Катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления

Изобретение относится к катализаторам, используемым в процессах гидропереработки тяжелого нефтяного сырья и остатков. Катализатор защитного слоя для переработки тяжелого нефтяного сырья, содержащий активный компонент и носитель, в качестве носителя содержит оксид алюминия, а в качестве активного компонента соединения кальция и/или магния, содержание кальция составляет не более 10 мас.%, магния - не более 10 мас.%, катализатор имеет макропоры, образующие регулярную пространственную структуру, причем доля макропор с размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор, катализатор имеет удельную поверхность не менее 100 м2/г с долей внешней поверхности не менее 50% и удельным объемом пор не менее 0,1 см3/г. Способ приготовления катализатора для переработки тяжелого нефтяного сырья включает стадию приготовления носителя и последующее нанесение активного компонента, выбираемого из соединений кальция, магния или любой их комбинации, носитель содержит макропоры, образующие пространственную структуру, причем доля макропор с размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор, а для внесения щелочных добавок макропористый носитель пропитывают раствором солей кальция, магния, как в виде индивидуальных веществ, так и их смесей, содержание кальция составляет не более 10 мас.%, магния - не более 10 мас.%, катализатор имеет удельную поверхность не менее 100 м2/г с долей внешней поверхности не менее 50% и удельным объемом пор не менее 0,1 см3/г. Технический результат – получение катализатора защитного слоя, который в процессе переработки тяжелого нефтяного сырья является прочным и износостойким структурированным катализатором, обладающим высокой емкостью по металлам, коксу и кремнию, высокой стабильностью, сниженной активностью в реакции коксообразования и сниженными требованиями к вязкости сырья и содержанию в нем макромолекул. 2 н. и 1 з.п. ф-лы, 3 пр.

 

Изобретение относится к области приготовления катализаторов, используемых в гидропроцессах на защитном слое катализатора, применяемом для каталитической очистки сырья от механических примесей, снижения содержания примесей оксида кремния, металлов, агрегированных макромолекул, кокса. Переработка сырья с повышенным содержанием нежелательных примесей на установках гидропереработки нефтей приводит к снижению срока службы катализаторов и ухудшению технико-экономических показателей. Для увеличения срока службы основных катализаторов и предотвращения снижения их активности используют каталитическую систему, включающую несколько слоев катализаторов, в том числе катализатор защитного слоя, расположенный впереди катализаторов основного слоя.

Компания Хальдор Топсе предлагает в качестве катализаторов защитного слоя NiMo катализаторы с высокой емкостью по поглощению металлов (Ni, V, Fe) и кремния, например, с наименованием ТК-453, а компания KNT-групп - ряд катализаторов, как не имеющих в своем составе активных компонентов (КНТ-300, КНТ-310, КНТ-326), так и содержащие 8-13 масс. % МоO3 и 0,5-4 масс. % NiO (КНТ-330, КНТ-351). Катализаторы защитного слоя позволяют снизить влияние отложений на перепад давления в реакторе, улучшить распределение газо-сырьевого потока в реакторе, обеспечивают удаление содержащихся в сырье механических примесей, непредельных соединений и каталитических ядов до поступления газо-сырьевой смеси на катализатор основного слоя, что способствует повышению длительности межрегенерационного цикла и общего срока службы каталитической системы.

В патенте RU 2140964 описан катализатор защитного слоя для гидроочистки нефтяных фракций на основе оксида алюминия, имеющего в своем составе 2-5 мас. %

- α-оксида алюминия, 73-85 мас. % β-оксида алюминия и 25-10 мас. % γ-оксида алюминия. В состав каталитического пакета из нескольких слоев входит 2-10 мас. % катализатора защитного слоя, полученного путем пропитки носителя - оксида алюминия водными растворами солей активных компонентов с последующей сушкой и прокалкой.

Патент RU 0002653494 описывает катализатор защитного слоя на основе γ-Аl2О3, содержащий биметаллическое комплексное соединение [Ni(HO)] [МоО(СНО)] с концентрацией 5,3-7,9 мас. %, при этом сульфидированный катализатор содержит 75-85% никеля в составе NiMoS фазы. Катализатор имеет удельную поверхность 265-285 м2/г, объем пор 0,70-0,72 см3/г, средний диаметр пор 10-10,5 нм, представляет собой гранулы с сечением в виде круга диаметром 3±0,1 мм и длиной до 20 мм.

