Полимерсодержащий реагент для цементно-полимерного раствора



Полимерсодержащий реагент для цементно-полимерного раствора
Полимерсодержащий реагент для цементно-полимерного раствора
Полимерсодержащий реагент для цементно-полимерного раствора
Полимерсодержащий реагент для цементно-полимерного раствора

Владельцы патента RU 2700125:

Публичное акционерное общество "Транснефть" (ПАО "Транснефть") (RU)
Общество с ограниченной ответственностью "Научно-исследовательский институт трубопроводного транспорта" (ООО "НИИ Транснефть") (RU)

Изобретение относится к реагентам для получения цементно-полимерного раствора. Реагент для полимерцементного раствора содержит, мас.%: эпоксидная смола - 11-20 и триэтиленгликоль - 80-89. Полимерсодержащий реагент на основе эпоксидной смолы обеспечивает повышение прочности получаемого цементного камня и улучшение его сцепления с ограничивающими поверхностями. 2 з.п. ф-лы, 3 табл.

 

Изобретение относится к реагентам для получения цементно-полимерного раствора.

Известно применение различных водорастворимых полимеров для управления технологическими свойствами тампонажных растворов, бетонов. Результаты многочисленных исследований и практика применения цементов показывает, что модифицирование цементных растворов различными водорастворимыми полимерами целлюлозного и акрилового ряда позволяет обеспечить более высокие технологические свойства для проведения работ с растворами. Однако успешность и эффективность применения водорастворимых полимеров в значительной степени зависит от состава цемента, условий формирования цементного камня. Поэтому использование водорастворимые полимеры целлюлозного и акрилового ряда не всегда позволяют на требуемом техническом уровне управлять свойствами раствора и камня к тем или иным агрессивным воздействиям при его формировании и эксплуатации.

Наиболее интересный результат показывают исследования по оценке влияния типа цемента на прочность систем, модифицированных латексом. Влияние латексов на физико-механические свойства обычных цементов незначительно. Исключение составляет модифицирование латексом высокоглиноземистого цемента. Скачок по приросту физико-механических свойств цементного камня на основе глиноземистого цемента чрезвычайно значителен и несопоставим с уровнем влияния полимеров на обычные силикатные цементы.

Наиболее близким аналогом являются полимерные реагенты, полученные на основе углеводородных соединений в виде различных латексов (см. Добавки в бетон. Справочное пособие - пер. с англ. /Под ред. Рамачандрана B.C. - М.:

Стройиздат, 1988-575 с). Латекс применяют в виде эмульсии, полученной на основе природных и синтетических реагентов, эмульсированных посредством использования различных поверхностно-активных веществ в воде. Полученные латексы вводят в состав жидкости затворения цемента в количествах, обеспечивающих полимерцементное отношение П/Ц=0,05-0,2 в составе цементного раствора. При пенообразовании дополнительно вводят пеногаситель.

Недостатком предлагаемого реагента являются сложность в его изготовлении вследствие многокомпонентности состава эмульсии и технологические осложнения, возникающие при управлении свойствами цементного раствора вследствие изменения водоцементного отношения. Использование латексов позволяет эффективно влиять на физико-механические свойства цементного камня при пониженных водоцементных отношениях (В/Ц менее 0,4). При необходимости увеличения водоцементного отношения, с целью обеспечения требуемой удобноукладываемости или растекаемости цементного раствора-теста, происходит резкое, непропорциональное снижение прочности камня и силы его сцепления. Применение поверхностно-активных веществ в составе латексов в значительной степени снижает положительный эффект их действия на свойства цементного камня, формирующегося на основе приготавливаемого полимерцементного связующего.

Технической задачей изобретения является создание полимерсодержащего реагента для приготовления цементно-полимерного раствора с упрощенной схемой приготовления эмульсии, придающей полимерцементному связующему более высокую прочность формируемого цементного камня и сцепление с ограничивающими поверхностями.

Техническим результатом заявляемого изобретения является повышение прочности получаемого цементного камня и улучшение его сцепления с ограничивающими поверхностями.

