Никелевый жаропрочный сплав для монокристаллического литья

Изобретение относится к области металлургии сплавов, а именно к производству сплавов на основе никеля, используемых для литья деталей с монокристаллической структурой, например лопаток турбин, работающих при температурах 1050°С и выше. Никелевый жаропрочный сплав для монокристаллического литья содержит, мас.%: С 0,002-0,1, Cr 4,0-8,0, Со 6,0-12,0, W 3,0-8,0, Мо 4,0-8,0, Al 4,6-6,6, Та 6,5-11,0, Hf 0,1-1,0, Re 1,0-3,0, Y 0,001-0,1, La 0,001-0,1, Се 0,001-0,1, Si 0,01-0,2, Mn 0,01-0,2, В 0,005-0,03, Ni – остальное. Обеспечивается соотношение компонентов: 15,4W - 0,9WTa + 28,8Re – 1,7TaRe ≥ (1,0W2 + 3,1ReW + 2,1Re2) ≥16,1W - 1,2WTa + 17,5Re - 1,3TaRe. Сплав характеризуется жаропрочностью при удельном весе 8,84-8,86 г/см3. 1 ил., 2 табл., 1 пр.

 

Изобретение относится к области металлургии сплавов, а именно к производству сплавов на основе никеля, используемых для литья деталей с монокристаллической структурой, например, лопаток турбин, работающих при температурах 1050°С и выше.

Постоянно растущие требования к авиационной, ракетно-космической и энергетической технике приводят к необходимости непрерывного улучшения эксплуатационных характеристик жаропрочных никелевых сплавов.

Развитие жаропрочных никелевых сплавов с монокристаллической структурой, используемых для изготовления рабочих и сопловых лопаток газовых турбин, является ведущим направлением, обеспечивающим значительное повышение параметров и надежности современных газотурбинных двигателей.

Достигнутое увеличение жаропрочных свойств обеспечивается за счет совершенствования теории легирования, в том числе внедрения в составы сплавов таких сравнительно новых элементов, как Та и Re, а в настоящее время еще и представитель платиновой группы крайне дорогой рутений. Эти элементы, обладая высокой температурой плавления и низкой диффузионной подвижностью, обеспечивают:

- заметное повышение прочности межатомных связей;

- существенное улучшение сопротивления деформации ползучести и возникновению усталостных трещин;

- значительное улучшение структурной стабильности.

Известен литейный жаропрочный сплав на никелевой основе ЖС32-ВИ В.П. Кузнецов, В.П. Лесников, И.П. Конакова Структура и свойства жаропрочного никелевого сплава ЖС32-ВИ. Справочник Екатеринбург. Изд-во «Квист». 2010. - 84 с.), предназначенный для монокристального литья рабочих и сопловых лопаток турбин, имеющий следующий состав

углерод 0,15
хром 4,9
кобальт 9,0
вольфрам 8,5
молибден 1,0
алюминий 5,9
рений 4,0
тантал 4,0
ниобий 1,6
никель остальное

Сплав имеет достаточно высокую жаропрочность, (его ) и плотность ρ=8,76 г/см3. Однако этот уровень является недостаточным для решения поставленных задач. Кроме того он является дорогим, поскольку содержит 4,0% рения. Указанное обстоятельство серьезно снижает объемы практического применения этого сплава.

Известен также литейный жаропрочный сплав на основе никеля для литья лопаток с монокристаллической структурой CMSX-8, разработанный фирмой Cannon-Muskegon (США), состав которого был представлен ею на международной конференции «Superalloys 2012», (Франция) - опубликованном в материалах конференции Jacqueline В. Wahl и Ken Harris «New Single Crystal Superalloys, CMSX-7 and CMSX-8» в сборнике «Superalloys 2012», TMS-2012, pp. 179-188.

Состав сплава CMSX-8, мас, %

Cr 5,4
Co 10,0
W 8,0
Mo 0,6
Al 5,7
Ti 0,7
Та 8,0
Re 1,5
Hf 0,1
Ni остальное

Сплав имеет жаропрочность - и удельный вес ρ=8,76 г/см3, соответствующий сплаву ЖС32-ВИ.

