Способ определения изменения устойчивости мерзлых грунтовых оснований

Изобретение относится к инженерно-геологическим изысканиям, в частности к способам определения изменения устойчивости мерзлых грунтовых оснований. Согласно заявленному способу в грунтовом основании размещают зонды, каждый из которых содержит нагревательный элемент, приемный акустический преобразователь и термометр. С помощью зондов оттаивают грунтовое основание и регистрируют возникающую при этом акустическую эмиссию (АЭ). Отбирают образцы грунта с обследуемого основания. На них определяют соответствие параметров АЭ стадиям деформированного состояния грунта и его характеристикам по стандартизованным методикам, например по ГОСТ 12248. Определяют значения активности и длительности импульсов Dimp АЭ, усредненные за время оттаивания M(Dimpот) и нагрева оттаявшего грунта M(Dimpн). Рассчитывают показатель Сопоставляя натурные значения Rtgrm с полученными на образцах значениями RtgrL, судят о состоянии обследуемого грунтового основания. Технический результат - обеспечение возможности контроля устойчивости мерзлых грунтовых оснований в режиме мониторинга. 2 ил.

 

Изобретение относится к области строительства и обеспечения безопасной эксплуатации зданий и сооружений в зонах многолетней мерзлоты и может быть использовано при инженерно-геологических изысканиях с целью прогноза и длительного контроля (мониторинга) устойчивости мерзлых, локально оттаянных или циклически оттаивающих грунтовых оснований инженерных объектов различного назначения.

Известен акустический способ контроля качества и процесса формирования ледопородных ограждений, для реализации которого по простиранию и глубине контролируемого участка геосреды с определенным шагом размещают приемные акустические преобразователи, с их помощью устанавливают параметры акустической эмиссии и по изменению этих параметров во времени и пространстве судят о интенсивности идущих в грунтовом массиве гидродинамических процессов и эволюции его мерзлого состояния [Патент РФ №2581188, G01V 1/00, Опубл.: 20.04.2016 Бюл. №11].

Недостатком данного способа является его непригодность для определения изменения устойчивости мерзлого грунтового основания инженерного объекта по мере растепления грунта и под действием квазистатической механической нагрузки, созданной весом этого объекта.

Наиболее близким по технической сущности к предлагаемому изобретению является способ испытания массива мерзлого грунта статическим зондированием, включающий размещение в массиве измерительного зонда, определение температуры контактирующего с зондом грунта, его локальное оттаивание установленным в зонде нагревательным элементом, мощность и продолжительность нагрева которым выбирают в зависимости от исходной температуры, физических и теплофизических характеристик грунта, регистрацию с помощью зонда откликов грунта в мерзлом и талом состоянии на стимулирующее воздействие, определение значений параметров этих откликов, по которым судят об устойчивости грунта [Патент РФ №2632994, E02D 1/02, Опубл.: 11.10.2017 Бюл. №29].

Недостатками известного способа являются: высокая трудоемкость; невозможность выполнения долгосрочных наблюдений в режиме мониторинга.

Отмеченные недостатки обусловлены тем, что измерения по известному способу предполагают значительные трудовые и временные затраты на перемещение измерительного и давильного оборудования к каждой следующей точке контроля, выполнение нескольких итераций внедрения индентора в промерзший грунт, достаточно длительное его оттаивание между этими итерациями, обеспечение строго определенного режима нагружения. Кроме того, известный способ требует специальных устройств нагружения, позволяющих продавить зонд на несколько метров в промерзший грунт. Эксплуатация таких устройств трудоемка и требует постоянного присутствия специалистов непосредственно на контролируемом участке грунтового массива. Ускорение изысканий по известному способу путем одновременного выполнения большого числа параллельных измерений экономически не целесообразно по причине пропорционального возрастания численности необходимого для этого персонала и комплектов узкоспециального оборудования. Таким образом, необходимость постоянного присутствия группы специалистов на месте выполнения измерений, трудоемкость и высокая стоимость работ по известному способу, не позволяют применять его для решения мониторинговых задач, предполагающих частое выполнение измерений для оперативной актуализации сведений о состоянии геосреды. Соответственно обследование массива мерзлого грунта методом механического зондирования, как правило, проводят только один раз и для ограниченного числа контрольных точек, результаты испытания которых методом приближенных оценок распространяют на весь массив. Это создает риски не обнаружения локальных очагов развития деструктивных процессов, пропуска аномальных по структуре и строению участков массива, не позволяет своевременно отследить эволюцию его состояния и подобрать профилактические мероприятия по обеспечению устойчивости грунтового основания.