Технический результат достигается за счет того, что полимерсодержащий реагент для цементно-полимерного раствора содержит эпоксидную смолу и триэтиленгликоль, при следующем соотношении компонентов, мас. %: эпоксидная смола - от 1 до 20, триэтиленгликоль - от 80 до 99.

В полимерсодержащем реагенте используют эпоксидную смолу ЭД-16.

В полимерсодержащем реагенте используют эпоксидную смолу Э-40.

Учитывая отрицательную роль поверхностно-активных веществ на свойства полимерцементного связующего и, соответственно, на прочностные свойства цементного камня, предлагается с целью упрощения технологии приготовления эмульсии на основе эпоксидной смолы, а также повышения прочности получаемого цементного камня и улучшения его сцепления с ограничивающими поверхностями при сохранении плотности цементного раствора, получать эмульсии не в составе латекса, а в составе жидкости затворения, причем без применения защитных реагентов. Таким образом, в жидкости затворения создается микроэмульсия, стабилизированная термодинамическим путем без присутствия защитных реагентов.

Для эпоксидных смол данная проблема решается путем получения эмульсии методом смены растворителя, т.е. смолу предварительно растворяют в многоатомном спирте, а затем полученный эпоксидно-спиртовой раствор (ЭСР) используют для формирования эмульсии в жидкости затворения. Для экспериментов применялась эпоксидная смола ЭД-16 по ГОСТ 10587-84 и эпоксидная смола Э-40 по ТУ 2225-154-05011907-97.

Для получения устойчивой микроэмульсии в воде эпоксидную смолу растворяют в триэтиленгликоле (ТЭГ, ТУ 2422-075-05766801-2006), добиваясь максимально возможного ее содержания в ЭСР. При этом было установлено, что при содержании эпоксидной смолы в ЭСР более 20 мас. % и дальнейшем введении указанного ЭСР в воду, получаемая эмульсия оказывается неустойчивой и в ней происходит коалесценция капелек эмульсии с образование крупных глобул. В то же время, при содержании эпоксидной смолы в ЭСР менее и равном 20 мас. % и дальнейшем введении указанного ЭСР в воду, формируется устойчивая микроэмульсия молочного цвета. Поэтому для дальнейших испытаний применялся 20% раствор эпоксидной смолы в триэтиленгликоле.

Полученный раствор эпоксидной смолы в триэтиленгликоле вводился в состав жидкости затворения цемента. Количество вводимого ЭСР в жидкость затворения рассчитывалось исходя из условия получения требуемого полимерцементного отношения.

Сущность предлагаемого изобретения поясняется следующими примерами.

Приготовление цементного раствора осуществлялось в соответствии с требованиями СП 82-101-98 «Приготовление и применение растворов строительных», 1999. Испытание сформированного полимерцементного состава на сцепление с металлом проводилось в соответствии с ГОСТ 31356-2007 «Смеси сухие строительные на цементном вяжущем. Методы испытаний», 2009. Испытание сформированного полимерцементного состава на прочность при сжатии проводилось в соответствии ГОСТ 310.4-81 «Цементы. Методы определения предела прочности при изгибе и сжатии», 1983,

Для проведения испытаний полимерцементного раствора на основе раствора ЭД-16 в триэтиленгликоле отвешивают 1500 г нормального песка (по ГОСТ 6139), 500 г портландцемента, 0,2 г ЭСР ЭД-16, 200 г воды (В/Ц=0,40). ЭСР вводят в состав жидкости затворения для получения эмульсии на основе эпоксидной смолы. Полученную жидкость смешивают с цементом. Далее проводят испытания сформированного полимерцементного состава на сцепление с металлом и на прочность при сжатии.

Для проведения испытаний полимерцементного раствора на основе раствора Э-40 в триэтиленгликоле отвешивают 1500 г нормального песка (по ГОСТ 6139), 500 г портландцемента, 4 г ЭСР Э-40, 200 г воды (В/Ц=0,40). ЭСР вводят в состав жидкости затворения для получения эмульсии на основе эпоксидной смолы. Полученную жидкость смешивают с цементом. Далее проводят испытания сформированного полимерцементного состава на сцепление с металлом и на прочность при сжатии.