Кроме того, его положительной особенностью является наличие в составе небольшого количества дорогостоящего рения. Однако этот уровень жаропрочности является недостаточным для решения поставленных задач.

Наиболее близким к предлагаемому является жаропрочный никелевый сплав для монокристаллического литья, содержащий углерод, хром, кобальт, вольфрам, молибден, алюминий, тантал, гафний, иттрий, лантан, церий, кремний, марганец, бор, имеющий следующий состав, мас. %.

С 0.002-0.1
Cr 4.0-8.0
Со 9.0-14.0
W 7.0-10,0
Мо 1.0-5.0
Al 4.0-6.0
Та 6.0-10.0
Hf 0.1-1.0
Y 0.001-0.1
La 0.001-0.1
Се 0.001-0.1
Si 0.01-0.2
Mn 0.01-0.2
В 0.005-0.03
Ni остальное,

(описание изобретения к патенту РФ №2626118, С22С 19/05, опубл. 21.07.2017. Бюл. №21).

Сплав не содержит рений и совпадает с предлагаемым сплавом по наибольшему количеству элементов, имеет жаропрочность и удельный вес ρ=8.84 г/см3, что является недостаточным для перспективных газотурбинных двигателей.

Технической задачей изобретения является создание экономнолегированного литейного жаропрочного сплава с монокристаллической структурой на никелевой основе с низким содержанием высокодефицитного и дорогого рения (не более 3,0 мас. %) и с сохранением удельного веса на уровне 8,84-8,86 г/см3, при этом длительная прочность сплава должна быть выше, чем у сплава по патенту РФ № 2626118, имеющего

Техническим результатом изобретения является повышение жаропрочности сплава до уровня при удельном весе 8,84-8,86 г/см3 за счет введения в состав сплава рения при определенном соотношении концентраций вольфрама, тантала и рения.

Технический результат достигается тем, что никелевый жаропрочный сплав для монокристаллического литья, содержащий углерод, хром, кобальт, вольфрам, молибден, алюминий, тантал, гафний, иттрий, лантан, церий, кремний, марганец, бор, в отличие от известного, дополнительно содержит рений, при следующем соотношении компонентов, мас. %:

С 0.002-0.1
Cr 4.0-8.0
Со 6.0-12.0
W 3.0-8.0
Мо 4.0-8.0
Al 4.6-6.6
Та 6.5-11.0
Hf 0.1-1.0
Re 1.0-3.0
Y 0.001-0.1
La 0.001-0.1
Се 0.001-0.1
Si 0.01-0.2
Mn 0.01-0.2
В 0.005-0.03
Ni остальное,

и при соблюдении условия:

15,4W - 0,9WTa + 28,8Re - 1.7TaRe≥(1,0W2 + 3,1ReC + 2,1Re2)≥16,1W - 1,2WTa + 17,5Re - 1,3TaRe

Изобретение поясняется фиг., на которой изображено трехмерное пространство вольфрам, тантал и рений для определения области оптимальных концентраций этих элементов.

Химический состав заявляемого сплава отличается от прототипа наличием рения, а также концентрацией кобальта, вольфрама и молибдена.

Введение в сплав рения позволяет дополнительно увеличить жаропрочность сплава. Принимая во внимание зависимость (1), которая указывает на то, что эффективность рения для повышения жаропрочности в 1,16 раз выше суммарной эффективности вольфрама и молибдена, это позволило частично снизить концентрацию вольфрама и молибдена и сохранить плотность сплава на приемлемом уровне. Также, для сохранения оптимального значения параметра мисфит в сплаве была снижена концентрация кобальта.

На основании обобщения приведенных в отечественной и зарубежной литературе данных по составам, свойствам и особенностям структуры более чем 170 жаропрочных никелевых сплавов с монокристальной структурой нами были построены зависимости «состав-свойства» для этой группы материалов (Логунов. А.В Жаропрочные никелевые сплавы для лопаток и дисков газовых турбин / Рыбинск ООО «Издательский дом «Газотурбинные технологии», 2017. - 854 с.):

где Cr, Со, W … концентрации (содержание) в сплаве хрома, кобальта, вольфрама и других элементов (мас %).

