Устройство для получения порошка на основе карбида бора



Устройство для получения порошка на основе карбида бора
Устройство для получения порошка на основе карбида бора
Устройство для получения порошка на основе карбида бора
C01P2002/72 - Неорганическая химия (обработка порошков неорганических соединений для производства керамики C04B 35/00; бродильные или ферментативные способы синтеза элементов или неорганических соединений, кроме диоксида углерода, C12P 3/00; получение соединений металлов из смесей, например из руд, в качестве промежуточных соединений в металлургическом процессе при получении свободных металлов C21B,C22B; производство неметаллических элементов или неорганических соединений электролитическими способами или электрофорезом C25B)

Владельцы патента RU 2700596:

федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» (RU)

Изобретение относится к неорганической химии, а именно к получению соединений с углеродом, и может быть использовано для получения порошка на основе карбида бора в металлургии, машиностроении. Устройство для получения порошка на основе карбида бора содержит диэлектрический корпус 1, на дне которого расположен цилиндрический графитовый тигель 2, в стенке которого напротив друг друга выполнены два сквозных отверстия, в которые соосно вставлены с одной стороны один конец графитового цилиндрического катода 3, а с другой стороны – один конец графитового цилиндрического анода 4. Другой конец катода 3 неподвижно закреплен на одной стенке корпуса 1 при помощи винта 6 через резьбовое отверстие. Второй конец анода 4 закреплен в держателе 7, конец которого вставлен в резьбовое отверстие в другой стенке корпуса 1. Анод 4 и катод 3 подключены к источнику постоянного тока 5. Технический результат cостоит в возможности получения порошка на основе карбида бора в плазме дугового разряда постоянного тока, инициированного в воздушной атмосфере при нормальных условиях. Поскольку графитовый депозит в процессе горения дугового разряда постоянного тока оседает на поверхности катода, сбор синтезированного порошка на основе карбида бора может быть осуществлен отдельно от него. При этом исходная порошковая смесь аморфного углерода и аморфного бора за счет размещения в отдельно стоящем тигле не оказывает влияния на величину омического сопротивления разрядного промежутка. 2 ил.

 

Изобретение относится к неорганической химии, а именно к получению соединений с углеродом и может быть использовано для получения порошка на основе карбида бора в металлургии, машиностроении.

Известно устройство для получения порошка на основе карбида бора [Zhou D., Seraphin S., Withers J. C. Encapsulation of crystalline boron carbide into graphitic nanoclusters from the arc-discharge soot //Chemical physics letters. - 1995. - Т. 234. - №. 1-3. - С. 233-239], содержащее электроды, расположенные в герметичной камере, соединенной с вакуумным насосом и с емкостью, заполненной газообразным гелием. Электроды подключены к источнику постоянного тока. Анод выполнен в виде цилиндрического стержня диаметром 6,4 мм и длиной 300 мм, изготовленного из материала, содержащего 17 мас. % бора и 83 мас. % графита. Катод диаметром 9,5 мм и длиной 30 мм выполнен в виде цилиндрического графитового стержня. Свободными концами анода и катода формируют разрядный промежуток величиной 1 мм.

Обязательным условием работы этого устройства является создание атмосферы, содержащей гелий. Масса синтезируемого продукта ограничена величиной скорости расхода анода в электроразрядном процессе.

Известно, принятое за прототип, устройство для получения порошка на основе карбида бора [Пак А.Я., Мамонтов Г.Я. Получение карбида бора в низковольтной электрической дуге постоянного тока, инициированной в открытом воздушном пространстве //Письма в ЖТФ. - 2018. - Т. 44. - №. 14. - С. 26-33.], содержащее графитовые электроды, подключенные к источнику постоянного тока, расположенные в открытой воздушной среде. Анод выполнен в виде графитового стержня с квадратным сечением со стороной 7 мм. Катод выполнен в виде графитового тигля объемом 6,3 мл. На дно катода насыпают порошковую смесь аморфного углерода в количестве 22 мас. % и аморфного бора 78 мас. % (с небольшим содержанием оксида бора). Между дном катода, на которое насыпают порошковую смесь углерода и бора, и свободным концом анода образуют разрядный промежуток для получения дугового разряда.

