Способ дистанционного определения места короткого замыкания

Изобретение относится к электроэнергетике и может быть использовано для дистанционного определения места короткого замыкания на ЛЭП, находящихся под рабочим напряжением. Cущность: в способе дистанционного определения места короткого замыкания на линии электропередачи, имеющей длину l, определяют поврежденные фазы, определяют относительное значение расстояния до места короткого замыкания n и абсолютное расстояние до места короткого замыкания со стороны конца линии с индексом ' по выражению l'=n⋅l. При этом с двух концов линии устанавливают цифровые трансформаторы тока и напряжения, синхронизированные с системой единого времени, каждый из которых снабжен датчиком постоянного тока, резистивным или резистивно-емкостным делителем напряжения, поясом Роговского. С помощью датчика постоянного тока получают синхронизированные по времени мгновенные значения фазных токов. С помощью резистивного или резистивно-емкостного делителя напряжения получают синхронизированные по времени мгновенные значения напряжений. С помощью пояса Роговского получают синхронизированные по времени мгновенные значения производных фазных токов. Вычисляют векторы фазных токов и напряжений. При нормальном режиме работы линии вычисляют векторы фазных токов и напряжений. Формируют матрицы модальных составляющих токов и напряжений, матрицы модальных сопротивлений. Вычисляют матрицы фазных сопротивлений, сопротивления прямой и нулевой последовательностей. Определяют активное сопротивление линии R и индуктивность линии L. Во время короткого замыкания вычисляют мгновенные значения токов, производных токов и напряжений с обоих концов линии. Выполняют расчет относительного значения расстояния до места короткого замыкания. Технический результат: повышение точности дистанционного определения места короткого замыкания на ЛЭП, находящихся под рабочим напряжением. 1 ил.

 

Изобретение относится к электроэнергетике и может быть использовано для дистанционного определения места короткого замыкания на ЛЭП, находящихся под рабочим напряжением.

Известен СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ПОВРЕЖДЕНИЯ РАЗВЕТВЛЕННОЙ ЛИНИИ ЭЛЕКТРОПЕРЕДАЧИ (Патент на изобретение РФ №2532760, МПК Н02Н 3/16, G01R 31/08, 2013), основанный на синхронизированном по времени с помощью спутниковой системы двустороннем измерении аварийных составляющих токов и напряжений, фиксации моментов времени t1 и t2 прихода волн к концам линии и определении по измеренной разности Δt=t1-t2 и известных скорости распространения электромагнитной волны ν и длине L линии электропередачи расстояния до места повреждения

Недостатками указанного способа, основанного на синхронизированных двусторонних измерениях аварийных составляющих, являются сложность технической реализации, а также существенная зависимость замера от погрешностей первичных преобразователей. Поскольку традиционные электромагнитные трансформаторы из-за своих частотных характеристик существенно искажают вторичный сигнал (особенно фронт пришедшей волны), время прихода волны, определенное по осциллограмме, может быть не точным, что повлияет на точность замера расстояния до места КЗ. Кроме того, в указанном методе скорость распространения волны принята постоянной и не даны рекомендации по ее выбору.

Известен СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ПОВРЕЖДЕНИЯ НА ЛИНИЯХ ЭЛЕКТРОПЕРЕДАЧИ (заявка на изобретение РФ №2001102357, МПК G01R 31/08, 2002), который заключается в следующем. Измеряют с одной (и с другой) стороны линии фазные токи и напряжения основной частоты в момент короткого замыкания и ток предаварийного режима в фазе А. По измеренным величинам определяют расчетные значения напряжений и токов в зависимости от вида короткого замыкания. При однофазных коротких замыканиях в качестве расчетных значений используют фазное напряжение, компенсированный фазный ток и аварийная составляющая полного тока короткого замыкания; при многофазных коротких замыканиях - линейное напряжение, линейный ток и аварийная составляющая полного тока короткого замыкания. Кроме того, в расчете используют параметры схемы замещения сети. Далее осуществляют итерационный процесс, на первой итерации которого коэффициент токораспределения, необходимый для определения аварийной составляющей полного тока короткого замыкания, принимают равным единице, а полное сопротивление от начала линии до места повреждения находят через расчетные величины напряжений и токов. Отношение полного сопротивления от начала линии до места повреждения к полному сопротивлению линии на первой итерации приближенно указывает, где произошло повреждение. Через найденное на первой итерации полное сопротивление, на второй итерации уточняют коэффициент токораспределения и вновь производят расчет полного сопротивления от начала линии до места повреждения (уже с откорректированным коэффициентом токораспределения). Определяют отношение полного сопротивления от начала линии до места повреждения к полному сопротивлению линии (для второй итерации). Если разница между указанным соотношением на первой и на второй итерациях меньше предварительно задаваемой величины δ, отвечающей за точность определения места повреждения, то расчет заканчивают.Если больше, то расчет продолжают по аналогии с предыдущими итерациями, до тех пор, пока не будет достигнута заданная точность в определении места повреждения.