Анализ зависимостей (1) и (2) показал, что наиболее эффективное влияние на длительную прочность (с позиций ее увеличения) и удельный вес (с точки зрения его роста) оказывают вольфрам, тантал и рений. При этом гафний Hf, концентрация которого в современных высокожаропрочных сплавах составляет (0,1-0,5) мас. %, и углерод, содержащийся в монокристальных сплавах на уровне до 0,01 мас. %, вносят незначительный вклад как в жаропрочность, так и в величину их удельного веса.

Влияние алюминия и титана на длительную прочность заметно уступает воздействию вольфрама, тантала и рения, но эти элементы эффективно снижают удельный вес.

Поскольку легирующие элементы в новом сплаве такие же, как и в сплавах CMSX8 и ЖС32, однако при этом необходимо увеличить уровень жаропрочности при одновременном снижении содержания высокодефицитного рения и сохранении удельного веса, то указанная задача решалась путем многокритериальной оптимизации легирующих компонентов.

Формулы (1) и (2), если внести в них суммарную концентрацию элементов сплава по патенту РФ №2626118 (без W, Та, Re) и подставить условия , ρ≤8.84 г/см3, преобразуются в следующие зависимости:

Или:

где W, Та и Re - концентрация вольфрама, тантала и рения в сплаве (мас. %), значение 120 характеризует минимальную величину (МПа), на которую увеличивается длительная прочность сплава () при введении в него данной концентрации W, Та и Re, а значение 0,81 характеризует предельную величину (г/см3), на которую должна увеличиться плотность сплава при введении в него данной концентрации W, Та и Re.

Зависимости (5) и (6) являются условиями, ограничивающими выбор возможных значений концентрации в сплаве элементов - W, Та и Re наиболее эффективно влияющих на прочность и плотность.

Таким образом, на основании зависимостей (5) и (6) получены следующие условия определения оптимальной концентрации вольфрама, тантала и рения, обеспечивающей уровень длительной прочности :

Взяв за основу среднее содержание элементов монокристального сплава (патент РФ №26261180) (без W, Та и Re) в трехмерном пространстве вольфрам, тантал и рений определили область концентраций этих элементов. При этом, поскольку зависимости (1) и (2) являются линейными, то в трехмерном пространстве они должны представлять собой плоскости.

На фиг. в координатах W, Та и Re показаны поверхности, отвечающие равным значениям длительной прочности (точки DWY) и плотности ρ=8=8.84 г/см3 (точки ESX). Эти поверхности пересекаются по линии АВ. Искомый трехмерный объем должен быть равен или выше поверхности, ограниченной точками ADB и в то же время равен или быть ниже поверхности, образованной точками АЕВ. Одновременно укажем, что искомый сплав должен быть экономнолегированным - содержание рения равно 3 мас % и менее. Поэтому область возможных значений требуемого объема по координатам снижается и ограничивается пространством между точками LNRPEL и MRDM.

Таким образом, была определена область легирования Та, W и Re, обеспечивающая получение экономнолегированных никелевых жаропрочных сплавов с монокристальной структурой, имеющих удельный вес, равный или ниже удельного веса сплава ЖС32-ВИ, но при этом отличающихся меньшим содержанием дорогого и остродефицитного рения и гораздо более высокой длительной прочностью при 1000С.

Пример осуществления.

С целью экспериментальной проверки были выплавлены пять опытных составов предлагаемого сплава, содержание компонентов в которых приведено в таблице 1.

В таблице 2 представлены основные характеристики опытных составов в сравнении с аналогами.

Результаты, приведенные в таблицах 1 и 2, показывают, что новый сплав, содержащий значительно меньше дорогостоящего рения по сравнению с серийным отечественным сплавом ЖС32-ВИ (1,5 мас % вместо 4,0 мас %) обладает гораздо более высокой работоспособностью (его против 240 МПа у сплава ЖС32-ВИ).

По сравнению с перспективным сплавом США CMSX-8 новый сплав содержит одинаковые с ним количество рения, имеет такую же стоимость, при этом длительная прочность его (≥270 МПа) существенно превышает аналогичный показатель сравниваемого материала (≈ 259 МПа) при таком же удельном весе.

