Способ оценки количественного накопления парамагнитного контрастного препарата gdof-mn-dtpa для магнитно-резонансной томографии печени экспериментальных животных



Способ оценки количественного накопления парамагнитного контрастного препарата gdof-mn-dtpa для магнитно-резонансной томографии печени экспериментальных животных
Способ оценки количественного накопления парамагнитного контрастного препарата gdof-mn-dtpa для магнитно-резонансной томографии печени экспериментальных животных
Способ оценки количественного накопления парамагнитного контрастного препарата gdof-mn-dtpa для магнитно-резонансной томографии печени экспериментальных животных
Способ оценки количественного накопления парамагнитного контрастного препарата gdof-mn-dtpa для магнитно-резонансной томографии печени экспериментальных животных

Владельцы патента RU 2699334:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный медицинский университет" Министерства здравоохранения Российской Федерации (RU)

Изобретение относится к экспериментальной медицине и может быть использовано для оценки поведения парамагнитных контрастных препаратов в печени и других органах лабораторных животных. Способ оценки количественного накопления парамагнитного контрастного вещества для магнитно-резонансной томографии внутренних органов экспериментальных животных заключается в построении калибровочного графика зависимости скорости релаксации протонов ткани от концентрации в пробах контрастного вещества при проведении магнитно-резонансной томографии исследуемых проб с помощью протокола Turbo Spin Echo с инверсией-восстановлением, при этом магнитно-резонансная томография проб проводится на базе высокопольного МР-томографа Toshiba Excellart Vantage 1,5 Tл. Для построения калибровочного графика готовят пробы контрастного вещества GDOF-Mn-DTPA на 10 % гомогенате печени крыс концентрацией от 0,01 до 0,1 ммоль/л, пробы помещают в штатив для пробирок Эппендорф объемом 1,5 мл на 72 гнезда и размещают в квадратурную катушку для исследования головы. Используемые значения времени инверсии TI, мс: 20, 100, 300, 500, 1000, 3000, 5000. Изобретение позволяет снизить используемые концентрации контрастного вещества. 1 ил., 2 табл., 1пр.

 

Изобретение относится к экспериментальной медицине, и может быть использовано для оценки поведения парамагнитных контрастных препаратов в печени лабораторных животных.

Известен способ устранения зависимости от концентрации контрастного соединения в МРТ [1], согласно которому компенсация зависимости контрастных препаратов от концентрации осуществляется за счет получения сигнала от невосприимчивого усиливающего контраста-компонента и восприимчивого контраста-компонента при воздействии переменным магнитным полем на МР-изображениях контрастируемого органа и калибровочных изображениях.

Недостатком данного способа является отсутствие учета информации об изменении свойств невосприимчивого усиливающего контраста-компонента и восприимчивого контраста-компонента при взаимодействии с клетками контрастируемого органа.

Известен способ качественного и количественного определения нелинейно намагниченных магнитоуправляемых нанопрепаратов (МН), вводимых в организм экспериментальных животных, и оценки функций, выполняемых МН [2], согласно которому содержание МН определяется путем оценки величины изменений откликов при воздействии переменными магнитными полями в процессе электронно-сенсорного сканирования.

Недостатком данного способа является использования зависимости количества МН от изменения величины отклика при сканировании без учета калибровочных концентраций в исследуемом органе или опухоли, что вносит погрешность в количественные измерения МН за счет воздействия ткани органа или опухоли на МН.

Известен спектроскопический способ количественной оценки содержания жировой ткани в теле биологического объекта (БО) методом ядерного магнитного резонанса (ЯМР) [3], согласно которому по соотношению пиков воды и жира в спектре ЯМР проводят количественную оценку содержания жировой ткани в теле БО - мыши, при этом для съемки спектра ЯМР ее тело помещают в спектрометр, в котором зона однородного поля соизмерима с размером животного, и по соотношению пиков воды и жира проводят количественную оценку содержания жировой ткани в теле БО.

Недостатком данного способа является получение относительных данных о количестве жира и воды в теле БО, т.к. не проведена калибровка пиков ЯМР, поскольку точную информацию о количественном содержании жира, свободной жидкости и обезжиренного мяса дает каркасный анализ.

