Термоядерный реактор

Изобретение относится к термоядерному реактору. Реактор содержит вакуумную камеру, каналы подачи газообразных реагентов в камеру, входной и выходной коллекторы охлаждающего камеру теплоносителя. Камера выполнена в виде полого цилиндра, внутренняя поверхность которого покрыта пористым материалом, смачиваемым расплавленным литием и образующая цилиндрический отражатель, в стенке полого цилиндра выполнены продольные каналы для охлаждающего теплоносителя, подаваемого с помощью входного коллектора и отводимого с помощью выходного коллектора. Входной и выходной коллекторы выполнены со скользящими уплотнениями по торцевым сторонам вакуумной камеры, по оси торцевых сторон выполнены скользящие и изолированные металлические вводы каналов подачи газообразных реагентов, к которым прикладывается постоянное напряжение, вызывающее пробой газового наполнения камеры и формирование первичного плазменного шнура. С внешней стороны вакуумной камеры размещены СВЧ-излучатели, осуществляющие разогрев лития в пористом материале на внутренней поверхности вакуумной камеры, и магнитные системы, линии магнитного поля которых проникают внутрь вакуумной камеры и формируют воздействие на плазменный шнур в сторону оси цилиндрической вакуумной камеры, опирающейся на роликовые подшипники, обеспечивающие вращение камеры. Техническим результатом является регулирование тепловой мощности реактора, повышение стабильности плазменного шнура и увеличение его температуры. 3 ил.

 

Изобретение относится к ядерной физике, а именно, к устройствам для осуществления термоядерных реакций синтеза и может быть использовано для получения электрической энергии.

Известен термоядерный реактор (Грачев Л.П. Есаков И.И. Мишин Г.И. Ходатаев К.В. Возможность осуществления термоядерного синтеза в резонансном стримерном СЧ-разряде высокого давления. Российская АН, Физико-технический институт им. А.Ф. Иоффе, Санкт-Петербург, 1992, препринт N 1577, с. 50), включающий камеру, заполненную под давлением газом, например водородом, систему подачи текучего теплоносителя, размещенную вне упомянутой камеры, текучий теплоноситель, выходящий из упомянутой системы и входящий в преобразователь энергии, который установлен вне ранее указанной камеры, двухзеркальный открытый СВЧ-резонатор, помещенный во внутрь камеры, причем зеркала СВЧ-резонатора установлены на расстоянии от внутренних стен камеры, которая выполнена прямоугольной формы и концентрично расположена внутри другой камеры, а зазор между ними заполнен текучим теплоносителем.

Недостатком известного устройства является нестабильность плазменного облака и высокая скорость его остывания, обусловленная потерями энергии через излучение.

Наиболее близким по технической сущности является термоядерный реактор (Патент РФ 2076358, заявка №94021126/25), МПК G21B 1/00, оп. 27.03.1997), содержащий, вакуумную камеру, выполненную в виде полого цилиндра, каналы подачи газообразных реагентов в камеру, входной и выходной коллекторы охлаждающего вакуумную камеру теплоносителя Внутренняя поверхность камеры образована двумя теплопроводными змеевиками, у которых вход и выход выполнены раздельными. Причем вход змеевика выходит из камеры со стороны зеркала СВЧ-резонатора, а входная часть этого змеевика охватывает тыльную сторону упомянутого зеркала. Вход другого змеевика выходит из камеры со стороны второго зеркала СВЧ-резонатора, а входная часть этого же змеевика охватывает тыльную сторону уже второго зеркала и соответствующий составной элемент СВЧ-резонатора. Кроме того, входы змеевиков соединены с системой подачи теплоносителя, которым заполнены указанные змеевики.

Недостатком известного устройства является отсутствие систем удержания плазменного облака в центре вакуумной камеры, что при подвижности плазменного облака повышает вероятность контактов плазмы со стенками камеры и, как следствие, ее остывание и загрязнение, кроме того тепловое излучение плазмы интенсивно поглощается холодными стенками камеры, что приводит к дополнительному ее остыванию.

Технической задачей является обеспечение возможности регулирования тепловой мощности реактора.

Технический результат заключается в повышении стабильности плазменного шнура, увеличение его температуры.