Это устройство обеспечивает получение порошка, содержащего карбид бора, смешанного с графитовым катодным депозитом, масса которого соизмерима с массой синтезируемого порошка, то есть синтезируемый порошок, содержащий карбид бора, смешан с массой катодного депозита, образующегося в процессе электроэрозии анода. Кроме того, устройство не позволяет обеспечить стабильное электрическое сопротивление разрядного промежутка, из-за его заполнения исходной порошковой смесью.

Предложенное изобретение позволяет получить порошок на основе карбида бора в плазме дугового разряда постоянного тока, инициированного в воздушной атмосфере при нормальных условиях

Устройство для получения порошка на основе карбида бора, также как в прототипе, содержит графитовые анод и катод, подключенные к источнику постоянного тока, при этом анод выполнен в виде стержня с возможностью перемещения вдоль его оси для соприкосновения с катодом.

Согласно изобретению на дне диэлектрического корпуса расположен цилиндрический графитовый тигель, в стенке которого напротив друг друга выполнены два сквозных отверстия, в которые соосно вставлены с одной стороны один конец цилиндрического катода, а с другой стороны - один конец цилиндрического анода. Другой конец катода неподвижно закреплен на одной стенке корпуса при помощи винта через резьбовое отверстие. Другой конец анода закреплен в держателе, конец которого вставлен в резьбовое отверстие в другой стенке корпуса.

Предлагаемое устройство позволяет реализовать синтез порошка на основе карбида бора в плазме дугового разряда постоянного тока, инициированного в открытой воздушной среде в полости графитового тигля в разрядном промежутке между графитовыми цилиндрическими анодом и катодом. При возникновении дугового разряда постоянного тока температура поднимается до нескольких тысяч градусов, в результате чего возникают условия для синтеза карбида бора. В полости графитового тигля при горении дугового разряда генерируется газообразный оксид углерода СО, который предотвращает окисление получаемого порошка на основе карбида бора кислородом атмосферного воздуха.

По сравнению с прототипом, графитовый катодный депозит оседает на поверхности катода, что позволяет осуществить сбор синтезированного порошка на основе карбида бора отдельно от графитового катодного депозита, образующегося в процессе горения дугового разряда постоянного тока. Также по сравнению с прототипом исходная порошковая смесь аморфного углерода и аморфного бора не оказывает влияния на величину омического сопротивления разрядного промежутка.

На фиг. 1 приведена схема устройства для получения порошка на основе карбида бора.

На фиг. 2 представлена рентгеновская дифрактограмма, полученного порошка на основе карбида бора.

Устройство для получения порошка на основе карбида бора содержит диэлектрический корпус 1, например, из стеклотекстолита СТЭФ ГОСТ-12652-74, на дне которого расположен цилиндрический графитовый тигель 2. В стенке графитового тигля 2 напротив друг друга выполнены два сквозных отверстия, в которые соосно вставлены с одной стороны - один конец графитового цилиндрического катода 3, а с другой стороны - один конец графитового цилиндрического анода 4. Катод 3 и анод 4 подключены к источнику постоянного тока 5 (ИПТ). Другой конец катода 3 неподвижно закреплен на одной стенке диэлектрического корпуса 1 при помощи винта 6 через резьбовое отверстие. Другой конец анода 4 закреплен в держателе 7, конец которого вставлен в резьбовое отверстие в другой стенке диэлектрического корпуса 1.

В качестве источника постоянного тока 5 (ИПТ) использован выпрямительно-инверторный сварочный трансформатор марки Colt Condor 200 с диапазоном рабочих токов 20-200A.