Известен способ исследования распределения контрастных наноразмерных частиц магнетита в организме крысы после их однократного и многократного внутривенного введения с помощью магнитно-резонансной томографии показано [4]. Установлено, что происходит накопление частиц в печени и селезенке животных. Гистоэнзимологическим методом изучена внутриклеточная активность ряда ключевых ферментов гепатоцитов и нефроцитов крыс в различные сроки после внутривенного введения наноразмерного магнетита.

Недостатком известного способа является накопление контрастного препарата – наноразмерного магнетита в печени и селезенке, которое сопровождается изменением энергетического и пластического метаболизма изучаемых клеток.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является способ [5], который выбран в качестве прототипа.

Это способ релаксомтерической количественной оценки контрастного усиления биологических тканей при магнитно-резонансной томографии который заключается в построении калибровочного графика зависимости скорости релаксации протонов ткани от калибровочных разбавлений в воде контрастного соединения (Gd-DTPA) в исследуемых пробах (фантомах). Полученный график позволяет оценивать концентрацию накопившегося контрастного соединения в ткани без инвазивного вмешательства. Были использованы разбавления гадолинийсодержащего контрастного соединения от 0,1 до 8 ммоль/л. Для построения калибровочного графика проводилась магнитно-резонансная томография исследуемых проб с помощью протокола Turbo Spin Echo с инверсией-восстановлением на базе высокопольного МР-томографа Toshiba Excellart Vantage 1,5 Tл. В результате было доказано возможность не инвазивной оценки концентрации накопленного соединения в тканях.

Недостатками данного способа являются невозможность точной оценки количественного накопления контрастного соединения в печени, поскольку для калибровочного графика разбавления используют водные растворы контрастного соединения, а также его относительно высокие концентрации, высокая цена препарата Gd-DTPA и потенциальная токсичность при использовании для пациентов с патологиями почек, а также использование для оценки МР-томограф прошлого поколения, не имеющий программного обеспечения для выполнения релаксометрии, что в свою очередь может приводить к систематическим ошибкам в расчетах.

Задачей изобретения является разработка способа повышающего точность оценки распределения контрастных соединений в тканях экспериментальных животных, при меньшей концентрации контрастного вещества, с использованием препарата более доступного по цене, не токсичного для пациентов с заболеваниями почек,

Поставленная задача достигается тем, что в предлагаемом способе для построения калибровочного графика готовят растворы в 10 % гомогенате печени крыс концентрацией от 0,01 до 0,1 ммоль/л, а в качестве контрастного соединения используют GDOF-Mn-DTPА.

Примеры осуществления.

Оценка накопления проводилась у экспериментальных животных – крыс породы Wistar (n = 10).

Для приготовления калибровочных проб контрастное вещество GDOF-Mn-DTPA (10 ммоль/л) разбавляли до значений концентрации, ммоль/л: 0,01; 0,025; 0,05; 0, 075; 0,1. Крыс из первой группы (n = 5) усыпляли с помощью СО2 и выводили из эксперимента методом декапитации. У крыс забиралась печень для приготовления проб гомогената печени.

Калибровочные пробы (n = 25) представляли собой растворы 10 % гомогената печени крыс, приготовленные по следующей технологии: 0,5 г печени и 4,5 мл физиологического раствора, в котором растворяли контрастное соединение GDOF-Mn-DTPA до калибровочной концентрации. Пробы помещали в пробирки типа Эппендорф объемом 1,5 мл.

Для исследования использовали протокол Turbo Spin Echo с инверсией-восстановлением. Значения времени инверсии TI составляли, мс: 20; 100; 300; 500; 1000; 3000; 5000. Строили график зависимости интенсивности сигнала проб от времени инверсии.

На основе этой зависимости методом нелинейной регрессии были получены значения коэффициентов уравнения:

,

основными из которых является коэффициент T1 – время релаксации и обратное ему значение релаксивности R1 для каждой пробы.

Калибровочные пробы, приготовленные на гомогенате из печени 5 крыс, сравнивали по значению релаксивности R1 между собой. Отсутствие статистически значимых различий позволило использовать средние

значения и стандартные отклонения релаксивности R1 проб для построения калибровочного графика (таблица 1).