Это достигается тем, что в известный термоядерный реактор, содержащий вакуумную камеру, выполненную в виде полого цилиндра, каналы подачи газообразных реагентов в камеру, входной и выходной коллекторы теплоносителя охлаждающего вакуумную камеру, причем вакуумная камера, внутренняя поверхность которого выстлана пористым материалом, смачиваемым расплавленным литием и образующая цилиндрический отражатель, в стенке полого цилиндра выполнены продольные каналы для охлаждающего теплоносителя, подаваемого в каналы с помощью входного коллектора и отводимого из каналов с помощью выходного коллектора, входной и выходной коллекторы выполнены со скользящими уплотнениями по торцевым сторонам вакуумной камеры, по оси торцевых сторон выполнены скользящие и изолированные вводы каналов подачи газообразных реагентов, к которым прикладывается постоянное напряжение, вызывающее пробой газового наполнения камеры и формирование первичного плазменного шнура, с внешней стороны вакуумной камеры размещены СВЧ-излучатели, осуществляющие разогрев лития в пористом слое на внутренней поверхности вакуумной камеры, и магнитные системы, линии магнитного поля которых проникают внутрь вакуумной камеры и формируют воздействие на плазменный шнур в сторону оси цилиндрической вакуумной камеры, которая опирается на роликовые подшипники, закрепленные на корпусе реактора и обеспечивающие возможность вращения камеры вокруг продольной оси и препятствующие продольному ее перемещению, с помощью электродвигателя и шестеренчатой пары вакуумная камера осуществляет вращение вокруг продольной оси.

Сущность изобретения поясняется чертежами, где на фиг. 1 изображена функциональная схема термоядерного реактора, на фиг. 2 изображен продольный разрез вакуумной камеры, а на фиг. 3 изображен поперечный разрез вакуумной камеры.

Термоядерный реактор содержит вакуумную камеру 1, каналы 2 и 3 подачи газообразных реагентов в камеру 1, входной и выходной коллекторы 4 и 5 охлаждающего вакуумную камеру 1 теплоносителя, причем вакуумная камера 1 выполнена в виде полого цилиндра, внутренняя поверхность которого покрыта пористым материалом 6, смачиваемым расплавленным литием и образующая цилиндрический отражатель, в стенке полого цилиндра выполнены продольные каналы 7 для охлаждающего теплоносителя, подаваемого в каналы 7 с помощью входного коллектора 4 и отводимого из каналов 7 с помощью выходного коллектора 5, входной и выходной коллекторы 4 и 5 выполнены со скользящими уплотнениями по торцевым сторонам вакуумной камеры 1, по оси торцевых сторон выполнены скользящие и изолированные металлические вводы каналов 2 и 3 подачи газообразных реагентов, к которым прикладывается постоянное напряжение, вызывающее пробой газового наполнения камеры 1 и формирование первичного плазменного шнура 8, с внешней стороны вакуумной камеры 1 размещены СВЧ-излучатели 9 и 10, осуществляющие разогрев лития в пористом материале 6 на внутренней поверхности вакуумной камеры 1, и магнитные системы 11 и 12, линии магнитного поля которых проникают внутрь вакуумной камеры 1 и формируют воздействие на плазменный шнур 8 в сторону оси цилиндрической вакуумной камеры 1, опирающейся на роликовые подшипники 13, закрепленные на корпусе реактора и обеспечивающие вращение камеры 1 вокруг продольной оси и препятствующие продольному ее перемещению, при этом электродвигателем 14 и шестеренчатой парой 15 вакуумная камера 1 приводится во вращение вокруг продольной оси.

Термоядерный реактор работает следующим образом.

Рабочий цикл реактора начинается с включения электродвигателя 14 и приведением во вращение вокруг продольной оси цилиндрической вакуумной камеры 1. Одновременно с помощью СВЧ-нагревателей 9 и 10 осуществляется разогрев лития в пористом материале 6. После расплавления лития он равномерно за счет вращения вакуумной камеры и воздействия центробежных сил распределяется по объему пористого материала 6, образуя цилиндрический отражатель. После того как будет сформирована поверхность отражателя, в вакуумную камеру 1 по каналу 2, имеющим вращающееся уплотнение, подается смесь газообразных реагентов, например, смесь водорода, дейтерия и трития, и при подаче высокого постоянного напряжения к изолированным вводам каналов 2 и 3 происходит пробой в смеси газов и формирование первичного, так как начальная температура в шнуре недостаточна для осуществления реакции синтеза, плазменного шнура в вакуумной камере.

Следующий этап работы реактора заключается в постепенном повышении температуры в плазменном шнуре, что реализуется за счет омического нагрева шнура подведенным к вводам каналов 2 и 3 постоянным напряжением. Термодинамическое состояние плазмы, находящейся в разряженной газовой среде, определяется только потерями энергии от излучения. Поскольку плазменный шнур находится в центре цилиндрического зеркала, то большая часть теплового излучения от шнура возвращается ему же. Такой способ условной теплоизоляции позволяет создать предпосылки для быстрого повышения температуры в плазменном шнуре до температур начала реакций синтеза.