В настоящей заявке решается задача разработки способа определения изменения устойчивости мерзлых грунтовых оснований, снижающего трудоемкость контроля указанной устойчивости и дающего возможность выполнения этого контроля в режиме мониторинга, что достигается путем обеспечения непрерывного получения и интерпретации соответствующей измерительной информации о всем объеме грунтового основания при исключении необходимости постоянного присутствия группы специалистов на контролируемом объекте, повтора подготовительных и земляных работ для выполнения каждого нового измерения.

Техническим результатом изобретения является снижение трудоемкости контроля устойчивости мерзлых грунтовых оснований, предназначенных для размещения на них зданий и сооружений, обеспечение возможности выполнения этого контроля в режиме мониторинга.

Технический результат достигается за счет того, что предложенный акустико-эмиссионный способ определения изменения устойчивости мерзлых грунтовых оснований в отличие от известного способа испытания мерзлого грунта статическим зондированием и схожих по смыслу стандартных методов полевого определения характеристик прочности и деформируемости грунтов, например, по ГОСТ 20276-2012, не требует повторения трудоемких земляных работ (бурения опытных скважин, продавливания в мерзлый грунт инденторов, среза целиков грунта), переноса и монтажа измерительных установок перед выполнением каждого нового измерения. По предлагаемому способу, после размещения зондов в геосреде, измерения допустимо осуществлять в любой момент времени по команде от устройства управления, которое может работать в режиме дистанционного доступа через спутниковую связь. При этом нет принципиальных ограничений по плотности сети приемных преобразователей и глубине их размещения. Выведенные на поверхность сигнальные и управляющие цепи позволяют в любой момент времени дистанционно включать нагревательные элементы, регистрировать стимулируемый нагревом информативный акустико-эмиссионный отклик и оперативно отслеживать изменения в состоянии грунтового основания. Очередность включения, время работы и тепловой поток нагревательных элементов подбираются таким образом, чтобы не влиять на свойства грунтового массива в целом. Кроме того, измерения по предлагаемому способу не требуют размещения и/или перемещения на поверхности геосреды крупногабаритного оборудования. Это позволяет проводить указанные измерения не только на стадии изысканий и строительства, но и выполнять мониторинг грунтового массива в любой точке основания уже построенного и эксплуатируемого инженерного объекта. Таким образом, за счет исключения необходимости присутствия специалистов на контролируемой площадке во время проведения измерений, повышения их скорости, отсутствия принципиальных ограничений по разрешающей способности и глубинности измерительной сети, обеспечения возможности ее дистанционного управления и сбора измерительных данных сразу о всем контролируемом массиве в целом, создается возможность точного и достоверного мониторинга за изменениями состояния мерзлых грунтовых оснований при снижении требуемых для этого трудозатрат.

