Электродвигатель с беспазовым магнитопроводом статора из аморфного железа

Изобретение относится к электротехнике и может быть использовано в электромеханических преобразователях энергии автономных объектов. Техническим результатом является повышение кпд, энергоэффективности и минимизация тепловыделений. Беспазовый магнитопровод статора выполнен в виде полого цилиндра, внутри которого расположена обмотка, содержащая катушки в виде ромба с длинным шагом. Полый цилиндр беспазового магнитопровода статора состоит из витых секторов аморфного железа, электрически изолированных друг от друга, собранных в аксиальном направлении, и обмотка содержит катушки в виде ромба с укороченным шагом. 5 ил.

 

Изобретение относится к области электромашиностроения и может быть использовано в электромеханических преобразователях энергии автономных объектов.

Известен сердечник из аморфного железа [патент US №5903082 А, H02K 1/12, H02K 21/12, H02K 37/12, Н02Р 9/18, H02K 21/24, H02K 1/14, H02K 1/02, H02K 1/04, H02K 29/10, H02K 1/18, 11.05.1999], содержащий отдельно сформированные аморфное ярмо и аморфные полюса, которые совместно установлены в корпусе из диэлектрика, образовывая при этом сердечник статора электромеханического преобразователя энергии.

Недостатками данного магнитопровода статора из аморфного железа являются сложность его изготовления и низкие магнитные свойства, обусловленные значительными нарушениями геометрии магнитопровода статора из аморфного железа при сборки отдельных полюсов и ярма, а также низкий теплоотвод потерь энергии от магнитопровода статора из аморфного железа.

Известна торцевая электрическая машина (патент РФ №2246168, МПК H02K 21/24, опубл. 10.02.2005 г.), включающая статор с обмоткой, закрепленный в корпусе, обращенный рабочими поверхностями к двум дискообразным роторам, расположенным с двух сторон от статора, установленным в подшипниках качения, статор выполнен из двух половин, в каждой из которых залит компаундом автономный зубцовый слой, распределенная обмотка в виде обмоточных модулей и ярмо, навитое из стальной ленты, установленных по разные стороны этого диска, причем с обеих сторон диска выполнены центрирующие пояски, на которых сцентрированы пластины обмоточных модулей, а на дисках двух роторов со стороны рабочих поверхностей статора выполнены по два центрирующих пояска, между которыми смонтированы постоянные магниты, полюсные наконечники которых имеют форму пластины с уменьшающимся к краям сечением.

Недостатком - торцевой электрической машины является технологическая сложность в изготовлении, ограниченные функциональные возможности, высокие потери на перемагничивание и вихревые токи.

Известна торцевая электрическая машина (патент РФ №2313888, МПК H02K 21/24, H02K 21/12, H02K 16/02, опубл. 27.12.2007 г.), содержащая статор, включающий диск, закрепленный в корпусе, и обмоточные модули, обращенные рабочими поверхностями к соответствующим дискообразным роторам с короткозамкнутыми обмотками, расположенным с двух сторон от статора и установленным в подшипниках качения, в диске статора выполнены прорези под обмоточные модули, края которых (отгибы) у двух соседних прорезей направлены в одну сторону диска, а у двух следующих прорезей - в противоположную, в которых обмоточные модули размещены таким образом, что между двумя пакетами пластин одного обмоточного модуля расположены по одному пакету пластин двух соседних обмоточных модулей с противоположной стороны диска, кроме того, на диске статора в промежутках между прорезями под обмоточные модули в радиальном направлении выполнены щелевидные прорези.

Недостатком торцевой электрической машины является технологическая сложность в изготовлении, ограниченные функциональные возможности, высокие потери на перемагничивание и вихревые токи.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является беспазовый магнитопровод статора [эл. каталог Maxon motor, Highprecision drives and systems, p. 231, 237, http://maxon.blaetterkatalog.ch/b9990/catalog/index.html?data=b9990/b999045&lang=e#237], содержащий статор, выполненный в виде полого цилиндра, шихтованного в аксиальном направлении из листов электротехнической стали, внутри статора расположена обмотка, катушки которой выполнены в виде ромба.

Недостатками ближайшего аналога являются его невысокая эффективность и низкие удельные показатели беспазового магнитопровода в составе электродвигателя. К недостаткам аналога можно также отнести отходы при штамповке листов беспазового магнитопровода.

Задача изобретения - расширение функциональных возможностей и повышение надежности электродвигателя с беспазовым манитопроводом статора из аморфного железа благодаря повышению выходной мощности при неизменных массогабаритных показателях, за счет повышения эффективности удельных энергетических показателей.

Техническим результатом является повышение КПД, энергоэффективности и минимизация тепловыделений магнитопровода статора из аморфного железа в составе беспазового электродвигателя.

Поставленная задача решается и указанный результат достигается тем, что в электродвигателе с беспазовым магнитопроводом статора, выполненного в виде полого цилиндра, внутри которого расположена обмотка, содержащая катушки в виде ромба с длинным шагом, магнитоэлектрический ротор, согласно изобретению, полый цилиндр беспазового магнитопровода статора состоит из витых секторов аморфного железа, электрически изолированных друг от друга, собранных в аксиальном направлении и обмотку, содержащую катушки в виде ромба с укороченным шагом.