По сравнению с прототипом новый сплав дополнительно содержит рений, а суммарное содержание в нем тугоплавких элементов (Mo+W+Ta+Re) наиболее высокое и составляет 21,5 мас % против 19,5 мас % для прототипа, 18,1 мас % для сплава CMSX-8 и 17,5 мас % для сплава ЖС32-ВИ. При этом предельное суммарное содержание W, Та и Re контролируется зависимостью (7).

Никелевый жаропрочный сплав для монокристаллического литья, содержащий углерод, хром, кобальт, вольфрам, молибден, алюминий, тантал, гафний, иттрий, лантан, церий, кремний, марганец и бор, отличающийся тем, что он дополнительно содержит рений, при следующем соотношении компонентов, мас.%:

С 0,002-0,1
Cr 4,0-8,0
Со 6,0-12,0
W 3,0-8,0
Мо 4,0-8,0
Al 4,6-6,6
Та 6,5-11,0
Hf 0,1-1,0
Re 1,0-3,0
Y 0,001-0,1
La 0,001-0,1
Се 0,001-0,1
Si 0,01-0.2
Mn 0,01-0,2
В 0,005-0,03
Ni остальное,

и при соблюдении условия:

15,4W - 0,9WTa + 28,8Re – 1,7TaRe ≥ (1,0W2 + 3,1ReC + 2,1Re2) ≥ 16,1W - 1,2WTa + 17,5Re - 1,3TaRe.



 

Похожие патенты:
Изобретение относится к области металлургии, а именно к жаропрочным хромоникелевым сплавам аустенитного класса и может быть использовано при изготовлении коллекторов реакционных труб высокотемпературных установок водорода, метанола и аммиака.
Изобретение относится к металлургии, в частности к жаропрочным хромоникелевым сплавам аустенитного класса с интерметаллидным упрочнением, и может найти применение в производстве реакционных труб для агрегатов аммиака и метанола с рабочими температурами 800-950°С и давлением 2,5-5 МПа и нефтегазоперерабатывающих установок с режимами эксплуатации от 950 до 1160°С и давлением до 0,7 МПа.

Предлагаемое изобретение относится к области металлургии, в частности, к жаропрочным никелевым сплавам, получаемым методом металлургии гранул и используемым для производства деталей роторов газовых турбин, подвергаемых высоким статическим и динамическим нагрузкам в условиях работы до (800-850)°С.

Изобретение относится к области металлургии, в частности к жаропрочным сплавам на никелевой основе, и может быть использовано для изготовления дисков турбин газотурбинных двигателей и установок, предназначенных для работы в условиях активного воздействия высоких термических напряжений, температур, статических и переменных нагрузок.

Изобретение относится к области металлургии, а именно к сплавам на основе никеля, и может быть использовано в газоперекачивающих, энергетических и морских газотурбинных установках (ГТУ) с длительной наработкой, в частности для литья охлаждаемых рабочих и сопловых лопаток с равноосной структурой.

Изобретение относится к металлургии, в частности к коррозионностойким жаропрочным сплавам на основе никеля, и может быть использовано для деталей горячего тракта газотурбинных двигателей и установок.

Изобретение относится к области металлургии, в частности к получению никеле-титановых сплавов в вакуумных индукционных плавильных печах с холодным тиглем. В способе осуществляют укладку подготовленной шихты, при этом в нижнюю часть тигля укладывают титан около 20% высоты, затем равномерно чередуясь никелевые пластины и титановые таблетки, после заполнения 50% объема шихты между никелевыми пластинами и титановыми таблетками рассыпают порошок легирующих элементов, осуществляют вакуумирование плавильной камеры, плавку проводят в несколько этапов, включающих дегазацию с медленным разогревом шихты и изложницы на малых мощностях 20% от максимальной, затем разогрев шихты с двухступенчатым увеличением мощности сначала до 30-35% и через 3 минуты до 60%, и после экзотермической реакции между титаном и никелем проводят барботаж расплава в течение 3-5 мин путем плавного увеличения мощности до максимальной, сливают расплав при максимальной мощности в изложницу, подогретую до 550-600°С, выдерживают отливку под вакуумом при температуре до 600°С или ниже около 2,5 часов и извлекают заготовку из печи.

