Двухспектральная оптическая система

Оптическая система может быть применена в тепло-телевизионных приборах наблюдения и прицеливания. Оптическая система включает общий входной канал, содержащий отрицательный мениск, плоскопараллельную пластинку с дихроичным покрытием на первой поверхности, отражающим спектральный диапазон (0,6÷1,0) мкм и пропускающим спектральный диапазон (8,0÷14,0) мкм, два оптических канала для каждого из спектральных диапазонов. Оптический канал для (0,6÷1,0) мкм содержит положительную и отрицательную линзы, отражающее зеркало, склеенные отрицательную и положительную линзы, апертурную диафрагму и отрицательный мениск, обращенный выпуклостью к предмету. Оптический канал для (8,0÷14,0) мкм содержит апертурную диафрагму, положительную и отрицательную линзы. Выполняется соотношение: FТП = (0,5 ÷ 1,5) ⋅ FТВ, где FТП, FТВ - фокусные расстояния оптических каналов (8.0÷14,0) и (0,6÷1,0) мкм; dТП , dТВ - размеры пикселя ф/приемников оптических каналов (8.0÷14,0) и (0,6÷1,0) мкм. Технический результат - уменьшение количества оптических деталей в тепловизионном канале, расширение углового поля зрения обоих каналов при сохранении высоких оптических характеристик. 1 ил., 1 табл.

 

Предлагаемое изобретение относится к области оптико-электронной техники и может быть использовано в качестве объектива к широкоугольным тепло-телевизионным приборам в самых разнообразных условиях эксплуатации.

Известна двухспектральная оптическая система для работы в тепло-телевизионных приборах в двух спектральных диапазонах - от 0,4 до 0,9 мкм и от 3,0 до 5,0 мкм (И.Л. Гейхман, В.Г. Волков «Видение и безопасность». Москва, ОАО «Типография «Новости», 2009 год, стр. 556, рис. 7.3.1 в), содержащая общий входной канал из двух компонентов, последовательно расположенных по ходу луча - отрицательного мениска и положительной линзы, плоское зеркало с дихроичным покрытием, пропускающим один спектральный диапазон и отражающим другой, а также два оптических канала, работающих в различных спектральных диапазонах.

В отраженном от зеркала с дихроичным покрытием направлении, перед фотоприемником установлен оптический канал, предназначенный для работы в спектральном диапазоне (0,4÷0,9) мкм и состоящий из последовательно расположенных положительной двояковыпуклой линзы, положительной линзы, склейки из отрицательной и положительной линз, поворотного зеркала и фотоприемника.

В проходящем через зеркало с дихроичным покрытием направлении перед фотоприемником установлен оптический канал, предназначенный для работы в спектральном диапазоне (3,0÷5,0) мкм и состоящий из последовательно расположенных положительного мениска, двух положительных линз, поворотного зеркала и фотоприемника.

Недостатком этой оптической системы является невысокая светосила в канале (3,0÷5,0) мкм, равная 1:2, и значительное число оптических деталей в этом канале, что еще более уменьшает его физическую светосилу, а также невысокая светосила в канале (0,40÷0,9) мкм, равная 1:1,8.

Наиболее близкой по технической сущности является двухспектральная оптическая система (патент RU 2436136 С1, опубл. 10.12.2011), содержащая общий входной канал, плоское зеркало с дихроичным покрытием, отражающим спектральный диапазон (0,5÷0,9) мкм и пропускающим спектральный диапазон (8÷14) мкм, а также два оптических канала для каждого из спектральных диапазонов, причем общий входной канал содержит один компонент - положительный мениск, при этом первый компонент оптического канала, работающего в спектральном диапазоне (0,5÷0,9) мкм, выполнен в виде положительной двояковыпуклой линзы, второй - в виде отрицательной линзы, третий компонент этого канала выполнен в виде положительного мениска, четвертый - в виде отрицательного мениска, пятый - в виде положительной линзы, первый и третий компоненты оптического канала, работающего в спектральном диапазоне (8,0÷14,0) мкм, выполнены в виде положительной линзы, второй компонент - в виде отрицательной линзы

Недостатком этой оптической системы является малые угловые поля зрения обоих каналов и сложность исполнения тепловизионного канала, содержащего по ходу лучей четыре оптических компонента.