Недостатком способа является необходимость создания полной схемы замещения сети для определения комплексных сопротивлений прямой, обратной и нулевой последовательностей и эквивалентных ЭДС питающих систем по сторонам линии. Указанный недостаток может приводить к значительной погрешности в определении места повреждения из-за неполного учета составляющих схемы замещения питающих систем, которые могут изменяться в зависимости от режима.

Известен способ определения места короткого замыкания на воздушной линии электропередачи при несинхронизированных замерах с двух ее концов (Патент на изобретение РФ №2508556, МПК, G01R 31/08 (2006.01), 2014 г.), принятый за прототип. В способе определения места короткого замыкания на воздушной линии электропередачи, имеющей длину l, активное R и индуктивное сопротивление XL, соединяющей две питающие системы, в котором измеряют с двух концов линии не синхронизированные по времени фазные токи и напряжения во время короткого замыкания, определяют поврежденные фазы, определяют относительное значение расстояния до места короткого замыкания n и физическое расстояние до места короткого замыкания со стороны конца линии с индексом ' по выражению l'=n⋅l, измеряют с двух концов линии (' - один конец линии, '' - второй конец линии) мгновенные значения фазных токов (i'A, i'B, i'C), (i''A, i''B, i''C) и напряжений (u'A, u'B, u'C), (u''А, u''B, u''C), во время короткого замыкания, получают осциллограммы токов и напряжений, совмещают осциллограммы с двух концов линии по срезу начала короткого замыкания, выбирают на интервале двух-десяти периодов от начала короткого замыкания сечение на осциллограммах тока и напряжения поврежденной фазы, снимают мгновенные значения токов i', i'' и напряжений u', u'' в сечении и в соседних точках, вычисляют производные от токов по времени di'/dt, di''/dt, определяют относительное значение расстояния до места короткого замыкания по выражению где n - относительное значение расстояния до места короткого замыкания; u', u'' - мгновенные значения напряжений, полученные в сечении осциллограмм напряжений поврежденной фазы с одного и второго концов линии (В); i', i'' - мгновенные значения токов, полученные в сечении осциллограмм токов поврежденной фазы с одного и второго концов линии (A); di'/dt, di''/dt - производные токов по времени (А/с); R, XL - активное и индуктивное фазные сопротивления линии (Ом).

Недостатками указанного способа являются погрешности при определении относительного значения расстояния до места короткого замыкания из-за использования в формуле расчета индуктивного сопротивления и справочного активного сопротивления, которые могут существенно изменяться во время эксплуатации, дополнительные погрешности в определении места замыкания в связи с искажением формы кривой тока из-за насыщения или остаточной намагниченности магнитопровода трансформатора тока, используемого для регистрации переходного тока, вычислительные погрешности при расчете производной тока и погрешности из-за несинхронизированности мгновенных значений токов и напряжений.

Технический результат заключается в повышении точности дистанционного определения места короткого замыкания на ЛЭП, находящихся под рабочим напряжением.

Технический результат достигается тем, что в способе дистанционного определения места короткого замыкания на линии электропередачи имеющей длину l, в котором определяют поврежденные фазы, определяют относительное значение расстояния до места короткого замыкания n и абсолютное расстояние до места короткого замыкания со стороны конца линии с индексом ' по выражению l'=n⋅l, с двух концов линии (' - один конец линии, '' - второй конец линии) устанавливают цифровые трансформаторы тока и напряжения, синхронизированные с системой единого времени, каждый из которых снабжен датчиком постоянного тока, резистивным или резистивно-емкостным делителем напряжения, поясом Роговского, с помощью датчика постоянного тока получают синхронизированные по времени мгновенные значения фазных токов i'A, i'B, i'C, i''A, i''B, i''C, с помощью резистивного или резистивно-емкостного делителя напряжения получают синхронизированные по времени мгновенные значения напряжений u'А, u'B, u'C, u''A, u''B, u''C, с помощью пояса Роговского получают синхронизированные по времени мгновенные значения производных фазных токов di'A/dt, di'B/dt„ di'C/dt, di''A/dt, di''B/dt, di''C/dt, вычисляют векторы фазных токов и напряжений при нормальном режиме работы линии вычисляют векторы фазных токов и напряжений, формируют матрицы модальных составляющих токов и напряжений, формируют матрицы модальных сопротивлений, вычисляют матрицы фазных сопротивлений, вычисляют сопротивления прямой и нулевой последовательностей, определяют активное сопротивление линии R и индуктивность линии L, во время короткого замыкания вычисляют мгновенные значения токов, производных токов и напряжений с обоих концов линии, выполняют расчет относительного значения расстояния до места короткого замыкания по формуле