Описан катализатор защитного слоя для гидроочистки нефтяных фракций (RU 2319543 С1), содержащий оксид молибдена (3,0-9,0 масс. %), оксид никеля и/или кобальта (0,5-4,0), оксид кремния (0,8-3,0 масс. %), оксид алюминия (до 100%), сформованный в виде полых цилиндрических гранул.

Общим недостатком описанных катализаторов защитного слоя является низкая доля крупных пор, что затрудняет подвод реагентов к внутренней поверхности катализатора, не обеспечивает достаточно высокой емкости по металлам, оксиду кремния, асфальтенам и коксу. Сложность каталитической переработки тяжелого нефтяного сырья заключается в малой подвижности и низкой реакционной способности содержащихся в нем макромолекул, а также дезактивации катализаторов вследствие отравления побочными продуктами реакций крекинга и гидрокрекинга, включающих в себя углеродистые отложения, металлические примеси и металлорганические соединения. Известно, что каталитическая активность и стабильность работы катализаторов существенно зависят от текстурных характеристик носителя: распределения пор по размерам, их объема, а также от величины удельной поверхности. В случае малого размера пор внутренняя поверхность катализатора становится недоступной для макромолекул. Задача усложняется тем, что при переработке тяжелого нефтяного сырья побочный процесс образования коксовых отложений протекает с высокой скоростью, в результате узкие поры блокируются, поверхность падает и катализатор дезактивируется. Для решения указанных проблем предлагается использовать катализаторы с существенной долей крупных пор размером более 50 нм, которые по существующей классификации относятся к макропорам, а избыточную активность катализатора в реакции коксообразования снижать путем внесения в состав носителя и/или катализатора щелочные добавки в виде соединений кальция и/или магния. Развитая сеть транспортных макропор облегчает подвод реагентов к внутренней поверхности катализатора, уменьшают негативное влияние отложений побочных продуктов реакции (US №№4328127, 4572778, 5416054, 5968348), а щелочные добавки увеличивают время функционирования катализатора (Ancheyta J. Deactivation of heavy oil hydroprocessing catalysts: fundamentals and modeling. Hoboken, New Jersey: John Wiley&Sons,-2016).

Существующие методы создания макропор в катализаторах гидропереработки основаны на различных методах физических или химических воздействий на готовый немакропористый материал носителя. Например, в патенте US 4547485 описан способ приготовления носителя на основе оксида алюминия с бимодальным распределением пор по размерам в диапазонах 9-20 нм и 100-500 нм. Метод приготовления заключается в нагревании оксида алюминия до 1400°F, смешении его с не нагретым оксидом алюминия и нагревании смеси до 1400°F. Данный способ энерго- и трудоемок, а также характеризуется стохастическим распределением пор по размеру, благодаря чему не удается получить катализаторы с воспроизводимой каталитической активностью. В патенте US 4465789 катализаторы гидропереработки получены на носителях, имеющих ядро из оксида алюминия с преимущественной микропористостью, окруженное оболочкой другого оксида алюминия, имеющего по крайней мере 25% макропор. Недостатком этого подхода является усложнение и многостадийность синтеза материала с требуемой пористой структурой. При этом количество и связность макропор в ходе синтеза не контролируются, что не позволяет обеспечить равномерную доступность внутренней поверхности катализатора.

Таким образом, в литературе не известны способы получения катализаторов защитного слоя, имеющих сниженную активность в реакции коксообразования, с контролируемым и заданным объемом транспортных макропор для процесса переработки, в том числе гидроочистки, тяжелого нефтяного сырья.

Изобретение решает эти проблемы, раскрывая способ получения носителя и катализатора защитного слоя с щелочными примесями и со строго заданной структурой макропор, включая их размер, взаимное пространственное расположения, связность и другие характеристики.

Предлагаемый катализатор защитного слоя в процессе переработки тяжелого нефтяного сырья является прочным и износостойким структурированным катализатором, обладающим высокой емкостью по металлам, коксу и кремнию, высокой стабильностью, сниженной активностью в реакции коксообразования и сниженными требованиями к вязкости сырья и содержанию в нем макромолекул.