Задачей настоящего изобретения является уменьшение количества оптических деталей в тепловизионном канале с расширением углового поля зрения обоих каналов при сохранении высоких оптических характеристик.

Технический результат, обусловленный поставленной задачей, достигается тем, что в двухспектральной оптической системе, содержащей общий входной канал, плоскопараллельную пластинку с дихроичным покрытием на первой поверхности, отражающим спектральный диапазон (0,6÷1,0) мкм и пропускающим спектральный диапазон (8,0÷14,0) мкм, два оптических канала для каждого из спектральных диапазонов, первый компонент оптического канала, работающего в спектральном диапазоне (0,6÷1,0) мкм, выполненный в виде положительной линзы, второй - в виде отрицательной линзы, первый компонент оптического канала, работающего в спектральном диапазоне (8,0÷14,0) мкм, выполненный в виде положительной линзы, в отличие от известного, общий входной канал содержит отрицательный мениск, при этом третий и четвертый компоненты оптического канала, работающего в спектральном диапазоне (0,6÷1,0) мкм, выполнены в виде склеенных между собой отрицательной и положительной линз, пятый компонент этого канала выполнен в виде отрицательного мениска, обращенного выпуклостью к предмету, апертурная диафрагма расположена между четвертым и пятым компонентами, а между вторым и третьим компонентами установлено отражающее зеркало, вместе с тем оптический канал, работающий в спектральном диапазоне (8,0÷14,0) мкм, выполнен двухкомпонентным, второй компонент которого представляет собой отрицательную линзу, а апертурная диафрагма расположена перед первым компонентом оптического канала (8,0÷14,0) мкм, при этом выполняется следующее соотношение:

где FТП - фокусное расстояние оптического канала (8,0÷14,0) мкм;

FТВ - фокусное расстояние оптического канала (0,6÷1,0) мкм;

dТП - размер пикселя ф/приемника оптического канала (8,0÷14,0) мкм;

dТВ - размер пикселя ф/приемника оптического канала (0,6÷1,0) мкм.

Такая оптическая система содержит меньшее число оптических деталей в тепловизионном канале, работающем в проходящем через зеркало с дихроичным покрытием направлении, а также расширяет угловое поле зрения обоих каналов и с сохранением высоких оптических характеристик.

Оптическая схема двухканальной системы показана на фигуре 1.

Двухканальная оптическая система содержит общий входной канал, состоящий из отрицательной менисковой линзы 1, плоскопараллельной пластинки 2 с дихроичным покрытием на первой поверхности, пропускающим спектральный диапазон (8÷14) мкм и отражающим спектральный диапазон (0,6÷1,0) мкм, оптический канал в проходящем через пластинку 2 направлении, состоящий из апертурной диафрагмы 3, положительной линзы 4, отрицательной линзы 5 и защитного стекла 6 фотоприемника 7, оптический канал в отраженном от первой поверхности пластинки 2 направлении, состоящий из положительной линзы 8, отрицательной линзы 9, отражающего зеркала 10, отрицательного мениска 11, положительной двояковыпуклой линзы 12, апертурной диафрагмы 13, отрицательного мениска 14 и защитного стекла 15 фотоприемника 16.

Конструктивные параметры варианта исполнения оптической системы приведены в таблице I.

Параметры такого варианта исполнения оптической системы для оптического канала спектрального диапазона (0,6÷1,0) мкм:

- расчетная длина волны 0,7 мкм;

- рабочий спектральный диапазон (0,6÷1,0) мкм;

- фокусное расстояние 29,9 мм;

- линейное поле зрения 9,0 мм;

- угловое поле зрения ~ 17,1°;

- относительное отверстие 1: 1,33

Параметры такого варианта исполнения оптической системы для оптического канала спектрального диапазона (8,0÷14,0) мкм:

- расчетная длина волны 10,6 мкм;

- рабочий спектральный диапазон (8,0÷14,0) мкм;

- фокусное расстояние 64,17 мм;

- линейное поле зрения 17,0 мм;

- угловое поле зрения ~ 15,1°;

- относительное отверстие 1: 1,28

Принцип действия оптической системы заключается в следующем.