где

u', u'' - мгновенные значения напряжений поврежденной фазы с одного и второго концов линии (В); i', i'' - мгновенные значения токов поврежденной фазы с одного и второго концов линии (A); di'/dt, di''/dt - производные токов по времени с одного и второго концов линии (А/с); R - активное сопротивление линии (Ом); L - индуктивность линии (Гн); k - порядковый номер рассчитанного за время короткого замыкания относительного значения расстояния до места короткого замыкания; m - номер выборки тока или напряжения, соответствующий выбранному моменту расчета относительного значения расстояния до места короткого замыкания.

Способ реализуется следующим образом. С двух концов линии на каждую фазу устанавливают цифровые трансформаторы тока и напряжения, синхронизированные с системой единого времени. Цифровые трансформаторы тока и напряжения при помощи оптоволоконных линий связи подключают к устройству определения места повреждения. Каждый цифровой трансформатор тока и напряжения снабжен первичными преобразователями: датчиком постоянного тока, поясом Роговского, резистивным или резистивно-емкостным делителем напряжения.

Датчик постоянного тока выполняет масштабное преобразование тока (его сигнал пропорционален величине тока). В качестве датчика постоянного тока можно применять магнитотранзисторный преобразователь или другие преобразователи, не искажающие форму кривой тока в переходных режимах и достоверно преобразующие апериодические составляющие. Указанные преобразователи позволяют измерять не только постоянный, но и переменный ток, в том числе с апериодической составляющей. Токи короткого замыкания часто сопровождаются апериодическими составляющими, которые насыщают магнитопровод электромагнитных трансформаторов тока, что приводит к искажению формы тока. В каждом цифровом трансформаторе тока и напряжения сигналы датчика постоянного тока проходят первичную обработку (нормирование, антиалайзинговая фильтрация и др.), синхронное аналого-цифровое преобразование и вторичную обработку, индивидуальную для каждого первичного преобразователя. Таким образом, получают синхронизированные по времени мгновенные значения фазных токов i'A, i'B, i'C, i''A, i''B, i''C.

Пояс Роговского выполняет масштабное преобразование измеряемого тока, при этом его выходной сигнал пропорционален производной тока:

где М - взаимная индуктивность, которая определяется по формуле:

где μ0=4π⋅10-7 Гн/м; S - площадь поперечного сечения сердечника, м2; (ρ - плотность витков.

Пояс Роговского не искажает форму кривой тока (поскольку отсутствует магнитопровод) и имеет линейную амплитудно-частотную характеристику (коэффициент усиления линейно увеличивается с ростом частоты) в отличие от традиционных электромагнитных трансформаторов тока. Указанные выше факторы позволяют на основе физических законов определять производную тока при помощи пояса Роговского с более высокой точностью в переходных режимах по сравнению с вычислением производной математически, и использованием сигналов от электромагнитных трансформаторов тока. В каждом цифровом трансформаторе тока и напряжения сигналы пояса Роговского проходят первичную обработку (нормирование, антиалайзинговая фильтрация и др.), синхронное аналого-цифровое преобразование и вторичную обработку, индивидуальную для каждого первичного преобразователя. Таким образом, получают синхронизированные по времени мгновенные значения производных фазных токов di'A/dt, di'B/dt„ di'C/dt, di''A/dt, di''B/dt, di''C/dt.

Резистивный или резистивно-емкостный делитель напряжения выполняет масштабное преобразование напряжения без искажения формы (в том числе в переходных режимах). В каждом цифровом трансформаторе тока и напряжения сигналы резистивного или резистивно-емкостного делителя напряжения проходят первичную обработку (нормирование, антиалайзинговая фильтрация и др.), синхронное аналого-цифровое преобразование и вторичную обработку, индивидуальную для каждого первичного преобразователя. Таким образом, получают синхронизированные по времени мгновенные значения напряжений u'А, u'B, u'C, u''А, u''B, u''C.