Задача решается с помощью использования материалов с регулярной пространственной структурой макропор и внесения соединений кальция и/или магния в состав катализатора. В качестве катализатора защитного слоя для переработки тяжелого нефтяного сырья используют оксид алюминия, который содержит макропоры, образующие пространственную структуру, причем доля макропор с размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор с удельной поверхностью не менее 100 м2/г с долей внешней поверхности не менее 50% и удельным объемом пор не менее 0,1 см3/г, и в состав катализатора входит не более 10 мас. % щелочной добавки в виде соединений кальция или магния.

Для получения пространственной структуры макропор используют синтетические темплаты - полимерные микросферы диаметром от 50 до 2000 нм из полистирола, метилметакрилата, этилметакрилата, бутилметакрилата, как в виде индивидуальных веществ, так и их смесей.

Для получения пространственной структуры макропор используют темплаты природного происхождения - крахмала, целлюлозы, как в виде индивидуальных веществ, так и их смесей.

Для внесения щелочных добавок в катализатор макропористый носитель, полученный с использованием органических темплатов, пропитывают раствором солей кальция и/или магния.

Под пространственной структурой макропор подразумевается пространственное расположение транспортных макропор, обеспечивающих связность макропор между собой. Специфика предлагаемой методики заключается во введении структурообразующей добавки - темплата - на стадии смешения предшественников носителя и катализатора, например, гидроксида алюминия, глинозема, псевдобемита, бемита и т.д. Темплат затем удаляется выжиганием или экстракцией, при этом размер частиц и содержание темплата в исходной смеси определяют свойства микро-/мезо-/макропористой структуры получаемого продукта - носителя, например, оксида алюминия. Для дальнейшего приготовления катализатора можно использовать известные в данной области техники способы, включая пропитку ранее приготовленного носителя с пространственной структурой макропор соединениями-предшественниками активного компонента, либо приготовление смесей из соединений предшественников активного компонента, носителя и темплатов, а также гидротермальную обработку указанных смесей.

Авторами было обнаружено, что получаемые катализаторы на основе пористого носителя, состоящие из оксида алюминия и содержащие щелочные добавки, имеют значительно более высокую величину удельной поверхности, доступной для высокомолекулярных реагентов, и увеличенный удельный объем макропор по сравнению с образцами аналогичного состава, полученными в отсутствие полимерных темплатов, а также показывают сниженную скорость коксообразования на поверхности катализатора в условиях гидропереработки тяжелых нефтей.

Как следует из предыдущего описания, пористая структура материала с наличием существенной доли макропор особенно важна при разработке катализаторов для переработки тяжелых нефтяных фракций. В соответствии с настоящим изобретением, носители и катализаторы защитного слоя на их основе, отличающиеся тем, что указанный катализатор содержит макропоры, образующие регулярную пространственную структуру, причем доля макропор размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор указанного катализатора, могут быть особенно эффективны при гидропереработке тяжелых фракций нефти. Материал носителя соответствует по составу оксиду алюминия с не более 10 мас. %) кальция и/или магния.

Указанные катализаторы с пространственной структурой макропор получают с использованием темплатов как синтетического происхождения - полимерных микросфер диаметром от 50 до 2000 нм, которые могут быть изготовлены из стирола, метилметакрилата, этилметакрилата, бутилметакрилата, в виде индивидуальных веществ, или их смесей, так и из природных материалов - крахмала, целлюлозы, микрокристаллической целлюлозы и других. Содержание щелочного компонента в указанных катализаторах не должно превышать 10 мас. % кальция и/или магния, т.к. при высоком содержании соединений щелочной природы происходит значительное снижение каталитической активности, сравнимой с обычным термическим гидрокрекингом.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1

В качестве структурообразующего темплата используют полистирольные (ПС) микросферы в виде коммерческого продукта или полученные путем эмульсионной полимеризации стирола по описанной ранее методике [RU 2527573 С1]. В качестве предшественника оксида алюминия использовали гидроокись алюминия АlOOН марки ЗАО «Промышленные катализаторы», представленную кристаллической фазой бемита (93%) с примесью байерита (7%).

Образцы носителей из оксида алюминия получают добавлением к порошку мелкодисперсного АlOОН разбавленного раствора азотной кислоты (10-4 М) в отсутствие и в присутствии сухого порошка ПС темплата, соответственно. Для темплатного образца массовое содержание ПС темплата в пасте составляет 20%. Полученные композитные пасты подвергают экструдированию с получением гранул диаметром 2,5 мм, длиной 5 мм. Гранулы сушат на воздухе в течение суток и прокаливают на воздухе при 800°С в течение 8 ч. Фазовый состав макропористых носителей, полученных после прокаливания, представлен смесью Y- и δ-модификаций Аl2O3.