Результаты испытаний приведены в таблицах 1-3.

По результатам проведенных испытаний было установлено, что полимерсодержащий реагент на основе эпоксидной смолы способствует значительному повышению прочностных свойств и сцепления цементного камня с

По результатам проведенных испытаний было установлено, что полимерсодержащий реагент на основе эпоксидной смолы способствует значительному повышению прочностных свойств и сцепления цементного камня с металлом. Эффект повышения прочности фиксировался для полимерцементных растворов с применением эпоксидной смолы до П/Ц=20%, после чего начинался спад величин прочностных характеристик модифицированного цементного камня.

1. Полимерсодержащий реагент для цементно-полимерного раствора, состоящий из эпоксидной смолы и триэтиленгликоля, при следующем соотношении компонентов, мас. %:

- эпоксидная смола - от 11 до 20;

- триэтиленгликоль - от 80 до 89.

2. Полимерсодержащий реагент по п. 1, отличающийся тем, что используют эпоксидную смолу ЭД-16.

3. Полимерсодержащий реагент по п. 1, отличающийся тем, что используют эпоксидную смолу Э-40.



 

Похожие патенты:

Изобретение относится к резиновой промышленности и может быть использовано для внешнего слоя уплотнительных элементов в составе водонабухающих пакеров, применяемых в нефтегазодобывающей промышленности.

Изобретение относится к клеевой промышленности и может быть использовано в авиационной, автомобильной, судостроительной и других отраслях машиностроения. Армированный термоклей получают путем нанесения расплава клеящего состава на армирующий элемент.

Настоящее изобретение относится к применению по меньшей мере одной модифицированной алкилфенол-альдегидной смолы в композиции сырой нефти или в продукте, полученном из композиции сырой нефти и содержащем асфальтены, для диспергирования асфальтенов и/или для предотвращения, и/или замедления, и/или остановки, и/или снижения осаждения асфальтенов.

Изобретение относится к области нефтегазодобычи, в частности к технологическим составам, используемым для повышения проницаемости продуктивных пластов посредством осуществления гидроразрыва пласта, а более конкретно к капсулированным деструкторам, используемым для разрушения (разгеливания) загущенных жидкостей-гелей после гидроразрыва пласта, и к способу получения таких деструкторов, и, в частности, может быть использовано при добыче нефти и газа.

Изобретение относится к процессам нефтеперерабатывающей промышленности. Технический результат - увеличение выхода конечного продукта с одновременным удешевлением производства.

Использование: нефтяная промышленность. Проводят закачку в скважину изолирующего состава, полученного путем диспергирования гидрофобного глинистого материала в мазуте при следующем соотношении, мас.%: гидрофобный глинистый материал - 1,0-3,0, мазут - остальное, до 100.

Изобретение относится к нефтяной промышленности. Способ изоляции газопритоков в добывающих скважинах включает закачку в скважину изолирующего состава, полученного путем диспергирования гидрофобного глинистого материала в гомогенной смеси отработанного масла и мазута, взятых при следующем соотношении компонентов, масс.

Группа изобретений относится к загущению растворов кислот и применению загушенных растворов кислот для гидравлического разрыва пласта. Технический результат – повышение эффективности переноса пропанта, повышение эффективности извлечения углеводородов из пласта, использование для обработки одной рабочей жидкости – кислотного геля, в случае необходимости содержащей пропант.

Изобретение относится к области бурения и строительства скважин. Технический результат - увеличение скорости бурения и проходки на долото, снижение сроков строительства скважины, экологическая безопасность, высокие триботехнические свойства, низкие фильтрационные свойства, высокая термостабильность, высокая стабильность раствора во времени.