Для решения поставленной задачи в способе определения изменения устойчивости мерзлых грунтовых оснований, включающем размещение в массиве измерительного зонда, определение температуры контактирующего с зондом грунта, его локальное оттаивание установленным в зонде нагревательным элементом, мощность и продолжительность нагрева которым выбирают в зависимости от исходной температуры, физических и теплофизических характеристик грунта, регистрацию с помощью зонда откликов грунта в мерзлом и талом состоянии на стимулирующее воздействие, определение значений параметров этих откликов, по которым судят об устойчивости грунта, зонды с определенным шагом размещают по простиранию и глубине контролируемого участка грунтов, в качестве откликов используют регистрируемые с помощью размещенного в каждом зонде акустического преобразователя сигналы акустической эмиссии, стимулируемые оттаиванием мерзлого грунта и интенсивным нагревом того же участка грунта уже в полностью оттаявшем состоянии, нагрев примыкающего к зонду грунта производят циклически через интервалы времени, достаточные для повторного промерзания грунта, о наступлении которого, а также об окончании оттаивания грунта, судят по термометрическим измерениям, в качестве информативных параметров отклика используют активность и длительность импульсов Dimp зарегистрированной акустической эмиссии, значения которых усредняют по временным областям, соответствующим стадиям оттаивания М(Dimpот) и нагрева полностью оттаявшего грунта М(Dimpн), для каждого цикла нагрева и промерзания грунта рассчитывают показатель сравнивают рассчитанные по измерениям в массиве значения Rtgrm со значениями RtgrL, полученными по результатам предварительных лабораторных испытаний соответствующих образцов, и по разнице RtgrL и Rtgrm судят о несущей способности грунта.

Способ определения изменения устойчивости мерзлых грунтов иллюстрируется фиг. 1-2, где на фиг. 1 приведен пример зависимости Rtgr(P) песчано-глинистых грунтов, а на фиг. 2 приведена конструкция измерительного зонда, размещенного в грунтовом массиве.

Предложенный способ базируется на установленных авторами экспериментально закономерностях акустической эмиссии при замораживании и последующем оттаивании образцов находящихся под действием квазистатических механических нагрузок обводненных грунтов, соответствующих по своему составу и свойствам (в т.ч. влажности) грунтам, характерным для объектов строительства в северных регионах России.

Суть этих закономерностей заключается во взаимосвязи между изменениями взаимного соотношения информативных параметров акустической эмиссии находящегося в напряженном состоянии мерзлого грунта на различных стадиях его растепления и изменением напряженно-деформированного состояния этого грунта под действием ступенчато изменяющейся квазистатической механической нагрузки величиной Р.

При установлении указанных закономерностей использовались следующие параметры акустической эмиссии:

1) Активность - число зарегистрированных событий акустической эмиссии за единицу времени. Физический смысл - интенсивность деструкции грунтового материала;

2) Длительность импульса Dimp - средний интервал времени между началом и концом регистрации импульса акустической эмиссии за единицу времени. Физический смысл Dimp - время, в течении которого структурная связь сохраняет свою целостность, пребывая в напряженном состоянии под действием внешних нагрузок. Соответственно устойчивые связи характеризуются большими величинами Dimp. В данном случае этот параметр используется для разделения вклада в суммарный характер ТАЭ импульсов от разрушения различных типов структурных связей.

Для численной оценки указанных параметров рассчитывались их средние значения, относительно временных областей (стадий) оттаивания М(Dimpот) и интенсивного нагрева (термического нагружения) М(Dimpн) уже полностью оттаявшего грунта.

Необходимость учета типа структурных связей, являющихся источниками регистрируемой акустической эмиссии, связана со специфическими особенностями организации структуры грунтового материала и существованием весьма сложных механизмов взаимодействия между его частицами, где наряду с кристаллизационными связями широко распространены водно-коллоидные связи, которые весьма пластичны и способны создавать новые соединения сразу после разрушения старых. Понятно, что для контроля и прогноза устойчивости и несущей способности грунтов наиболее важна информация о деструкции исходно устойчивых структурных связей, которые определяют стабильность грунтового основания. При этом акустико-эмиссионный отклик от новообразующихся временных и исходно не стабильных связей также имеет значение, но в меньшей степени, поскольку такие связи характеризуются малой прочностью и, соответственно, гораздо меньшим образом сказываются на несущей способности грунта. В то же время такой отклик содержит большое количество событий акустической эмиссии и выступает в роли помеховой составляющей, затрудняющей выделение более информативных с точки зрения оценки динамики прочностных свойств грунта упругих импульсов от деструкции кристаллизационных связей.