Затем гранулы пропитывают растворами Mg(NO3)2, пропитку проводят из двукратного избытка требуемого объема пропиточного раствора, рассчитанного с учетом влагоемкости носителя, сушат на воздухе 24 чи прокаливают при 350°С в течение 4 ч. Полученные темплатные образцы оксида алюминия обладают регулярной пространственной структурой макропор со средним размером 160 нм, измеренным и визуализированным с помощью сканирующей электронной микроскопии. Текстурные свойства темплатных образцов Al2O3, а также полученных на их основе катализаторов защитного слоя гидропереработки тяжелого нефтяного остатка 1Mg/Al2O3 (1 мас. % Mg) и 5Mg/Al2O3 (5 мас. % Mg) являются практически идентичными: площадь удельной поверхности по БЭТ лежит в диапазоне 108-117 м /г, объем мезопор по данным N2/77K - 0,49-0,55 см3/г, площадь удельной поверхности по данным ртутной порометрии - 140-173 м2/г, общий объем пор - 0,79-0,81 см3/г. В бестемплатном образце сравнения макропоры не упорядочены и составляют незначительную долю в общем объеме пор.

В условиях гидропереработки тяжелого нефтяного остатка для макропористых катализаторов с различным содержанием магния - 1Mg/Al2O3 и 5Mg/Al2O3 - наблюдается различное изменение текстурных свойств. Образец с меньшим числом кислотных центров (5Mg/Al2O3) в меньшей степени показывает изменение удельной поверхности и объема мезопор по сравнению с образцом 1Mg/Al2O3, имеющим большую концентрацию кислотных центров. После испытаний катализатора 5Mg/Al2O3 в качестве защитного слоя гидропереработки остатка в течение 1225 ч его текстурные свойства меняются незначительно, уменьшаются значения удельной поверхности и объема пор, причем наибольшие изменения произошли в мезопорах - уменьшение объема мезо- и макропор достигло 35 и 20%, соответственно. При испытаниях менее кислого образца 1Mg/Al2O3 в течение 194 ч изменение объема мезопор превышает 50%. Таким образом, макропористый катализатор с меньшей кислотностью показывает меньшую скорость дезактивации даже несмотря на более длительные каталитические эксперименты на этом образце. Отработанные катализаторы после испытаний в качестве защитного слоя исследованы методом термогравиметрии для определения количества коксовых отложений. Согласно полученным данным, потери массы при термообработке для 1Mg/Al2O3 и 5Mg/Al2O3 составили 20 и 12%, соответственно. Это указывает на менее интенсивное протекание процессов образования кокса для катализатора с меньшим числом кислотных центров - 5Mg/Al2O3.

Полученный катализатор может быть использован как катализатор защитного слоя с увеличенным сроком функционирования при гидропереработке тяжелого нефтяного сырья.

Пример 2

В качестве структурообразующего темплата используют полиметилметакрилатные (ПММА) микросферы в виде коммерческого продукта или полученные путем эмульсионной полимеризации метилметакрилата. В качестве предшественника оксида алюминия использовали гидроокись алюминия АlOOН от компании Disperal, представленную кристаллической фазой бемита.

Образцы носителей из оксида алюминия получают добавлением к водному раствору ПММА микросфер мелкодисперсного псевдобемита, при этом происходит совместное осаждение гидкроксида алюминия и темплата. Объем раствора ПММА микросфер подбирают таким образом, чтобы массовое содержание ПММА темплата в расчете на сухой композит составляло 20%. Осадок отделяют декантацией, высушивают, размалывают, добавляют водный раствор азотной кислоты (10-4 М), в количестве достаточном для формирования пасты. Полученные композитные пасты подвергают экструдированию с получением гранул диаметром 2,5 мм, длиной 5 мм. Гранулы сушат на воздухе в течение суток и прокаливают на воздухе при 800°С в течение 8 ч. Фазовый состав макропористых носителей, полученных после прокаливания, представлен смесью γ-модификацией Al2O3.