На основе полученных мгновенных значений вычисляют векторы токов и напряжений. Любым известным способом (например, на основе симметричных составляющих токов при замыкании фазы на землю) определяют наличие повреждения и выделяют поврежденную фазу.

В устройстве определения места повреждения в нормальных режимах работы линии (любой режим с отсутствием КЗ на данной ЛЭП (установившийся, режим с внешним КЗ на смежном элементе, послеаварийный режим с наличием электромеханических переходных процессов и т.п.)) периодически получают значения векторов токов и напряжений от цифровых трансформаторов, формируют матрицы модальных составляющих токов и напряжений, рассчитывают матрицу модальных сопротивлений, а затем матрицу фазных сопротивлений, после чего вычисляют сопротивления прямой и нулевой последовательностей, а затем активное сопротивление и индуктивность линии.

Формирование матрицы модальных составляющих токов и напряжений выполняют по данным синхронизированных векторных измерений фазных токов и напряжений по формулам:

где [Т] - матрица фазо-модальных преобразований со следующей структурой:

Для формирования матрицы модальных сопротивлений решают три ниже представленные системы уравнений для каждой из трех модальных составляющих (α, β, 0):

Решение каждой из трех систем уравнений (5а)-(5в) осуществляют идентичным образом по алгоритму, представленному на фиг. 1.

На фиг. 1 использованы следующие обозначения:

- ток в начале линии, соответствующий одной из трех модальных составляющих (α, β, 0), к которым преобразуются измеренные фазные токи с помощью специальной матрицы [Т], описываемой выражением (4); - напряжение в начале линии, соответствующее той же самой модальной составляющей, что и ток (все векторы напряжений и токов на фиг. 2 соответствуют одной и той же модальной составляющей, в дальнейшем это оговариваться не будет); - ток в конце линии; - напряжение в конце линии; А - обозначение вещественной части (Re) рассчитанного комплексного числа; В - обозначение мнимой части (Im) рассчитанного комплексного числа; t - промежуточный результат, необходимый для дальнейших расчетов согласно алгоритму: корень квадратного уравнения, содержащего коэффициенты А и В; (α - действительная часть постоянной распространения (коэффициент затухания), соответствующая той же самой модальной составляющей (или, эквивалентно, тому же самому волновому каналу), что и ток ; (β - мнимая часть постоянной распространения (коэффициент фазы), соответствующая той же самой модальной составляющей, что и ток ; l - длина линии; (γ - постоянная распространения, соответствующая той же самой модальной составляющей (или, эквивалентно, тому же самому волновому каналу), что и ток ; Z - характеристическое (или, эквивалентно, волновое) сопротивление, соответствующее той же самой модальной составляющей, что и ток ; j - мнимая единица - модальное полное сопротивление, соответствующее той же самой модальной составляющей, что и ток ; r - действительная часть полного сопротивления ; L - индуктивность линии; (ω - угловая частота.

В системах уравнений (5а)-(5в) принято, что токи в начале линии (с индексом ') направлены от шин подстанции в линию, а токи в конце (с индексом '') - от линии к шинам.

Матрицу фазных сопротивлений рассчитывают по следующей формуле:

Вычисление сопротивления прямой и нулевой последовательностей ЛЭП, активного сопротивления линии (R1, R0) и индуктивности линии (L1, L2) выполняют по следующим формулам:

где - среднее из всех диагональных элементов матрицы рассчитанной по выражению (7); - среднее из всех недиагональных элементов этой же матрицы.

Во время короткого замыкания получают мгновенные значения токов, производных токов и напряжений, вычисляют относительное расстояние до места короткого замыкания по формуле

u', u'' - мгновенные значения напряжений поврежденной фазы с одного и второго концов линии (В); i', i'' - мгновенные значения токов поврежденной фазы с одного и второго концов линии (A); di'/dt, di''/dt - производные токов по времени с одного и второго концов линии (А/с); R - активное сопротивление линии (Ом); L - индуктивность линии (Гн); k - порядковый номер рассчитанного за время короткого замыкания относительного значения расстояния до места короткого замыкания; m - номер выборки тока или напряжения, соответствующий выбранному моменту расчета относительного значения расстояния до места короткого замыкания.

По относительному расстоянию до места короткого замыкания вычисляют абсолютное:

Следует отметить, что для уменьшения влияния активного сопротивления линии на результат расчета расстояния до места повреждения вычисления целесообразно производить в момент перехода одного из токов через ноль.

Таким образом, применение предлагаемого способа позволяет повысить точность дистанционного определения места короткого замыкания на ЛЭП, находящихся под рабочим напряжением.