Стабильность плазменного шнура обеспечивается двумя или более магнитными системами 11 и 12, расположенными вне камеры 1. Магнитное поле проникает внутрь камеры 1 и на токопроводящий плазменный шнур по правилу левой руки оказывает воздействие, направленное к оси цилиндрической камеры. Если учесть, что камера 1 вращается вокруг своей оси, то отклонение плазменного шнура в любую сторону от осевого положения будет скорректировано магнитными системами. Магнитные системы выполняют функцию ручного отжима - скручивают и сдавливают плазменный шнур. Стабилизации плазменного шнура непосредственно влияют на повышения температуры шнура. В связи с тем, что фиксация плазменного шнура в фокусе цилиндрического отражателя позволяет вернуть шнуру значительную часть излученной шнуром энергии и, тем самым, при подводе энергии к шнуру добиться повышения его температуры.

При достижении температур ядерного синтеза в вакуумной камере в плазменном шнуре происходит слияние ядер газообразных реагентов с выделением огромного количества тепла. Контролировать тепловыделение можно двумя путями. Во-первых, задавая концентрацию дейтерия и трития в вакуумной камере 1, и, во-вторых, управляя условиями, необходимыми для существования реакций синтеза. Один из вариантов второго направления заключается в управлении продолжительностью реакции синтеза. Если начало реакции определяется многими факторами и является по сути случайным, фиксируемым скачком теплового излучения, то окончание однозначно определяется снятием постоянного напряжения с изолированных вводов 2 и 3. При этом по плазменному шнуру перестает протекать ток и перестают действовать силы, сдавливающие плазменный шнур. Расширяясь, плазма выбрасывается на литиевое покрытие внутренней стенки камеры, испаряя часть лития и естественно охлаждаясь. Эти факторы: уменьшение концентрации и снижение температуры, неизбежно вызывают срыв реакции синтеза. Такой время-импульсный принцип работы реактора позволяет контролировать его тепловую мощность в требуемых пределах.

Повышение стабильности плазменного шнура достигается за счет вращения в магнитном поле цилиндрической вакуумной камеры 1 вокруг продольной оси и создания постоянного тока в плазменном шнуре.

Повышение температуры плазменного шнура достигается за счет удержания шнура на оси цилиндрической камеры и в фокусе цилиндрического отражателя, обеспечивая возврат большей части теплового излучения назад плазменному шнуру.

Импульсный принцип работы реактора позволяет контролировать его тепловую мощность в требуемых пределах.

Использование изобретения позволяет обеспечить регулирование тепловой мощности реактора, при этом повысить стабильность плазменного шнура и увеличить его температуру.

Термоядерный реактор, содержащий вакуумную камеру, каналы подачи газообразных реагентов в камеру, входной и выходной коллекторы теплоносителя, охлаждающего вакуумную камеру, отличающийся тем, что вакуумная камера выполнена в виде полого цилиндра, внутренняя поверхность которого покрыта пористым материалом, смачиваемым расплавленным литием, и образующая цилиндрический отражатель, в стенке полого цилиндра выполнены продольные каналы для охлаждающего теплоносителя, подаваемого в каналы с помощью входного коллектора и отводимого из каналов с помощью выходного коллектора, по оси торцевых сторон выполнены скользящие и изолированные вводы каналов подачи газообразных реагентов, к которым приложено постоянное напряжение, вызывающее пробой газового наполнения вакуумной камеры и формирование первичного плазменного шнура, с внешней стороны вакуумной камеры размещены СВЧ-излучатели для разогрева лития в пористом слое на внутренней поверхности цилиндрической вакуумной камеры и магнитные системы, линии магнитного поля которых проникают внутрь вакуумной камеры и формируют воздействие на плазменный шнур в сторону оси цилиндрической вакуумной камеры, которая установлена на роликовые подшипники, закрепленные в реакторе и обеспечивающие вращение вакуумной камеры вокруг продольной оси, с помощью электродвигателя и шестеренчатой пары цилиндрическая вакуумная камера приводит вращение вокруг продольной оси.



 

Похожие патенты:

Изобретение относится к средству создания вихревой воронки во вращающейся текучей среде, в частности во вращающейся текучей среде системы сжатия плазмы. Система содержит сосуд, в который впрыскивается текучая среда через одно или несколько впускных отверстий, и систему циркуляции текучей среды, выполненную с возможностью обеспечения циркуляции текучей среды в сосуде таким образом, что текучая среда отводится из сосуда через сливное отверстие и возвращается обратно в сосуд через одно или несколько впускных отверстий.