Затем гранулы пропитывают растворами Са(NO)3)2, пропитку проводят из двукратного избытка требуемого объема пропиточного раствора, рассчитанного с учетом влагоемкости носителя, сушат на воздухе 24 ч и прокаливают при 350°С в течение 4 ч.

Полученные темплатные образцы оксида алюминия обладают регулярной пространственной структурой макропор со средним размером 160 нм, измеренным и визуализированным с помощью сканирующей электронной микроскопии. Полученный образец оксида алюминия с использованием темплата обладает пространственной структурой макропор со средним размером 150 нм, измеренным и визуализированным с помощью сканирующей электронной микроскопии, общий объем пор, измеренный с помощью ртутной порометрии, составляет 0,75 см3/г при удельной поверхности 157 м2/г.Относительно бестемплатного катализатора на основе оксида алюминия при испытаниях образца с кальциевой добавкой в качестве защитного слоя в гидропереработке тяжелой нефти скорость дезактивации катализатора ниже в 1,5 раза. Полученный оксид алюминия с щелочными добавками может быть использован как катализатор защитного слоя с увеличенным сроком функционирования при гидропереработке тяжелого нефтяного сырья.

Пример 3

В качестве структурообразующего темплата используют крахмал в виде нагретой водной суспензии. В качестве предшественника оксида алюминия использовали гидроокись алюминия АlOOН от компании ЗАО «Промышленные катализаторы», представленную кристаллической фазой бемита (93%) с примесью байерита (7%).

Образцы носителей из оксида алюминия получают добавлением водной суспензии 10 мас. % крахмала, нагретого до 90°С в состоянии прозрачного геля, и водного раствора азотной кислоты (10-4 М) к порошку мелкодисперсного псевдобемита с формированием композитной пасты из гидкроксида алюминия и темплата. Композитные пасты подвергают экструдированию с получением гранул диаметром 2,5 мм, длиной 5 мм. Гранулы сушат на воздухе в течение суток и прокаливают на воздухе при 800°С в течение 8 ч.

Затем гранулы пропитывают раствором Mg(NO3)2 и Са(NO)3)2 равной концентрации, пропитку проводят из двукратного избытка требуемого объема пропиточного раствора, рассчитанного с учетом влагоемкости носителя, сушат на воздухе 24 часа и прокаливают при 350°С в течение 4 ч. Полученные темплатные образцы оксида алюминия обладают пространственной структурой макропор со средним размером 500 нм, измеренным и визуализированным с помощью сканирующей электронной микроскопии, общий объем пор, измеренный с помощью ртутной порометрии, составляет 0,70 см3/г при удельной поверхности 150 м2/г. Относительно бестемплатного катализатора на основе оксида алюминия при испытаниях образца с магний-кальциевой добавкой в качестве защитного слоя в гидропереработке тяжелой нефти скорость дезактивации катализатора ниже в 1,3 раза. Полученный оксид алюминия с щелочными добавками может быть использован как катализатор защитного слоя с увеличенным сроком функционирования при гидропереработке тяжелого нефтяного сырья.

1. Катализатор защитного слоя для переработки тяжелого нефтяного сырья, содержащий активный компонент и носитель, отличающийся тем, что в качестве носителя он содержит оксид алюминия, а в качестве активного компонента - соединения кальция и/или магния, содержание кальция составляет не более 10 мас.%, магния - не более 10 мас.%, катализатор имеет макропоры, образующие регулярную пространственную структуру, причем доля макропор с размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор, катализатор имеет удельную поверхность не менее 100 м2/г с долей внешней поверхности не менее 50% и удельным объемом пор не менее 0,1 см3/г.

2. Способ приготовления катализатора по п. 1 для переработки тяжелого нефтяного сырья, включающий стадию приготовления носителя и последующее нанесение активного компонента, выбираемого из соединений кальция, магния или любой их комбинации, носитель содержит макропоры, образующие пространственную структуру, причем доля макропор с размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор, а для внесения щелочных добавок макропористый носитель пропитывают раствором солей кальция, магния, как в виде индивидуальных веществ, так и их смесей, содержание кальция составляет не более 10 мас.%, магния - не более 10 мас.%, катализатор имеет удельную поверхность не менее 100 м2/г с долей внешней поверхности не менее 50% и удельным объемом пор не менее 0,1 см3/г.