Между значениями релаксивности R1 калибровочных проб (концентраций контрастного соединения GDOF-Mn-DTPA) была найдена статистически значимая сильная положительная связь (Rxy = 0,943; р = 0,005). График построен с помощью метода линейной регрессии (R2 = 0.96; p = 0.001) (рис. 1).

При оценке распределения контрастного вещества GDOF-Mn-DTPA экспериментальной группе крыс (n = 5) для наркоза внутримышечно вводили Золетил-100 дозой 2 мг/100 г массы тела. Контрастное вещество в дозировке 0,1 ммоль/кг тела вводили в левую бедренную вену доступом через продольный разрез по срединно-ключичной линии с использованием катетера 24G. Через 60 минут от момента введения контрастного соединения у крыс забирали печень для приготовления проб гомогенатов (n = 25), которые помещали в пробирки типа Эппендорф 1,5 мл и проводили релаксометрию на МРТ Toshiba Vantage Titan с напряженностью магнитного поля 1,5 Тл.

Пробы исследуемых гомогенатов (n=25) помещали в штатив для пробирок типа Эппендорф 1,5 мл на 72 гнезда и размещали в квадратурной катушке, предназначенной для исследования головы (наиболее подходящей по размерам).

При оценке накопления контрастного вещества в печени экспериментальной группы крыс проводили измерение значения релаксивности R1 проб гомогенатов после внутривенного введения контрастного вещества. При сравнении полученных значений для 5 крыс не было найдено статистически значимых различий (p = 0,123), что определяет отсутствие влияния состояния и условий содержания крыс на полученные результаты.

Накопление в ммоль вещества в печени оценивается с учетом полученной концентрации и объема исследуемых проб гомогенатов согласно формуле:

,

где n – количество контрастного вещества, ммоль;

C – концентрация контрастного вещества в гомогенате, ммоль/л;

V – объём пробы гомогената, л;

mo – масса печени животного, г;

mi – масса i-ой пробы печени, г.

Полученные значения релаксивности R1 и количества накопившегося в печени контрастного вещества представлены в таблице 2. В среднем накопление контрастного вещества в печени составило 43±8 % в зависимости от введённого количества.

Современные контрастные вещества, используемые в аналоге [5], являются комплексами иона гадолиния Gd3+и хелатирующих агентов. Было подтверждено отсутствие значимых побочных реакций на эти соединения.

Однако, сам по себе ион Gd3+в несвязанном состоянии является токсином для организма [5]. Это связано с отсутствием путей метаболизма гадолиния (III) в организме, так как этот ион не является необходимым микроэлементом.

Предлагаемое в данном способе контрастное вещество на основе парамагнитного соединения марганца (II) в диапазоне исследованных концентраций является безопасным для организма. Кроме этого известно, что марганец является одним из микроэлементов организма животных и человека и входит в состав большого количества ферментов.

Но накопление марганецсодержащих веществ в жизненно важном органе –печени может привести нарушениям обменных процессов. Поэтому снижение концентрации контрастного вещества при проведении МР-исследований с заданной степенью достоверности полученных результатов является полезным.

Поскольку марганец является микроэлементом, присутствующем в организме и участвующим в метаболизме [8], существует механизм его естественного выведения.

Наличие естественного пути метаболизма и участие в ферментативных реакциях привело к созданию, исследованию и корректному способу оценки накопления парамагнитного контрастного вещества GDOF-Mn-DTPA.

Оценка характера сигнала от органов крыс при введении данного соединения показало быстрое усиление интенсивности сигнала от печени и медленное ее снижение. Предлагаемый способ позволил установить, что уменьшение концентрации контрастного вещества не уменьшает гепатоспецифическую активность вещества GDOF-Mn-DTPA.

Изобретение будет понятно из следующего описания и приложенных к нему рисунков.

На рис. 1 представлен калибровочный график зависимости релаксивности R1 гомогенатов печени крыс от концентрации соединения GDOF-Mn-DTPA.

В таблице 1 представлены значения релаксивности R1 калибровочных гомогенатов, (ммоль/л)-1*с-1.

В таблице 2 представлены значения введенного и накопленного количества контрастного соединения GDOF-Mn-DTPA в печени крыс.