Изобретение относится к области цементирования обсадных колонн в нефтяных, газовых и газоконденсатных скважинах, вскрывающих пласты с полиминеральными водами высокой степени минерализации, может быть также использовано для цементирования колонн в одну ступень одним составом в терригенных отложениях при наличии пресных или слабоминерализованных вод, в интервалах карбонатно-галогенных отложений, установки изоляционных цементных мостов.
Настоящее изобретение относится к гипсокартонной плите, включающей гипсовую матрицу, содержащую погруженные в нее древесные частицы, в количестве по меньшей мере 1 мас.% по отношению к гипсу, при этом гипсовая матрица дополнительно содержит полимерную добавку в количестве по меньшей мере 1 мас.% по отношению к гипсу, где ни к одной из сторон гипсокартонной плиты не прикреплена опорная подложка, и где полимерная добавка выбрана из группы, включающей поливинилацетат, сополимер поливинилацетата с этиленом, сшитый с полистиролсульфонатом поливинилпирролидон, поливиниловый спирт, метилцеллюлозу, гидроксиэтилметилцеллюлозу, бутадиен-стирольный сополимер каучук, сложноэфирный акрилатный каучук, сополимерный акриловый каучук, полисложноэфирную смолу, эпоксидную смолу, полиметилметакрилат, полиакриловую кислоту, катионсодержащий крахмал, этилированный крахмал, декстрин и их смеси.

Гипсокартонная плита включает гипсовую матрицу, содержащую распределенную в ней полимерную добавку в количестве по меньшей мере 1 масс. % по отношению к гипсу, при этом гипсовая матрица дополнительно содержит первую группу волокон - стеклянные волокна, и вторую группу волокон - целлюлозные волокна, погруженные в нее, где средняя длина волокон первой группы волокон по меньшей мере в три раза превышает среднюю длину волокон второй группы волокон.
Изобретение относится к промышленности строительных материалов, в частности к производству стеновых панелей и блоков. Техническим результатом является снижение трудоемкости изготовления, улучшение сцепления с утеплителем, сокращение срока достижения необходимой прочности, повышение прочности на растяжение при изгибе, снижение усадки, повышение огнестойкости, снижение уровня шума, повышение эксплуатационных показателей изготавливаемого изделия.

Изобретение относится к строительным материалам и может быть использовано для изготовления изделий из высокопрочного бетона в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения.

Изобретение относится к строительным материалам и может быть использовано для изготовления изделий из высокопрочного бетона в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения.

Настоящее изобретение относится к водным связующим средствам для зернистых и/или волокнистых субстратов. Описан способ получения водной дисперсии полимера Р в результате инициируемой свободными радикалами водно-эмульсионной полимеризации этиленненасыщенных соединений, который включает использование для полимеризации ≥ 0,1 и ≤ 5,0% мас.

Изобретение относится к области дорожного и аэродромного строительства и может быть использовано для устройства оснований и покрытий автомобильных дорог и аэродромов.

Изобретение относится к составу регулятора реологических свойств, к его применению и к составу сухой строительной смеси, содержащему регулятор, и может найти применение в композициях на основе неорганических вяжущих веществ.

Изобретение относится к области строительства и ремонта нефтегазовых скважин, а именно к вспененным тампонажным материалам, применяемым при креплении обсадных колонн.

Настоящее изобретение относится к продуктам на основе сульфата кальция с улучшенной устойчивостью к высоким температурам, например продуктам типа гипсовой листовой сухой штукатурки, и в частности, к продуктам с пониженной усадкой при высоких температурах.

Изобретение относится к технологии получения соединений сложных оксидов со структурой граната, солегированных редкоземельными элементами, которые могут быть применены в технологии синтеза оптических керамических материалов лазерного качества при создании активных тел твердотельных лазеров различной геометрии.

Изобретение относится к реагентам для получения цементно-полимерного раствора. Реагент для полимерцементного раствора содержит, мас.: эпоксидная смола - 11-20 и триэтиленгликоль - 80-89. Полимерсодержащий реагент на основе эпоксидной смолы обеспечивает повышение прочности получаемого цементного камня и улучшение его сцепления с ограничивающими поверхностями. 2 з.п. ф-лы, 3 табл.

Наверх