На дно цилиндрического графитового тигля 2 насыпают смесь порошкового аморфного углерода и аморфного бора 8. При включении источника постоянного тока 5 (ИПТ) в полости цилиндрического графитового тигля 2 между катодом 3 и анодом 4 возникает разность потенциалов. Вращением держателя 7 перемещают анод 4 в полости цилиндрического графитового тигля 2 до соприкосновения с катодом 3. Дуговой разряд поджигают кратковременным соприкосновением анода 4 и катода 3, при этом после начала протекания тока, анод 4 отводят от катода 3, горизонтально вдоль продольной оси при помощи держателя 7, образуя разрядный промежуток. После горения дугового разряда в течение нескольких секунд, источник постоянного тока 5 (ИПТ) отключают. После остывания катода 3, анода 4 и графитового тигля 2 собирают полученный порошок, осевший на дне и стенках тигля 2.

При использовании исходной порошковой смеси, состоящей из 6 г аморфного углерода с чистотой 95% и 0,21 г аморфного бора с чистотой 95%, воздействии дугового разряда постоянного тока в течение 10 секунд при силе тока 160 А был получен порошок, состоящий преимущественно из графита и карбида бора. Полученный порошок собран отдельно от графитового катодного депозита. В результате рентгенофазового анализа полученного порошка однозначно идентифицирована серия из дифракционных максимумов, соответствующих карбиду бора B13C2 (фиг. 2).

Устройство для получения порошка на основе карбида бора, содержащее графитовые анод и катод, подключенные к источнику постоянного тока, при этом анод выполнен в виде стержня с возможностью перемещения вдоль его оси для соприкосновения с катодом, отличающееся тем, что устройство снабжено диэлектрическим корпусом, на дне которого расположен цилиндрический графитовый тигель, в стенке которого напротив друг друга выполнены два сквозных отверстия, в которые соосно вставлены с одной стороны один конец цилиндрического катода, а с другой стороны – один конец цилиндрического анода, причем другой конец катода неподвижно закреплен на одной стенке корпуса при помощи винта через резьбовое отверстие, а другой конец анода закреплен в держателе, конец которого вставлен в резьбовое отверстие в другой стенке корпуса.



 

Похожие патенты:

Изобретение относится к технологии получения ориентированных кристаллов слоистых гидроксисолей на основе гадолиния, которые могут быть использованы в производстве катализаторов, адсорбентов и анионно-обменных материалов, а также для формирования функциональных покрытий при создании различных гетероструктур и приборов для конверсии электромагнитного излучения, сенсоров и многоцветных светоизлучающих диодов (LEDs).

Изобретение относится к технологии получения соединений сложных оксидов со структурой граната, солегированных редкоземельными элементами, которые могут быть применены в технологии синтеза оптических керамических материалов лазерного качества при создании активных тел твердотельных лазеров различной геометрии.

Изобретение относится к области получения наноструктурированных порошков твердых растворов на основе иттрий-алюминиевого граната, легированных редкоземельными элементами для производства керамики, используемой в качестве активной среды твердотельного лазера, термостойкого высокотемпературного электроизоляционного материала, окон или линз в оптических приборах, оптических элементах в ИК области спектра.

Изобретение может быть использовано в химической промышленности при получении адсорбентов, катализаторов гидрогенизации органических соединений газообразным водородом.

Изобретение относится к кристаллическому оксигидроксид-молибдату переходного металла, катализатору гидрообработки, способу получения кристаллического оксигидроксида-молибдата переходного металла, способу получения катализатора гидрообработки и к способу гидрообработки.

Изобретение относится к монокристаллам литиевых халькогенидов, предназначенных к применению в нелинейной оптике для реализации перестройки лазерного излучения видимого и ближнего ИК-диапазона в средний ИК-диапазон.

Изобретение относится к способу покрытия поверхности подложки, например неорганических частиц, оксидом металла. Способ включает осаждение оксида металла из водного раствора, содержащего ионы металлов и поливалентные анионы.