Литература:

1. Устранение зависимости от концентрации контрастного агента в МРТ : пат. 2446829 Рос. Федерация : МПК А 61 К 49/06 / Р. М.Й.Н. Ламерихс, Р.Т. Вег, Е.А. Пиккемат, Х. Груэлл – № 2008152805/15 ; заявл. 20.07.2010 ; опубл. 10.04.2012, Бюл. № 10 – 25 c.

2. Способ неинвазивного качественного и количественного определения магнитоуправляемых нанопрепаратов и оценка их функций в реальном времени у экспериментальных животных : пат. 2427390 Рос. Федерация : МПК А 61 К 49/06 / Н.А. Брусенцов, П.И. Никитин, Ю.А. Пирогов, Т.Н. Брусенцова, М.П. Никитин, М.В. Юрьев, Д.А, Куприянов, А.И. Дубина,

А.А. Учеваткин, А.В. Иванов – № 2009121634/15 ; заявл. 08.06.2009 ; опубл. 27.08.2011, Бюл. № 24 – 16 с.

3. Mystkowski Р., Shankland Е., Schreyer SA, LeBoeuf RC, Schwartz RS, Cummings DE, Kushmerick M, Schwartz MV Validation of whole-body magnetic resonance spectroscopy as a tool to assess murine body composition // Int J Obes Relat Metab Disord, 2000, Vol. 24, N 6, p.719–724.

4. Мильто И.В., Суходоло И.В., Климентьева Т.К., Щевцова Н.М. Гистоэнзимологическое исследование клеток паренхимы печени и почек крыс после внутривенного введения наноразмерного магнетита. // Бюллетень сибирской медицины, № 3, с. 48–54.

5. Бородин О.Ю., Белянин М.Л., Крылатов А.В. и др. Релаксометрическая количественная оценка контрастного усиления биологических тканей при магнитно-резонансной томографии: разработка методики и клиническая апробация // Медицинская визуализация, 2010, № 6, с. 110–121.

6. Шимановский, Н.Л. Контрастные средства: руководство по рациональному применению / Москва: ГЭОТАР-Медиа, 2006, 464 с.

7. Скальных, А.В. Химические элементы в физиологии и экологии человека [Текст] / А.В. Скальных. –Москва: Издательский дом «ОНИКС 21 век»: Мир, 2004. –216 с.

Способ оценки количественного накопления парамагнитного контрастного вещества для магнитно-резонансной томографии внутренних органов экспериментальных животных, заключающийся в построении калибровочного графика зависимости скорости релаксации протонов ткани от концентрации в пробах контрастного вещества при проведении магнитно-резонансной томографии исследуемых проб с помощью протокола Turbo Spin Echo с инверсией-восстановлением, отличающийся тем, что магнитно-резонансная томография проб проводится на базе высокопольного МР-томографа Toshiba Excellart Vantage 1,5 Tл, для построения калибровочного графика готовят пробы контрастного вещества GDOF-Mn-DTPA на 10 % гомогенате печени крыс концентрацией от 0,01 до 0,1 ммоль/л, пробы помещают в штатив для пробирок Эппендорф объемом 1,5 мл на 72 гнезда и размещают в квадратурную катушку для исследования головы и используют значения времени инверсии TI, мс: 20, 100, 300, 500, 1000, 3000, 5000.



 

Похожие патенты:

Группа изобретений относится к медицинской технике. Устройство для обучения пользователей надлежащему смешиванию фармацевтических компонентов включает корпус, который расположен вдоль продольной оси; источник питания, расположенный в корпусе; микроконтроллер, расположенный в корпусе и снабжаемый электропитанием от источника питания; устройство уведомления пользователя и акселерометр.

Группа изобретений относится к медицинской технике. Устройство для обучения пользователей надлежащему смешиванию фармацевтических компонентов включает корпус, который расположен вдоль продольной оси; источник питания, расположенный в корпусе; микроконтроллер, расположенный в корпусе и снабжаемый электропитанием от источника питания; устройство уведомления пользователя и акселерометр.

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для создания экспериментальной модели глаукомы у крыс. В переднюю камеру глаза вводят 3%-ный раствор 7-этил-2-метил-4-ундеканол гидрогенсульфата натриевой соли объемом 0,1 мл.

Изобретение относится к медицине, а именно к экспериментальной биологии, и может быть использовано для оценки неврологического дефицита конечностей у экспериментальных крыс путем выявления работоспособности конечностей в ответ на стимуляцию.