С учетом изложенных выше физических предпосылок для обработки измерительной информации будем использовать показатель который характеризуют средневзвешенную интенсивность деструкции грунтового материала под действием локальной термической и квазистатической механической нагрузок. Значения M(Dimp) у мало влияющих на несущую способность грунта слабых структурных связей значительно ниже, чем величина этого параметра у прочных связей. Поэтому показатель позволяет вычленить в общем характере ТАЭ события деструкции, которые в большей степени определяют эволюцию несущей способности грунта. Таким образом величина характеризует интенсивность деструкции наиболее устойчивых структурных связей грунта, определяющих его несущую способность в целом, и позволяет отслеживать эволюцию и стадийность напряженно-деформированного состояния грунта.

Далее введем комплексный показатель

Физический смысл Rtgr - отношение устойчивости к термомеханическому воздействию грунтового материала с полностью оттаявшим связующим глинистоводным цементом к стойкости этого же грунта в промерзшем состоянии при такой же механической нагрузке. Следовательно Rtgr показывает разницу в устойчивости талого и мерзлого грунта к действию заданной механической нагрузки при определенном режиме растепления локального участка геосреды.

Из фиг. 1 следует спад значений Rtgr, пропорциональный снижению устойчивости грунта при возрастании приложенной к нему механической нагрузки. Показанное на фиг. 1 распределение Rtgr(P) согласуется с известными теоретическими предпосылками и демонстрирует сходимость с видом классической диаграммы деформированного состояния грунта по проф. Н.М. Герсеванову.

Способ определения изменения устойчивости мерзлых грунтовых оснований реализуют следующим образом (фиг. 2).

По глубине и простиранию обследуемого участка геосреды 1 методом проталкивания или в скважинах размещают зонды 2, каждый из которых содержит нагревательный элемент 3, термочувствительный элемент 4 и приемный акустический преобразователь 5. После размещения зонды 2 засыпают грунтом 6 с того же участка массива. Составляют карту расположения зондов 2, в которой указывают глубины их размещения и пространственные координаты с привязкой к системе GPS или ГЛОНАС. Цепи сигнальные и питания (на фиг. 2 условно не показаны) зондов 2 выводят на поверхность и подключают к устройству связи и управления например, через беспроводной интернет. После засыпания зондов 2 в геосреде 1 дожидаются ее наибольшего промерзания, о котором судят по термометрическим измерениям. Далее включают нагревательный элемент 3. Сигналы акустической эмиссии регистрируют с каждого приемного акустического преобразователя 5 в отдельности как на стадии оттаивания мерзлого грунта, так и на стадии интенсивного нагрева того же участка грунта уже в полностью оттаявшем состоянии. Нагрев примыкающего к каждому зонду 2 грунта производят циклически через интервалы времени, достаточные для его повторного промерзания, о наступлении которого, а также об окончании оттаивания грунта, судят по термометрическим измерениям. Измеряют активность и длительность импульсов Dimp зарегистрированной акустической эмиссии. Значения этих параметров усредняют по временным областям, соответствующим стадиям оттаивания М(Dimpот) и нагрева полностью оттаявшего грунта M(Dimpн). Затем рассчитывают показатель который характеризует отношение устойчивости (интенсивности деструкции структурных связей) к термомеханическому воздействию грунтового материала с полностью оттаявшим связующим глинистоводным цементом к стойкости этого же грунта в промерзшем состоянии при такой же механической нагрузке. Снижение Rtgr показывает затухание термически стимулированных деформационных процессов, которые служат идентификационным признаком исчерпания в грунте запаса прочных (долговременных) структурных связей и ухудшения степени связанности его частиц, определяющих устойчивость грунтового основания. Согласно месторасположению зондов составляют карту распределения значений Rtgrm по объему геосреды. Параллельно с размещением зондов 2 выполняют отбор и консервацию проб грунта. Эти пробы используют для сравнительных испытаний стандартизованным методикам, например, по ГОСТ 12248-2010 и предлагаемому способу. Последний предполагает их ступенчатое термомеханическое нагружение с возрастающей механической нагрузкой и одновременную регистрацию данных по всем событиям акустической эмиссии, происшедшим в образце при определенной нагрузке Р за полный цикл термического воздействия. Каждый такой цикл включает три стадии:

- заморозку образца вплоть до его полного промерзания, о наступлении которого судят по снижению активности акустической эмиссии до фоновых значений;

- полное разрушение ледопородной матрицы отогревом (контролируется по данным термометрических измерений);

- термическое нагружение оттаявшего грунта вплоть до завершения в нем структурных изменений и стабилизации деформированного состояния, о чем также судят по снижению активности ТАЭ.

Затем образцу сообщают следующую механическую нагрузку и повторяют указанные выше стадии.

По результатам испытаний образов получают распределения RtgrL(P), аналогичные показанному на фиг. 2. Сопоставляя полученные в натурных условиях значения Rtgrm с функцией RtgrL(P), результатами испытаний по стандартизованным методикам, например, по ГОСТ 12248-2010, и местоположением зондов 2, на которых получены соответствующие значения Rtgrm, судят как о состоянии обследуемого грунтового основания в целом, так и о наличие и расположение в нем зон, опасных по развитию деструктивных процессов и потере устойчивости. Для таких зон характерны более низкие значения Rtgrm по сравнению со значениями этого показателя, полученными с зондов, расположенных на соседних участках геосреды.

Таким образом, в предложенном способе определения изменения устойчивости мерзлых грунтовых оснований за счет обеспечения непрерывности измерений без необходимости постоянного присутствия персонала на контролируемом объекте, исключения повторения трудоемких земляных работ перед выполнением каждого нового измерения и за счет создания возможности дистанционного и в режиме реального времени получения и интерпретации измерительной информации достигается снижение трудоемкости контроля устойчивости грунтового массива и создается возможность выполнения этого контроля в режиме мониторинга.

Способ определения изменения устойчивости мерзлых грунтовых оснований, включающий размещение в массиве измерительного зонда, определение температуры контактирующего с зондом грунта, его локальное оттаивание установленным в зонде нагревательным элементом, мощность и продолжительность нагрева которым выбирают в зависимости от исходной температуры, физических и теплофизических характеристик грунта, регистрацию с помощью зонда откликов грунта в мерзлом и талом состоянии на стимулирующее воздействие, определение значений параметров этих откликов, по которым судят об устойчивости грунта, отличающийся тем, что зонды с определенным шагом размещают по простиранию и глубине контролируемого участка грунтов, в качестве откликов используют регистрируемые с помощью размещенного в каждом зонде акустического преобразователя сигналы акустической эмиссии, стимулируемые оттаиванием мерзлого грунта и интенсивным нагревом того же участка грунта уже в полностью оттаявшем состоянии, нагрев примыкающего к зонду грунта производят циклически через интервалы времени, достаточные для повторного промерзания грунта, о наступлении которого, а также об окончании оттаивания грунта судят по термометрическим измерениям, в качестве информативных параметров отклика используют активность и длительность импульсов Dimp зарегистрированной акустической эмиссии, значения которых усредняют по временным областям, соответствующим стадиям оттаивания М(Dimpот) и нагрева полностью оттаявшего грунта М(Dimpн), для каждого цикла нагрева и промерзания грунта рассчитывают показатель сравнивают рассчитанные по измерениям в массиве значения Rtgrm со значениями RtgrL, полученными по результатам предварительных лабораторных испытаний соответствующих образцов, и по разнице RtgrL и Rtgrm судят о несущей способности грунта.