Первый компонент 1, выполненный в виде отрицательного мениска, в сочетании со вторым компонентом 2, выполненным в виде плоскопараллельной пластинки с дихроичным покрытием на первой поверхности, является единым входным окном для обоих каналов, работающих в различных спектральных диапазонах.

Оптический канал в проходящем через пластинку 2 с дихроичным покрытием направлении, выполнен из положительного и отрицательного компонентов 4 и 5, а апертурная диафрагма 3 расположена перед компонентом 4, чем обеспечивается необходимая коррекция аберраций в спектральном диапазоне (8,0÷14,0) мкм, а также увеличение углового поля зрения.

Оптический канал в отраженном от пластинки 2 с дихроичным покрытием направлении, выполнен из силовой части - компоненты 8 и 9, которая создает необходимую оптическую силу канала, и компенсатора полевых аберраций из компонентов 11, 12 и 14, компенсирующего кривизну поверхности изображения в спектральном диапазоне (0,6÷1,0) мкм, а апертурная диафрагма 13 расположена между четвертым 12 и пятым компонентом 14, чем обеспечивается увеличение углового поля зрения с сохранением светосилы на уровне 1:1,33. Отражающее зеркало 10 расположено между компонентами 9 и 11 и служит для уменьшения габаритных размеров оптической системы.

Для реализации режима одновременного совмещения изображений от двух каналов разных спектральных диапазонов требуется совпадение величин мгновенных полей зрения с точностью, позволяющей провести дополнительную электронную коррекцию, для чего необходимо выполнить следующее соотношение:

где FТП - фокусное расстояние оптического канала (8.0÷14,0) мкм;

FТВ - фокусное расстояние оптического канала (0,6÷1,0) мкм;

dТП - размер пикселя ф/приемника оптического канала (8,0÷14,0) мкм;

dТВ - размер пикселя ф/приемника оптического канала (0,6÷1,0) мкм.

Задаваясь критерием качества - величиной полихроматического коэффициента передачи контраста (КПК) и учитывая:

- толщину защитного стекла 6 (или 15) фотоприемника, равную 1,0 мм (0,75 мм соответственно);

- спектральную эффективность по длинам волн с учетом чувствительности фотоприемника и светопропускания объектива - 1,0 на длинах волн 0,6 мкм и 0,7 мкм, 0,8 на длине волны 0,8 мкм, 0,5 на длине волны 0,9 мкм и 0,2 на длине волны 0,95 мкм, 1,0 на длинах волн 8,0 мкм, 10,6 мкм, 12,5 мкм и 13,5 мкм;

пространственную частоту ~90 лин/мм (частота Найквиста для фотоприемника (0,6÷1,0) мкм с размером чувствительного элемента, равным 5,5 мкм),

пространственную частоту 30 лин/мм (частота Найквиста для фотоприемника (8,0÷14,0) мкм с размером чувствительного элемента, равным 17 мкм),

получаем следующие расчетные значения качественных характеристик оптической системы:

- для оптического канала спектрального диапазона (0,6÷0,95) мкм:

- дифракционное качество КПК=87,9%

- для точки на оси КПК=45,9%

- для точки поля 3,5 мм от центра

изображения КПК М=31,3%

КПК C=34,4%

- для точки поля 4,5 мм от центра

изображения КПК М=11,3%

КПК C=36,6%

- для оптического канала спектрального диапазона (8,0÷14,0) мкм:

- дифракционное качество КПК М - 45,6%

КПК C=45,7%

- для точки на оси КПК М=40,9%

КПК C=43,6%

- для точки поля 6,0 мм от центра

изображения КПК М=29,3%

КПК C=38,4%

- для точки поля 8,5 мм от центра

изображения КПК М=33,7%

КПК C=38,7%

Как видно из расчетов, оптическая система, при простоте ее конструкции, обеспечивает практически двухкратное увеличение поля зрения, хорошее качество изображения для оптико-электронных приборов, использующих общий входной канал и два фотоприемника:

- телевизионную ПЗС матрицу спектрального диапазона (0,6÷1,0) мкм с размером пикселя 5,5 мкм и формата 1280×1024 пикселя;

- микроболометрическую матрицу спектрального диапазона (8,0÷14,0) мкм с размером пикселя 17 мкм и формата 800×600 пикселей.