3. Способ по п. 2, отличающийся тем, что для получения регулярной пространственной структуры макропор оксида алюминия используют темплаты - полимерные микросферы диаметром от 50 до 2000 нм из полистирола, метилметакрилата, этилметакрилата, бутилметакрилата, как в виде индивидуальных веществ, так и их смесей, или для получения пространственной структуры макропор используют темплаты природного происхождения - крахмала, целлюлозы, как в виде индивидуальных веществ, так и их смесей.



 

Похожие патенты:

Изобретение относится к оптике, а именно к способам изготовления устройств, служащих для анализа химических веществ при использовании эффекта поверхностно-усиленного комбинационного рассеяния света молекулами, находящимися вблизи наноструктур из серебра, проявляющих плазмонный резонанс электронов проводимости, колебания которых создает локальное электромагнитное поле.

Изобретение относится к композиционным материалам (КМ) на основе высокомолекулярных соединений и к способу его получения. Предложен способ получения КМ на основе СВМПЭ полимеризацией этилена на поверхности частиц наполнителя в присутствии иммобилизованного на них катализатора, состоящего из соединения переходного металла VCl4 и алюминийорганического соединения Al(i-Bu)3.

Настоящее изобретение относится к дисперсному катализатору облагораживания тяжелого нефтяного сырья, представляющему из себя наночастицы на основе молибденсодержащих фаз, формирующемуся «in situ» при облагораживании тяжелого нефтяного сырья в присутствии воды, согласно изобретению катализатор дополнительно содержит наночастицы сокатализатора на основе Fe, Co или Ni и имеет состав MoS2/MoO2 + MexOy и/или MemSn, с содержанием фазы MoS2 3–78 мас.

Изобретение относится к области сканирующей зондовой микроскопии, преимущественно к атомно-силовой микроскопии. Сущность изобретения заключается в том, что в способе формирования изображения в сканирующей зондовой микроскопии, включающем построчное сканирование поверхности образца в прямом и обратном направлениях и регистрацию сигналов Sƒ и Sb, соответствующих сигналу S при сканировании каждой строки в прямом и обратном направлениях, значениям которого соответствуют две матрицы чисел Sƒi,j и Sbi,j, являющиеся матрицами изображений и описывающие попиксельно изображение, как минимум одну строку матрицы изображения Si,j сигнала S формируют последовательностью процедур, включающих сдвиг элементов как минимум одной из матриц сигнала S вдоль направления сканирования, относительно элементов другой матрицы, на величину ΔХ, при котором по меньшей мере на части по меньшей мере одной строки происходит совмещение сигналов Sƒ и Sb, измеренных при движении в прямом и обратном направлениях, и вычисление по меньшей мере одной строки матрицы изображения Si,j по формуле: где Sƒi,j, Sbi,j - матрицы изображений сигнала S, измеренного соответственно в прямом и обратном направлениях сканирования, F(Sƒi,j, Sbi,j) - функция сигналов Sƒ, Sb, вид которой определяется типом сигнала S.

Изобретение может быть использовано при проведении поверхностной обработки летательных аппаратов, деталей автомобилей. Не содержащая шестивалентного хрома жидкость для химической конверсионной обработки поверхностей покрытия цинком или цинковым сплавом содержит ионы трехвалентного хрома, ионы циркония, нитрат-ионы, цепочечный коллоидный кремнезем и воду.

Изобретение относится к медицине, а именно к дерматологии, и может быть использовано для фотохимиотерапии витилиго. Для этого осуществляют аппликацию на поверхность кожи фотосенсибилизирующего средства выбирают средство на основе субмикронных пористых частиц карбоната кальция размером менее 1.5 мкм, содержащих активное вещество Амми большой плодов фурокумарины в виде спиртовой суспензии в дозе 15-20 мг частиц/см2.

Изобретения относятся к нанотехнологии и могут быть использованы при изготовлении легковесных и хорошо проводящих материалов. Углеродные нанотрубки диспергируют в растворителе при температуре 80-140 °С.

Изобретение относится к области экологии и материаловедения, а именно нанотехнологии, и может быть использовано для количественного определения углеродных наноструктур (УН), в частности углеродных нанотрубок, в твердых и жидких образцах и различных средах.

Изобретение относится к нанотехнологии, а именно к способу выращивания многослойных наногетероэпитаксиальных структур с массивами идеальных квантовых точек (НГЭС ИКТ).