Изобретение относится к производству объемных изделий (структур) из алмаза: губок, пористых структур сложной формы, и может быть использовано в твердотельной электронике для производства теплоотводов, эмиссионных электродов и высоковольтных изоляторов, в теплотехнике при конструировании эффективных теплообменников, в биологии и медицине при изготовлении фильтров и мембран.

Изобретение может быть использовано в строительстве при изготовлении строительных смесей, связующих композиций. Твердая дисперсная композиция нитрата кальция включает частицы со средним размером от 0,1 до 1 мм и содержит антислеживающий агент, состоящий из твердого дисперсного соединения.

Изобретение относится к технологии получения сложных оксидов, которые обладают свойствами материалов-мультиферроиков, проявляют магнитоэлектрический эффект, магнитокалорический эффект и могут быть применены в области многофункциональных устройств в информационных и энергосберегающих технологиях.
Изобретение относится к нанотехнологии, электротехнике, электронике, энергетике и биомедицине и может быть использовано при изготовлении смазочных и абразивных материалов, модификаторов поверхности, а также изолирующих материалов для полупроводников и схемных плат.
Изобретение относится к способу получения активного угля на основе полимерных композиционных материалов и может быть использовано в жидкофазных и газофазных сорбционных технологиях.

Изобретение предназначено для химической и металлургической промышленности и может быть использовано при изготовлении подшипников, уплотнений и облицовочных плит.

Изобретение относится к области водородной энергетики, органической химии и катализа, в частности к разработке составов химических систем, способных циклично аккумулировать и высвобождать водород в каталитических процессах гидрирования-дегидрирования.

Изобретение относится к соединению в виде порошка и к способу его получения, а именно карбидов, нитридов, боридов и силицидов металлов. Упомянутое соединение является продуктом реакции (i) по меньшей мере одного металла и/или металлоида и (ii) по меньшей мере одного дополнительного элемента, который является более электроотрицательным, чем упомянутый или каждый упомянутый металл и/или металлоид.

Изобретение относится к извлечению водорода из гидропереработанного отходящего газа отпарной колонны, а именно к устройству и способу гидропереработки. Способ включает гидропереработку потока углеводородного сырья в реакторе гидропереработки, чтобы получить выходящий поток гидропереработки.

Изобретение относится к области плазмохимии, а именно к плазмохимическому способу получения синтез-газа и установке для его осуществления. Способ включает электродуговой трехфазный плазмотрон, в который подают основной и дополнительный исходные компоненты и осуществляют их плазмохимическое взаимодействие.

Изобретение относится к химическому машиностроению, к технике высоких давлений и может быть использовано для выращивания кристаллов алмазов. Устройство для выращивания кристаллов алмаза содержит установленные в заглублении земли на столе 6 соосно в ряд контейнеры 1, 2 с размещенным в каждом контейнере соответствующим многопуансонным аппаратом 3 высокого давления, а между каждым из крайних контейнеров 1 и 2 и соответствующей стеной 8 заглубления установлена по меньшей мере одна разгрузочная плита 7.

Изобретение относится к производству объемных изделий (структур) из алмаза: губок, пористых структур сложной формы, и может быть использовано в твердотельной электронике для производства теплоотводов, эмиссионных электродов и высоковольтных изоляторов, в теплотехнике при конструировании эффективных теплообменников, в биологии и медицине при изготовлении фильтров и мембран.

Изобретение относится к системе твердооксидного топливного элемента, а также к способу эксплуатации такой системы и может быть применено в энергетике. Система твердооксидного топливного элемента содержит установку реформинга, батарею твердооксидного топливного элемента, топку для получения тепла для установки реформинга.

Группа изобретений относится к получению металлического порошка. Способ включает электрический взрыв металлической проволоки во взрывной камере с принудительной циркуляцией азота в качестве рабочего газа.
Наверх