Двухспектральная оптическая система, содержащая общий входной канал, плоскопараллельную пластинку с дихроичным покрытием на первой поверхности, отражающим спектральный диапазон (0,6÷1,0) мкм и пропускающим спектральный диапазон (8,0÷14,0) мкм, два оптических канала для каждого из спектральных диапазонов, первый компонент оптического канала, работающего в спектральном диапазоне (0,6÷1,0) мкм, выполненный в виде положительной линзы, второй - в виде отрицательной линзы, первый компонент оптического канала, работающего в спектральном диапазоне (8,0÷14,0) мкм, выполненный в виде положительной линзы, отличающаяся тем, что общий входной канал содержит отрицательный мениск, при этом третий и четвертый компоненты оптического канала, работающие в спектральном диапазоне (0,6÷1,0) мкм, выполнены в виде склеенных между собой отрицательной и положительной линз, пятый компонент этого канала выполнен в виде отрицательного мениска, обращенного выпуклостью к предмету, апертурная диафрагма расположена между четвертым и пятым компонентами, а между вторым и третьим компонентами расположено отражающее зеркало, вместе с тем оптический канал, работающий в спектральном диапазоне (8,0÷14,0) мкм, выполнен двухкомпонентным, второй компонент которого представляет собой отрицательную линзу, а апертурная диафрагма расположена перед первым компонентом оптического канала (8,0÷14,0) мкм, при этом выполняется следующее соотношение:

где FТП - фокусное расстояние оптического канала (8.0÷14,0) мкм;

FТВ - фокусное расстояние оптического канала (0,6÷1,0) мкм;

dТП - размер пикселя ф/приемника оптического канала (8,0÷14,0) мкм;

dТВ - размер пикселя ф/приемника оптического канала (0,6÷1,0) мкм.



 

Похожие патенты:

Изобретение может быть использовано в многоканальных оптико-электронных системах, предназначенных для обнаружения и распознавания объектов наблюдения в видимой и инфракрасной областях спектра.

Оптическая система однозрачкового тепловизионного прицела с встроенным лазерным дальномером содержит общий входной канал, спектроделительную пластинку, отражающую спектральный диапазон оптического канала и пропускающую спектральный диапазон тепловизионного канала, и два канала для каждого из спектральных диапазонов.

Двухспектральная оптическая система может быть применена в широкоугольных тепло-телевизионных приборах. Оптическая система содержит общий входной канал, плоское зеркало с дихроичным покрытием, отражающим спектральный диапазон (0,6÷0,95) мкм и пропускающим спектральный диапазон (8÷13,5) мкм, и два оптических канала для каждого из спектральных диапазонов.

Визирная система содержит низкосветосильный и высокосветосильный объективы и головную часть, которая содержит призму-куб, установленную над низкосветосильным объективом, и головное отражающее зеркало, установленное над высокосветосильным объективом, оптическая ось которого наклонена относительно вертикальной оси, совпадающей с оптической осью низкосветосильного объектива.

Система может быть использована в двухспектральных оптико-электронных системах. Система состоит из расположенных по ходу лучей обтекателя, главного вогнутого зеркала с центральным отверстием в виде отрицательной вогнуто-выпуклой линзы с отражающим покрытием на выпуклой поверхности, первого канала, содержащего спектроделитель, компенсатор, первая линза которого выполнена двояковогнутой, вторая - плосковыпуклой, а третья – двояковогнутой, и первый приемник излучения второго канала, содержащего спектроделитель и компенсатор, первая линза которого выполнена положительной вогнуто-выпуклой, вторая - отрицательной вогнуто-выпуклой, а третья - положительной вогнуто-выпуклой, и второй приемник излучения.

Оптическая система содержит главное вогнутое асферическое зеркало, перед которым установлен линзовый компонент, выполненный в виде отрицательного мениска, после главного зеркала установлены линзовый компенсатор дальнего ИК диапазона, первая поверхность которого является спектроделительной поверхностью, пропускающей дальний ИК диапазон и отражающей видимый и короткий ИК диапазон, общий для видимого и короткого ИК диапазонов двухлинзовый объектив, расположенный таким образом, что его передняя фокальная плоскость смещена относительно задней фокальной плоскости зеркально-линзового объектива для получения пучков с малой угловой расходимостью.

