеми контейнерами 1, 2, размещенными на оси разгрузочных плит 7. Поскольку процесс выращивания алмазов длится сутками, системы контроля давления и температуры работают в автономном автоматическом режиме. По окончании процесса в каждом из аппаратов 3 отключается система нагрева, стравливается высокое давление из контейнера 1, отключается система охлаждения. В последнюю очередь давление сбрасывается из контейнера 2, который поджимает пакет. После этого каждый контейнер 1, 2 высокого давления отсоединяется от коллектора высокого давления, электросети и системы контроля, за процессом синтеза. После чего контейнеры 1, 2 поочередно выдвигаются на стол 5. Из контейнеров 1, 2 вытаскиваются подвижные пробки 4, 5 вместе с многопуансонным аппаратом 3, осуществляется разгерметизация многопуансонного аппарата 3. Вытаскивается один из шести пуансонов 22 и извлекается ячейка 20 с выращенными кристаллами. После чистки аппарата и осмотра пуансонов процесс можно повторять.

1. Устройство для выращивания кристаллов алмаза, содержащее установленные в заглублении земли соосно в ряд контейнеры с размещенным в каждом контейнере соответствующим многопуансонным аппаратом высокого давления, а между каждым из крайних контейнеров и соответствующей стеной заглубления установлена по меньшей мере одна разгрузочная плита.

2. Устройство по п. 1, в котором контейнеры установлены в заглублении земли на столе.

3. Устройство по п. 1, в котором каждый контейнер закрыт с боковых сторон подвижными в осевом направлении пробками.

4. Устройство по п. 1, в котором каждая пара соседних контейнеров закрыта с обращенных друг к другу боковых сторон одной подвижной в осевом направлении пробкой.

5. Устройство по п. 3 или 4, в котором в пробках выполнены гидравлические цилиндры для выталкивания пробок из контейнера.

6. Устройство по п. 3 или 4, в котором один из контейнеров имеет внутренний диаметр больше, чем остальные контейнеры, а рабочий ход подвижной пробки этого контейнера равен суммарной ширине всех зазоров между контейнерами при их первоначальной установке.

7. Устройство по п. 1, в котором в каждом контейнере между многопуансонным аппаратом и внутренней цилиндрической поверхностью контейнера расположены вкладыши, которые зафиксированы на цилиндрической стенке контейнера.

8. Устройство по п. 1, в котором в каждом контейнере многопуансонный аппарат установлен на салазках.

9. Устройство по п. 3 или 4, в котором в одной из пробок каждого контейнера выполнены герметично электрические вводы, вводы охлаждающей среды, вводы среды высокого давления, а также вводы датчиков контроля за процессом синтеза.



 

Похожие патенты:

Изобретение относится к производству объемных изделий (структур) из алмаза: губок, пористых структур сложной формы, и может быть использовано в твердотельной электронике для производства теплоотводов, эмиссионных электродов и высоковольтных изоляторов, в теплотехнике при конструировании эффективных теплообменников, в биологии и медицине при изготовлении фильтров и мембран.

Изобретение относится к технологии получения монокристаллических CVD алмазов, которые могут быть использованы для производства линз, призм, частей механического инструмента или драгоценных камней для ювелирных применений.

Изобретение относится к углеродсодержащим покрытым частицам для применения в качестве катализатора или адсорбционного материала и способу их получения, а также функциональному материалу, при получении которого использованы такие частицы.

Изобретение относится к химическому машиностроению, к технике высоких давлений и может быть использовано для выращивания крупных кристаллов алмазов. Устройство содержит силовую раму 1, установленные в ней соосно в ряд контейнеры 2, 3 цилиндрической формы с размещенным в каждом контейнере соответствующим многопуансонным аппаратом высокого давления 4 в форме куба, в котором выращиваются алмазы, между крайними контейнерами 2, 3 и силовой рамой 1 установлены полуцилиндрические вкладыши 5, цилиндрическая поверхность каждого из которых контактирует с ответной ей полуцилиндрической поверхностью рамы 1.

Изобретение относится к способу получения тонких алмазных пленок и может быть использовано в различных областях промышленности и науки для получения тонкопленочных упрочняющих покрытий и активных слоев тонкопленочных наноструктур.

Изобретение относится к технологии производства тонких алмазных пленок и может быть использовано в различных областях промышленности и науки для получения тонкопленочных упрочняющих покрытий и активных слоев тонкопленочных наноструктур.

Изобретение относится к микрокристаллическому алмазному покрытию, предназначенному для трибологических областей применения в сфере микромеханики, а также в оптике.
Изобретение относится к области получения синтетических алмазов, включающих изотоп 14С, обладающих β-излучением. Алмазы выращиваются из карбида железа, образующегося непосредственно в ростовой камере из карбоната бария, являющегося продуктом переработки отработавшего ядерного топлива и содержащего в своем составе 50-70% изотопа 14С от общей массы углерода, и не менее чем 5-кратного по отношению к общей массе карбоната бария избытка железа.