Изобретение относится к экспериментальной медицине и может быть использовано для моделирования дефектов костной ткани для изучения рефиксации мягких тканей к пористым титановым имплантатам с использованием аддитивных технологий.

Изобретение относится к экспериментальной медицине и может быть применимо для моделирования дефектов мышечной ткани для изучения рефиксации мышц к пористым титановым имплантатам с использованием аддитивных технологий.
Изобретение относится к психологии и медицине, к области психофизиологии и патологической физиологии и непосредственно к моделированию психологического стресса в эксперименте.
Изобретение относится к медицине, в частности к области патологической физиологии, экспериментальной урологии и гинекологии. Производят мобилизацию внутренних подвздошных вен, после чего производят их легирование и затем удаляют лимфатические узлы, обеспечивающие отток лимфы от тазовых органов.

Изобретение относится к экспериментальной медицине и может быть использовано для лечения костного дефекта в эксперименте. Для этого на костный дефект накладывают резорбируемую синтетическую мембрану, выполненную в виде пленки.

Изобретение относится к медицине, а именно к экспериментальной фармакологии. Способ включает профилактику образования язвы желудка путем однократного введения в утреннее время фармакологического агента крысам за 30 мин до моделирования водоиммерсионного стресса путем помещения крыс в специальные проволочные камеры и погружения на 7 ч в воду (23°С) до уровня мечевидного отростка.

Настоящее изобретение относится к области биотехнологии, конкретно к белкам-агонистам рецептора TRAIL, и может быть использовано в медицине для противоопухолевого лечения.
Изобретение относится к фармацевтической промышленности, а именно к фармацевтической композиции для лечения опухолевых заболеваний в андрологии, гинекологии и проктологии.

Изобретение относится к вариантам улучшенного нового способа получения соединения 7Н-пирроло[2,3-d]пиримидина формулы 1 и его ветеринарно приемлемой соли. Соединение формулы 1 является ингибитором JAK и может найти применение при лечении заболеваний, связанных с активностью JAK, таких как рак, астма и др.

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для лечения множественной миеломы у субъекта. Для этого субъекту вводят терапевтически эффективное количество антитела к CD38 и терапевтически эффективное количество соединения Леналидомида.

Изобретение относится к области органической химии, а именно к гетероциклическому соединению формулы I или его фармацевтически приемлемой соли, где R1 представляет собой C1-7-алкил или C1-7-алкокси-C1-7-алкил; R2 выбран из группы, состоящей из водорода, галогена, C1-7-алкоксикарбонил-C1-7-алкила и C1-7-алкоксикарбонил-C2-7-алкенила; R3 представляет собой водород; R4 выбран из группы, состоящей из -O-(CH2)m-NHR5 и -O-(CO)-(CH2)n-NHR6, где m представляет собой 2, n представляет собой 1, R5 представляет собой водород и R6 представляет собой водород.

Группа изобретений относится к медицине и касается линкер-активного агента для получения конъюгата антитело-лекарственное средство, содержащего соединение формулы I или его фармацевтически приемлемую соль.

Изобретение относится к фармацевтической промышленности, а именно к фармацевтической композиции для лечения опухолей. Фармацевтическая композиция для лечения опухолей, содержащая: (а) по меньшей мере 2х109 БОЕ/мл парвовируса H1 (H-1PV) или родственного парвовируса грызунов, выбранного из группы, состоящей из вируса LuIII, мелкого вируса мышей (MMV), парвовируса мышей (MPV), мелкого вируса крыс (RMV), парвовируса крыс или вируса крыс (RV), и (б) фармацевтически приемлемый носитель, содержащий 40 – 50% йодиксанола, вес/объем, 0,7 – 0,9 ммоль CaCl2 x 2 H2O, 50 – 60 ммоль NaCl, 0,9 – 1,2 ммоль KCl, 0,7 – 0,95 мг/мл трометамина и 0,05 – 0,15 мг/мл натрия кальция эдетата.