Изобретение относится к области измерительной техники и может быть предназначено для исследования невидимой ткани. Способ предназначен для идентификации невидимой ткани.

Изобретение относится к катализатору с добавкой γ-кетовалериановой кислоты, к способу его получения и его применению в области гидроочистки и/или гидрокрекинга. Катализатор гидроочистки и/или гидрокрекинга углеводородсодержащих фракций содержит подложку на основе оксида алюминия, или оксида кремния, или алюмосиликата, по меньшей мере один элемент группы VIII, по меньшей мере один элемент группы VIB, и γ-кетовалериановую кислоту, и дополнительно содержащий фосфор, причем содержание фосфора, выраженное в расчете на P2O5, составляет от 0,1 до 20 вес.% от полного веса катализатора, и мольное соотношение содержания фосфора и элемента группы VIB в катализаторе больше или равно 0,05.
Настоящее изобретение относится к бифункциональному катализатору защитного слоя процесса переработки тяжелого нефтяного сырья, а также к способу его получения. Катализатор содержит активный компонент и носитель.
Предложены катализатор, пригодный для удаления мышьяка из углеводородного сырья, способ его получения и способ гидроочистки углеводородного сырья, содержащего соединения мышьяка.
Предложены катализатор, пригодный для удаления мышьяка из углеводородного сырья, способ его получения и способ гидроочистки углеводородного сырья, содержащего соединения мышьяка.

Изобретение относится к области производства катализаторов гидроочистки. Описан катализатор гидроочистки вакуумного газойля, состоящий из MoO3, WO3 и NiO, содержание в прокаленном катализаторе MoO3 составляет 1,5-7,5 мас.

Изобретение относится к области производства катализаторов гидроочистки. Описан катализатор гидроочистки вакуумного газойля, состоящий из MoO3, WO3 и NiO, содержание в прокаленном катализаторе MoO3 составляет 1,5-7,5 мас.
Настоящее изобретение относится к тройному катализатору, к его использованию в выхлопных системах для двигателей внутреннего сгорания. Тройной катализатор для выхлопных систем двигателей внутреннего сгорания содержит: (1) палладиевый компонент, содержащий палладий и смешанный или композитный оксид диоксид церия-диоксид циркония-глинозем; и (2) родиевый компонент, содержащий родий и материал, содержащий диоксид циркония, в котором палладиевый компонент и родиевый компонент нанесены на содержащую серебро экструдированную подложку из молекулярного сита, причем смешанный или композитный оксид диоксид церия-диоксид циркония-глинозем имеет массовое соотношение CeO2:ZrO2:Al2O3 в интервале 0,1-70:0,1-70:95-10 и причем материал, содержащий диоксид циркония, представляет собой диоксид циркония или смешанный или композитный оксид диоксид церия-диоксид циркония.

Изобретение относится к способам приготовления катализаторов защитного слоя, располагаемых перед основным катализатором гидроочистки углеводородного сырья для предотвращения его отравления соединениями кремния, содержащимися в сырье гидроочистки.

Настоящее изобретение относится к способу приготовления каталитически-сорбционного материала для удаления хлора, включающему синтез инертного носителя, его пропитку растворами нитрата никеля и ацетата магния, причем в качестве компонента носителя, повышающего структурные характеристики, такие как объем пор и удельную площадь поверхности, используют мезопористое соединение одного из типов: SBA-15, MCF, Al-TUD, в количестве 25-35% масс., которое добавляют к порошку бемита, пептизируют разбавленным раствором азотной кислоты, высушивают и прокаливают при 550°С.

Изобретение относится к нефтеперерабатывающей промышленности, в частности к катализаторам гидрооблагораживания нефтяных фракций. Предлагается способ получения катализатора деметаллизации нефтяных фракций путем предварительного приготовления носителя катализатора осаждением гидроксида алюминия из раствора азотнокислого алюминия или алкоксида алюминия в присутствии водной дисперсии темплата макропор с диаметром частиц 0,1-2,0 мкм в количестве 10-35% масс.

Разработан активный катализатор гидрообработки, предназначенный для использования в процессах конверсии углеводородов: гидроденитрификации, гидрообессеривания, гидродеметаллирования, гидродесиликации, гидродеароматизации, гидроизомеризации, гидроочистки, гидрофайнинга и гидрокрекинга.
Наверх