Оптическая система содержит главное вогнутое асферическое зеркало, перед которым установлен отрицательный мениск, после главного зеркала установлены линзовый компенсатор дальнего ИК диапазона, первая поверхность которого является спектроделительной и пропускает дальний ИК диапазон и отражает видимый, короткий ИК и средний ИК диапазоны, общий для видимого, короткого ИК и среднего ИК диапазонов двухлинзовый объектив, передняя фокальная плоскость которого смещена относительно задней фокальной плоскости зеркально-линзового объектива для образования пучков с малой угловой расходимостью.

Изобретение может быть использовано для головок самонаведения, оптико-электронных систем обнаружения, распознавания и автосопровождения, в частности, в составе бортовой аппаратуры, работающей в нескольких спектральных диапазонах.

Оптическая система содержит в первом варианте общий входной канал, спектроделительную пластинку, отражающую спектральный диапазон телевизионного канала и пропускающую спектральный диапазон тепловизионного канала, и два оптических канала для каждого из спектральных диапазонов.

Прицел содержит основной объектив, спектроделительный куб, отражающий дальномерный канал с фотоприемным устройством, линзовую панкратическую оборачивающую систему и окуляр.

Объектив с дискретным изменением фокусного расстояния содержит три компонента. Первый компонент состоит из положительного мениска, обращенного вогнутостью к плоскости изображения.

Изобретение относится к области оптического приборостроения и касается инфракрасной системы с двумя полями зрения. Система состоит из трех расположенных вдоль оптической оси оптических компонентов и фотоприемного устройства.

Объектив может быть использован в наблюдательных приборах и телевизионных обзорных комплексах. Объектив для ближней ИК-области спектра содержит апертурную диафрагму и три компонента.

Объектив может быть использован в тепловизорах, чувствительных в спектральном диапазоне от 8 до 12 мкм. Объектив содержит четыре компонента, из которых первый и второй по ходу луча - положительные мениски, обращенные вогнутыми поверхностями к плоскости изображений, а третий - отрицательный мениск, обращенный вогнутой поверхностью к плоскости изображений.

Изобретение предназначено для работы с неохлаждаемым матричным приемником и может быть использовано в качестве объектива тепловизора. Объектив состоит из положительного мениска, обращенного вогнутой поверхностью к плоскости изображений, отрицательного мениска, обращенного вогнутой поверхностью к плоскости предметов, положительного мениска, обращенного вогнутой поверхностью к плоскости предметов, положительного мениска, обращенного выпуклой поверхностью к плоскости предметов.

Объектив для SWIR диапазона спектра может быть использован в оптико-электронных приборах на основе матричных фотоприемных устройств, чувствительных в спектральном диапазоне от 0,9 до 1,7 мкм.

Вариосистема состоит из фокусирующего объектива, содержащего последовательно расположенные неподвижный первый компонент в виде положительной выпукло-вогнутой линзы, подвижные второй и третий компоненты, установленные с возможностью перемещения вдоль оптической оси, проекционного объектива и приемника излучения с охлаждаемой диафрагмой.

Телеобъектив содержит три компонента. Первая линза первого компонента - положительный мениск, вторая - отрицательный мениск, обращенный вогнутостью к изображению, за которым расположен второй компонент, установленный с возможностью ввода-вывода из оптического тракта, первая линза которого - двояковогнутая линза, а вторая – двояковыпуклая линза.

Двухспектральная оптическая система может быть применена в широкоугольных тепло-телевизионных приборах. Оптическая система содержит общий входной канал, плоское зеркало с дихроичным покрытием, отражающим спектральный диапазон (0,6÷0,95) мкм и пропускающим спектральный диапазон (8÷13,5) мкм, и два оптических канала для каждого из спектральных диапазонов.

Изобретение относится к оптической технологии, в частности к устройству ночного видения. Устройство ночного видения содержит первую светочувствительную микросхему, первую линзовую группу (101), первый экран дисплея, систему обработки изображений и систему управления для регулирования диапазона формирования изображений первой светочувствительной микросхемы посредством регулирования изменения оптического масштабирования первой линзовой группы и/или цифрового масштабирования системы обработки изображений.
Наверх