Изобретение относится к соединению структурной Формулы II или его фармацевтически приемлемой соли. В Формуле II два из Х2, Х4 и Х5 представляют собой N; и один из Х2, Х4 и Х5 представляет собой О; или один из Х2, Х4 и Х5 представляет собой N; один из Х2, Х4 и Х5 представляет собой О; и один из Х2, Х4 и Х5 представляет собой СН; Z1 и Z2 независимо выбраны из группы, состоящей из N, NR1, С=O и CR1; по меньшей мере один из Z1 и Z2 представляет собой CR1; Z3 выбран из группы, состоящей из N, и CR12; значения остальных радикалов указаны в формуле изобретения.

Группа изобретений относится к области ядерной медицины. Набор для приготовления суспензии полипептидных биодеградабельных микрочастиц для проведения трансартериальной радиоэмболизации капилляров печени, находящихся в изотоническом 0,9% водном растворе хлорида натрия, меченных изотопом рения, состоящий из вспомогательных реагентов: антиоксиданта - аскорбиновой кислоты в количестве 10 мг; восстановителя рения до более низкого валентного состояния - хлорида олова дигидрата - 13,3 мг; эмульгатора - полисорбата-80 - 2,5 мг; полипептидного носителя радионуклидов - микросфер альбумина крови человека диаметром 20-40 мкм - 10 мг; трансхелатора и стабилизатора рН - K,Na- виннокислого (тартрат K, Na) - 18,9 мг; при этом все вспомогательные реагенты расфасованы по трем флаконам: во флаконе №1 содержится смесь восстановителя и антиоксиданта, во флаконе №2 содержится смесь полипептидного носителя атомов радионуклида и эмульгатора, во флаконе №3 содержится трансхелатор и стабилизатор рН, способствующий достижению величины рН суспензии полипептидных биодеградабельных микрочастиц, находящихся в изотоническом 0,9% водном растворе хлорида натрия, меченных изотопом рения, в интервале от 2 до 5, при этом содержимое каждого флакона стерильно и лиофилизировано.

Группа изобретений относится к области ядерной медицины. Набор для приготовления суспензии полипептидных биодеградабельных микрочастиц для радиосиновэктомии, находящихся в изотоническом 0,9%-ном водном растворе хлорида натрия, меченных изотопом рения, состоит из вспомогательных реагентов: антиоксиданта - аскорбиновой кислоты в количестве 7 мг, восстановителя рения до более низкого валентного состояния - хлорида олова дигидрата - 11,4 мг, эмульгатора - полисорбата-80 - 1,25 мг, полипептидного носителя радионуклидов - микросфер альбумина крови человека диаметром 5-10 мкм - 5 мг, трансхелатора и стабилизатора рН - K,Na-виннокислого (тартрат K, Na) - 10 мг, при этом все вспомогательные реагенты расфасованы по трем флаконам: во флаконе №1 содержится смесь восстановителя и антиоксиданта, во флаконе №2 содержится смесь полипептидного носителя атомов радионуклида и эмульгатора, во флаконе №3 содержится трансхелатор и стабилизатор рН, при этом содержимое каждого флакона стерильно и лиофилизировано.

Настоящая группа изобретений относится к фармацевтической промышлености, а именно: к способу получения смеси для изготовления радиофармацевтического препарата и к способу получения набора для изготовления радиофармацевтического препарата.

Изобретение относится к экспериментальной медицине и может быть использовано для оценки поведения парамагнитных контрастных препаратов в печени и других органах лабораторных животных. Способ оценки количественного накопления парамагнитного контрастного вещества для магнитно-резонансной томографии внутренних органов экспериментальных животных заключается в построении калибровочного графика зависимости скорости релаксации протонов ткани от концентрации в пробах контрастного вещества при проведении магнитно-резонансной томографии исследуемых проб с помощью протокола Turbo Spin Echo с инверсией-восстановлением, при этом магнитно-резонансная томография проб проводится на базе высокопольного МР-томографа Toshiba Excellart Vantage 1,5 Tл. Для построения калибровочного графика готовят пробы контрастного вещества GDOF-Mn-DTPA на 10 гомогенате печени крыс концентрацией от 0,01 до 0,1 ммольл, пробы помещают в штатив для пробирок Эппендорф объемом 1,5 мл на 72 гнезда и размещают в квадратурную катушку для исследования головы. Используемые значения времени инверсии TI, мс: 20, 100, 300, 500, 1000, 3000, 5000. Изобретение позволяет снизить используемые концентрации контрастного вещества. 1 ил., 2 табл., 1пр.

Наверх