Изобретение относится к синтезу наноалмазов для использования в элементах оптической памяти для квантовых компьютеров высокой производительности. Способ включает подготовку углеродсодержащей смеси, ее размещение в камере высокого давления, инициирование в углеродсодержащей смеси интенсивной ударной волны, фильтрацию и сепарацию продуктов синтеза, при этом в качестве углеродсодержащей смеси выбирают смесь на основе предельных углеводородов гомологического ряда алканов с общей формулой CnH2n+2 с числом углеродных атомов 16 и выше, нагревают ее до температуры выше 300 K, пропускают через нее метан под давлением выше 0,1 МПа и формируют в углеродсодержащей смеси импульсный электрический разряд.

Способ вывода из осаждённого из газовой фазы алмаза электромагнитного излучения центров окраски, в котором у поверхности алмазного образца формируется собирающая излучение центров окраски оптическая система, состоящая из конуса с круглым основанием из оптического стекла, окружающего конус конического зеркала и собирающей линзы.

Изобретение относится к производству объемных изделий (структур) из алмаза: губок, пористых структур сложной формы, и может быть использовано в твердотельной электронике для производства теплоотводов, эмиссионных электродов и высоковольтных изоляторов, в теплотехнике при конструировании эффективных теплообменников, в биологии и медицине при изготовлении фильтров и мембран.

Изобретение относится к системе твердооксидного топливного элемента, а также к способу эксплуатации такой системы и может быть применено в энергетике. Система твердооксидного топливного элемента содержит установку реформинга, батарею твердооксидного топливного элемента, топку для получения тепла для установки реформинга.

Изобретение относится к химической промышленности и может быть использовано при изготовлении углепластиков с улучшенными прочностными свойствами. Сначала проводят плазмохимическую обработку наполнителя из углеродных волокон.

Изобретения относятся к нанотехнологии и могут быть использованы при изготовлении легковесных и хорошо проводящих материалов. Углеродные нанотрубки диспергируют в растворителе при температуре 80-140 °С.

Настоящее изобретение относится к области основого органического синтеза, в частности к способу получения метанола. Способ заключается в подаче синтез-газа с циркуляционным газом на компримирование и контактирование в реакторе с медно-цинковым катализатором при температуре 220-290°С, с последующим охлаждением выходящего из реактора метанолсодержащего газа и отделением метанола-сырца в сепараторе.

Изобретение относится к способу получения карбида кальция в руднотермической печи, включающему приготовление шихты из извести и углеродсодержащего материала, загрузку шихты в печь, плавление шихты, загрузку полученного расплава карбида кальция во вращающийся охлаждающий барабан в смеси с добавками материала, применяемого в производстве карбида кальция, для охлаждения, кристаллизации и дробления, с последующей сепарацией кускового карбида кальция по размерам на фракции.

Изобретение относится к способам модификации тонких пленок с помощью электромагнитного (лазерного) излучения с целью получения заданных электрофизических свойств модифицированных областей и контроля степени функционализации этих областей.

Изобретение относится к углеродсодержащим покрытым частицам для применения в качестве катализатора или адсорбционного материала и способу их получения, а также функциональному материалу, при получении которого использованы такие частицы.

Изобретение относится к мембранным технологиям получения особо чистого водорода из газовых смесей, содержащих водород. Диффузионный отделитель водорода, содержащий мембраны из палладия или его сплавов, плотно соединенные с рамками, которые в свою очередь плотно соединены между собой; газопроницаемый разделитель, установленный в полости между двумя мембранами, и патрубок отвода водорода из этой полости, при этом рамки предварительно сварены между собой и с патрубком отвода водорода, образуя корпус отделителя водорода, в который помещен газопроницаемый разделитель, после чего производится соединение мембран с рамками поочередно с каждой стороны или одновременно, при этом материал рамок и патрубка должен соответствовать условиям: σпм<σтпм при σпм≥0, σпм<σустпм при σпм<0, где Изобретение обеспечивает повышение надежности и срока службы диффузионного отделителя водорода.

Изобретение относится к получению углеродных изделий. Техническим результатом является повышение качества за счет исключения дефектов ячеистых углеродных изделий.
Изобретение может быть использовано при переработке отвальных красных шламов глиноземного производства в частности из красного шлама в процессе Байера. Способ извлечения оксида алюминия из отходов глиноземного производства включает автоклавное выщелачивание отходов при повышенных температуре и давлении в присутствии извести в щелочном растворе с последующим охлаждением пульпы после выщелачивания, добавлением воды, перемешиванием и фильтрованием.
Наверх