Изобретение относится к металлургии, а именно к высокотемпературным композиционным материалам на основе интерметаллидной матрицы для обеспечения двигателей повышенной мощности и ресурса.

Изобретение относится к области металлургии, а именно к жаропрочным интерметаллидным сплавам на основе никеля, предназначенным для изготовления методами точного литья деталей газотурбинных двигателей.

Изобретение относится к области металлургии, а именно к литейным сплавам на никелевой основе, и может быть использовано для изготовления деталей, применяемых в газотурбинном двигателестроении, например заготовок дисков и других деталей специального назначения.
Изобретение относится к области металлургии, а именно к жаропрочным хромоникелевым сплавам аустенитного класса и может быть использовано при изготовлении коллекторов реакционных труб высокотемпературных установок водорода, метанола и аммиака.
Изобретение относится к области металлургии, а именно к жаропрочным хромоникелевым сплавам аустенитного класса и может быть использовано при изготовлении коллекторов реакционных труб высокотемпературных установок водорода, метанола и аммиака.
Изобретение относится к металлургии, в частности к жаропрочным хромоникелевым сплавам аустенитного класса с интерметаллидным упрочнением, и может найти применение в производстве реакционных труб для агрегатов аммиака и метанола с рабочими температурами 800-950°С и давлением 2,5-5 МПа и нефтегазоперерабатывающих установок с режимами эксплуатации от 950 до 1160°С и давлением до 0,7 МПа.
Изобретение относится к металлургии, в частности к жаропрочным хромоникелевым сплавам аустенитного класса с интерметаллидным упрочнением, и может найти применение в производстве реакционных труб для агрегатов аммиака и метанола с рабочими температурами 800-950°С и давлением 2,5-5 МПа и нефтегазоперерабатывающих установок с режимами эксплуатации от 950 до 1160°С и давлением до 0,7 МПа.

Изобретение относится к области специальной металлургии, конкретно к способам получения сплава 42ХНМ на никелевой основе с использованием рециклирования отходов. Способ состоит из подготовки шихтовых материалов, содержащих кондиционные и некондиционные отходы, включающие стружку, формирования завалки вакуумной печи, последующего вакуумного переплава и разливки металла, при этом переплав проводят при высоком вакууме с электромагнитным перемешиванием, а разливку металла производят в вакууме в стальные трубы или изложницы с получением вторичных активированных кондиционных отходов в виде электрода, которые в составе шихтовых материалов попадают в открытую индукционную печь с защитной крышкой для выплавки сплава 42ХНМ.

Изобретение относится к получению нихромовых порошков электроэрозионным диспергированием. Диспергирование сплава Х15Р60 проводят в дистиллированной воде при напряжении на электродах 90-110 В, емкости разрядных конденсаторов 58 мкФ и частоте следования импульсов 110-120 Гц.

Предлагаемое изобретение относится к области металлургии, в частности, к жаропрочным никелевым сплавам, получаемым методом металлургии гранул и используемым для производства деталей роторов газовых турбин, подвергаемых высоким статическим и динамическим нагрузкам в условиях работы до (800-850)°С.

Предлагаемое изобретение относится к области металлургии, в частности, к жаропрочным никелевым сплавам, получаемым методом металлургии гранул и используемым для производства деталей роторов газовых турбин, подвергаемых высоким статическим и динамическим нагрузкам в условиях работы до (800-850)°С.

Изобретение относится к области металлургии, в частности к жаропрочным сплавам на никелевой основе, и может быть использовано для изготовления дисков турбин газотурбинных двигателей и установок, предназначенных для работы в условиях активного воздействия высоких термических напряжений, температур, статических и переменных нагрузок.

Изобретение относится к области металлургии, в частности к жаропрочным сплавам на никелевой основе, и может быть использовано для изготовления дисков турбин газотурбинных двигателей и установок, предназначенных для работы в условиях активного воздействия высоких термических напряжений, температур, статических и переменных нагрузок.
Наверх