Изобретение относится к конструкции вакуумной камеры (ВК) и бланкета, которые являются элементами термоядерного реактора (ТЯР) или демонстрационного термоядерного источника нейтронов (ДЕМО-ТИН).

Лимитер // 2687292
Изобретение относится к оборудованию для оснащения термоядерных реакторов типа токамак. Лимитер содержит емкость 1, заполненную литием 2 и имеющую тепловой контакт с оммическим или СВЧ-нагревателями 3, кольцо 4, зафиксированное вращающимися опорами 5, неподвижно закрепленными на корпусе токамака, внутренняя поверхность кольца 4 выстлана пористым материалом 6, смачиваемым расплавленным литием, а нижняя часть кольца 4 погружена в литий в емкости 1, через зубчатое зацепление 7 кольцо 4 приводится во вращение электродвигателем 8, емкость 1 имеет входящий и выходящий трубопроводы 9 и 10 для расплавленного лития.

Изобретение относится устройству для крепления модуля бланкета на вакуумном корпусе термоядерного реактора. Устройство включает полую цилиндрическую опору с двумя фланцами и установленными между ними гибкими стержневыми элементами, разделенными прорезями, выполненными в осевом направлении опоры.

Изобретение относится к способу оптимизации рециклинга рабочего газа в токамаке. Способ предусматривает поступление в плазму молекул и атомов рабочего газа с поверхностей стенок вакуумной камеры, подвижного и неподвижного лимитеров, и системы газонапуска с трубопроводом.

Изобретение относится к области термоядерного синтеза и может быть использовано в разъемных соединениях модуля бланкета и вакуумной камеры термоядерного реактора.

Изобретение относится к области исследования ударной сжимаемости и оптических свойств материалов за сильными ударными волнами при числах Маха более 5. Устройство ударного сжатия малоплотных сред посредством формирования квазистационарного Маховского режима отражения от оси содержит цилиндрический пустотелый заряд взрывчатого вещества, инициируемый гиперзвуковой по отношению к ВВ системой последовательного инициирования.
Изобретение относится к cпособу удаления углеродсодержащих слоев и пыли из вакуумных камер плазменных установок. При взаимодействии с плазмой в процессе работы установки боро-углеродные покрытия эродируют.

Изобретение относится к мишени для проведения реакции термоядерного синтеза и к способу использования такой мишени. Мишень 1 для проведения реакции термоядерного синтеза выполнена в виде тонкостенного полого усеченного конуса 2, на внутренней поверхности которого нанесен слой 3 вещества термоядерного топлива, при этом размеры конуса сопоставимы по меньшей мере с размерами фокусного пятна в пучке лазерного излучения, используемого для воздействия на мишень.

Изобретение относится к устройству для крепления модуля бланкета на вакуумном корпусе термоядерного реактора. Устройство содержит гибкую опору, выполненную в виде стержней, установленных между двумя фланцами, компенсатор смещений и крепежный резьбовой элемент, выполненный в виде стопорной гайки с наружной резьбой.

Изобретение относится к термоядерному реактору. Реактор содержит вакуумную камеру, каналы подачи газообразных реагентов в камеру, входной и выходной коллекторы охлаждающего камеру теплоносителя. Камера выполнена в виде полого цилиндра, внутренняя поверхность которого покрыта пористым материалом, смачиваемым расплавленным литием и образующая цилиндрический отражатель, в стенке полого цилиндра выполнены продольные каналы для охлаждающего теплоносителя, подаваемого с помощью входного коллектора и отводимого с помощью выходного коллектора. Входной и выходной коллекторы выполнены со скользящими уплотнениями по торцевым сторонам вакуумной камеры, по оси торцевых сторон выполнены скользящие и изолированные металлические вводы каналов подачи газообразных реагентов, к которым прикладывается постоянное напряжение, вызывающее пробой газового наполнения камеры и формирование первичного плазменного шнура. С внешней стороны вакуумной камеры размещены СВЧ-излучатели, осуществляющие разогрев лития в пористом материале на внутренней поверхности вакуумной камеры, и магнитные системы, линии магнитного поля которых проникают внутрь вакуумной камеры и формируют воздействие на плазменный шнур в сторону оси цилиндрической вакуумной камеры, опирающейся на роликовые подшипники, обеспечивающие вращение камеры. Техническим результатом является регулирование тепловой мощности реактора, повышение стабильности плазменного шнура и увеличение его температуры. 3 ил.

Наверх