 

Похожие патенты:

Изобретение относится к области сейсмологии и может быть использовано для определения индекса сейсмомиграционной активности в эпицентральном поле сейсмичности. Сущность: по экспериментальным материалам разнесенных на поверхности сейсмических станций строят карту эпицентров землетрясений исследуемой территории.

Изобретение относится к области сейсмологии и может быть использовано для определения эпизодов когерентности динамической системы сейсмогенеза исследуемой территории.

Изобретение относится к геофизике и может быть использовано для технического контроля состояния литосферы по кинематическому типу подвижек в очагах землетрясений при инструментальной регистрации землетрясений и обработке данных.

Группа изобретений относится к контрольно-измерительной технике и может быть использована для контроля состояния длинномерных объектов, а именно протяженных приповерхностных слоев литосферы в виде участков земли толщиной несколько километров и площадью сотни квадратных километров, расположенных в сейсмоопасных зонах на поверхности земли и морском дне, с целью предсказания землетрясений, цунами, техногенных катастроф, а также поиска и разведки полезных ископаемых.

Изобретение относится к области технических средств обнаружения и классификации сейсмических сигналов и может быть применено для охраны участков местности и подступов к объектам, в разведывательно-сигнализационных системах и в устройствах управления подрывом инженерных боеприпасов.

Изобретение относится к области геофизики и может быть использовано при проведении морских сейсмических исследований. Раскрыта система сбора сейсмических данных.

Изобретение относится к измерительной технике, в частности к прямому измерению параметров волн сжатия - разряжения, распространяющихся в жидких и газообразных средах, которые могут характеризоваться повышенным относительно нормальных условий статическим давлением в среде.

Изобретение относится к области геофизики и может быть использовано при проведении морских сейсмических исследований. Раскрыты способы, системы и устройства, предназначенные для проведения рекогносцировочных морских сейсмических исследований.

Изобретение относится к области геофизики и может быть использовано пари проведении сейсморазведочных работ. Профиль сейсмического детектирования включает в себя один или более из идентифицируемого элемента (элементов) (112), расположенного в ряд, и телеметрическую линию (315) связи, соединяющую элемент (элементы) вдоль ряда, чтобы передавать сейсмические данные от по меньшей мере одного из элемента (элементов) в регистратор данных и идентификационные данные в контроллер (210) топологии.

Изобретение относится к области геофизики и может быть использовано для проведения морских геофизических изысканий. Предложен электронный блок(20), конфигурация которого позволяет использовать его в качестве части морской косы и окружать им жильный кабель морской косы, причем упомянутый электронный блок (20) включает в себя по меньшей мере корпус (21), по меньшей мере частично гибкий, по меньшей мере частично выполненный из полимерного материала.

Изобретение относится к области измерения содержания газа, в частности к интегрированному газонепроницаемому измерительному прибору для измерения содержания газа, основанному на принципе температурного и избыточного давления и его применения.

Изобретение относится к сельскому хозяйству и почвоведению, а именно к cпособу оценки снижения токсикоза почв для повышения урожайности зерновых культур. Оценку токсикоза почвы проводят по величине ингибирования (И1) развития семян зерновых культур при их посеве на этой почве и данным по оценке токсикоза почвы, обработанной сывороткой или навозом, по величине ингибирования развития семян на почве, обработанной мелиорантом (И2).