Способ дистанционного определения места короткого замыкания на линии электропередачи, имеющей длину l, в котором определяют поврежденные фазы, определяют относительное значение расстояния до места короткого замыкания n и абсолютное расстояние до места короткого замыкания со стороны конца линии с индексом ' по выражению l'=n⋅l, отличающийся тем, что с двух концов линии (' - один конец линии, '' - второй конец линии) устанавливают цифровые трансформаторы тока и напряжения, синхронизированные с системой единого времени, каждый из которых снабжен датчиком постоянного тока, резистивным или резистивно-емкостным делителем напряжения, поясом Роговского, с помощью датчика постоянного тока получают синхронизированные по времени мгновенные значения фазных токов i'A, i'B, i'C, i''A, i''B, i''C, с помощью резистивного или резистивно-емкостного делителя напряжения получают синхронизированные по времени мгновенные значения напряжений u'A, u'B, u'C, u''A, u''B, u''C, с помощью пояса Роговского получают синхронизированные по времени мгновенные значения производных фазных токов di'A/dt, di'B/dt,, di'C/dt, di''A/dt, di''B/dt, di''C/dt, вычисляют векторы фазных токов и напряжений при нормальном режиме работы линии вычисляют векторы фазных токов и напряжений, формируют матрицы модальных составляющих токов и напряжений, формируют матрицы модальных сопротивлений, вычисляют матрицы фазных сопротивлений, вычисляют сопротивления прямой и нулевой последовательностей, определяют активное сопротивление линии R и индуктивность линии L, во время короткого замыкания вычисляют мгновенные значения токов, производных токов и напряжений с обоих концов линии, выполняют расчет относительного значения расстояния до места короткого замыкания по формуле

где

u', u'' - мгновенные значения напряжений поврежденной фазы с одного и второго концов линии (В); i', i'' - мгновенные значения токов поврежденной фазы с одного и второго концов линии (A); di'/dt, di''/dt - производные токов по времени с одного и второго концов линии (А/с); R - активное сопротивление линии (Ом); L - индуктивность линии (Гн); k - порядковый номер рассчитанного за время короткого замыкания относительного значения расстояния до места короткого замыкания; m - номер выборки тока или напряжения, соответствующий выбранному моменту расчета относительного значения расстояния до места короткого замыкания.



 

Похожие патенты:

Изобретение относится к области электротехники и электроэнергетики и может быть использовано для определения места повреждения линий электропередачи в электрических сетях 6-750 кВ.

Использование: в области электротехники. Технический результат – обеспечение возможности применения архитектуры электрической сети, контролируемой системой мониторинга переходных режимов, для определения места короткого замыкания на линиях электропередачи.

Изобретение относится к области электроизмерительной техники, в частности к контролю систем электропитания. Предложены способ и устройство (10) контроля для выборочного определения емкости (Се) утечки подсистемы в незаземленной системе (2) электропитания, которая состоит из основной системы (4) и по меньшей мере одной подсистемы (6).

Изобретение относится к электротехнике и может быть использовано для определения мест повреждения в кабельных линиях электропередачи и связи. Технический результат: обеспечение автоматизации процесса управления устройством, уменьшение вероятности радиоактивного облучения оператора, за счет обеспечения возможности его информирования о точном совмещении проходного, вертикального и вертикального узконаправленного выходного каналов, а также предотвращение неполного прохождения γ-излучения от источника радиоактивного излучения и, соответственно, слабого воздействия γ-излучения через слой земли на поврежденный кабель.

Использование: в области электротехники. Технический результат - уменьшение риска выхода системы постоянного тока из строя по причине отказов тиристорных ступеней.

Изобретение относится к способу определения места повреждения изоляции, а также к системе определения места повреждения изоляции для незаземленной системы электропитания.

Изобретение относится к электроэнергетике и может быть использовано для дистанционного определения в on-line режиме места повреждения при всех разновидностях однофазных замыканий на землю в кабельных сетях напряжением 6-10 кВ.

Изобретение относится к электротехнике и может быть использовано для определения мест повреждений в кабельных линиях. Технический результат: повышение точности определения расстояния до места повреждения кабельной линии электропередачи.

Изобретение относится к электротехнике. Технический результат заключается в повышении точности определения мест однофазного замыкания фазы на оболочку силового кабеля.

Изобретение относится к электротехнике и может быть использовано для одностороннего определения расстояния до места повреждения на линиях трехфазного тока. Сущность: измеряют время между появлением фронта волны тока или напряжения без нулевой составляющей и появлением волны тока или напряжения нулевой составляющей.
Наверх