Изобретение относится к способу исследования водопроницаемости и суффозионной устойчивости модели элемента конструкции грунтового гидротехнического сооружения, состоящей из несвязного грунта и фильтрующего геосинтетического материала, включающему размещение модели элемента конструкции на нижней сетке, лежащей на неподвижной опорной решетке, расположенной в нижней части фильтрационной камеры, укладку образца несвязного грунта, выполняемую отдельными слоями, подвергая его легкому уплотнению трамбованием, а около стенок фильтрационной камеры - штыкованию установку поверх образца несвязного грунта верхней сетки, затем подвижной нагрузочной решетки, на которую при помощи устройства для передачи нагрузки передается заданная нагрузка, водонасыщение образца грунта кипяченой или дистиллированной водой при восходящем направлении потока, создание напора бачками верхнего и нижнего бьефов путем подачи воды в бачок верхнего бьефа насосом из емкости для воды, поступающей по трубе, определение градиента напора по показаниям трубчатых пьезометров, подсоединенных к бачкам верхнего и нижнего бьефов, определение нагрузки на грунт по датчику нагрузки, фиксацию осадки подвижной нагрузочной решетки датчиком линейных перемещений, расчет величины коэффициента фильтрации образца грунта при восходящем или нисходящем направлении потока воды.

Изобретение относится к способам изучения водной эрозии почв. Сущность: определяют средний уклон и потенциал эрозионной стойкости подстилающей поверхности исследуемого ключевого участка на ландшафтной катене склоновых земель.

Лизиметр // 2694052
Изобретение относится к лизиметру, включающему емкость (1) с монолитом почвы (2), сообщающуюся с вертикально установленной емкостью (6), поддон (5) и элементы контроля уровня воды, причем вертикально установленная емкость (60 разделена на измерительную емкость (9) и дренажный колодец (10) перегородкой (80, в средней части которой выполнено отверстие (11), снабженным устройством для сброса воды в виде сифона (15), нисходящая вервь которого выведена в дренажный колодец (10) в сторону оголовка отводящей трубы (17), при этом сифон (15) закреплен внутри отверстия в щитке 12.

Изобретение относится к геоэкологии и, в частности, к охране окружающей среды на Крайнем Севере в районах добычи нефти. Способ предотвращения миграции нефти в подземные воды из загрязненных тундровых почв включает отбор на загрязненном участке усредненного образца почвы для определения в ней исходной концентрации нефти y0 и глубины ее проникновения в грунт.

Изобретение направлено на создание простого и эффективного способа оценки эффективности сорбционных материалов для почв, загрязненных тяжелыми металлами. Способ оценки эффективности сорбентов тяжелых металлов в почвах заключается в том, что в условиях модельного загрязнения почв тяжелыми металлами Pb, Zn, Cd в дозе 5 предельно-допустимых концентраций, в несколько пластиковых кювет, по меньшей мере 2-3 повторности на один вариант опыта, помещают по 500 г почвы одного типа с ненарушенным агрегатным составом, вносят в почву загрязнитель Pb, Zn, Cd в нитратной форме и сорбционный материал в исследуемых концентрациях, пробу в кювете увлажняют до влажности, равной 30%, и перемешивают, после чего на 10-е и 60-е сутки экспозиции опыта проводят измерение электропроводности почвы, причем в течение 60 суток осуществляют искусственный полив, соответствующий средней норме осадков.

Лизиметр // 2686691
Изобретение относится к приборам, применяемым в сельском хозяйстве при балансовых исследованиях на мелиорируемых землях, в частности для определения инфильтрации поливных, талых и дождевальных вод.

Изобретение относится к химической технологии экстракционного разделения сложных по химическому составу природных и технических компонентов смесей твердых порошков в горно-рудной промышленности.

Изобретение относится к экологии. Осуществляют обеззараживание токсиканта при смешивании с веществом серы.

Использование: для подавления механических неустойчивостей алюминиевого сплава В95пч. Сущность изобретения заключается в том, что используют установку датчика акустической эмиссии вблизи потенциально опасного участка (концентратора напряжения) изделия или конструкции, осуществляют деформирование растягивающей нагрузкой до появления первого всплеска акустической эмиссии, сигнализирующего о появлении в материале полосы локализованной деформации - предвестника развития макроскопической механической неустойчивости, при этом этот акустический сигнал используется для запуска силового устройства, которое создает в материале импульс сжатия, подавляющий развитие механической неустойчивости.
Наверх