Существо изобретения поясняется чертежами. На фиг. 1 изображен продольный разрез электродвигателе с беспазовым магнитопроводом статора из аморфного железа, на фиг. 2 приведена схема беспазовой обмотки прототипа, содержащая катушки в виде ромба с длинным шагом, на фиг. 3 приведена схема беспазовой обмотки, содержащая катушки в виде ромба с укороченным шагом, на фиг. 4 для наглядности показана 3D модель катушки беспазовой обмотки прототипа с магнитоэлектрическим ротором, на фиг. 5 показана 3D модель катушки беспазовой обмотки с укороченным шагом с магнитоэлектрическим ротором.

Предложенное устройство содержит (фиг. 1) полый цилиндр 1, собранный в аксиальном направлении из витых секторов 2, имеющих форму колец, материал навивки - лента аморфного железа. Витые сектора 2 электрически изолированы друг от друга. На внутренней части полого цилиндра 1 установлена беспазовая обмотка 3, (содержащая катушки в виде ромба) с укороченным шагом с выводами 4. Внутри полого цилиндра 1 установлен магнитоэлектрический ротор 5.

Предложенное устройство работает следующим образом: при подключении выводных концов 4 беспазовой обмотки 3 к силовым выводам системы управления электродвигателя с беспазовым магнитопроводом статора из аморфного железа по беспазовой обмотке 3 начинает проходить ток, который создает магнитное поле статора. Магнитное поле статора, взаимодействуя с магнитным полем возбуждения магнитоэлектрического ротора 5, образует электромагнитный момент, в результате чего магнитоэлектрический ротор 5 начинает вращаться. В момент пуска, а также в процессе работы электродвигателя выделяются различного рода потери, которые приводят к снижению КПД, а именно:

- тепловые потери в беспазовой обмотке 3, обусловленные током в беспазовой обмотке 3 и их активным сопротивлением;

- тепловые потери в полом цилиндре 1, обусловленные величиной магнитного поля возбуждения и магнитного поля статора, массой полого цилиндра 1 и удельными потерями материала навивки витых секторов 2 (ленты аморфного железа);

- потери энергии на трение магнитоэлектрического ротора 5 с воздухом, обусловленные частотой вращения магнитоэлектрического ротора 5, его геометрическими размерами, температурой воздуха и давлением в зазоре между магнитоэлектрическим ротором 5 и беспазовой обмоткой 3.

Мощность, затрачиваемая на нагрев полого цилиндра 1 вихревыми токами, снижает КПД электровигателя с баспазовым магнитопроводом статора. Чтобы уменьшить мощность вихревых токов, в аналоге (патент РФ №2313888, МПК H02K 21/24, H02K 21/12, H02K 16/02, опубл. 27.12.2007 г.) увеличивают электрическое сопротивление магнитопровода, для этого магнитопровод статора набирают из отдельных тонких листов, изолированных друг от друга с помощью лака или окалины. Однако, путь вихревых токов, индуцируемых в тонких листах, пролегает по всей площади листа. Для минимизации потерь на вихревые токи, т.е. минимизацию путей вихревых токов в магнитопроводе статора - полом цилиндре 1, полый цилиндр 1 выполняют из витых секторов 2, собранных в аксиальном направлении, с ленточным материалом навивки из аморфного железа. Кроме того, материал аморфное железо обладает минимально возможными удельными потерями на перемагничивание и вихревые токи (0,1-1 Вт/кг). В совокупности, тем самым снижают потери, создаваемые полями рассеяния в лобовых частях, и удельные потери в беспазовом магнитопроводе статора. Чтобы исключить замыкание вихревых токов между витыми секторами 2, их выполняют изолированными друг от друга. Для уменьшения потерь и минимизации массогабаритных показателей беспазовая обмотка 3, (содержащая катушки в виде ромба) выполнена с укороченным шагом, т.е. вершины катушек в виде ромба обмотки 3, имеющие тупые внутренние углы, находятся на минимально возможном расстоянии, учитывая условие формирования n-полюсной магнитной системы электродвигателя. Для наглядности на фиг. 2 показаны схема соединений обмотки, содержащая катушки в виде ромба прототипа, имеющая двенадцать катушек, работающая с четырехполюсной магнитной системой ротора, а на фиг. 3 показана схема обмотки содержащая катушки в виде ромба, выполненной с укороченным шагом, имеющая двенадцать катушек, работающая с четырехполюсной магнитной системой ротора. На фиг. 4 и фиг. 5 показаны 3D модели их катушек. В результате электрическое сопротивление фазы становится меньше чем в аналоге (патент РФ №2313888, МПК H02K 21/24, H02K 21/12, H02K 16/02, опубл. 27.12.2007 г.), поэтому и снижаются потери в беспазовой обмотке 3. Для обеспечения механической прочности и минимизации аэродинамических потерь, конструкцию из полого цилиндра 1 и беспазовой обмоткой 3 заливают компаундом, например эпоксидным клеем.

Таким образом, достигается повышение КПД, надежности, энергоэффективности и минимизация тепловыделений магнитопровода статора из аморфного железа в составе беспазового электродвигателя.

Также расширяются функциональные возможности электродвигателя с беспазовым манитопроводом статора из аморфного железа, благодаря повышению выходной мощности при неизменных массогабаритных показателях, за счет повышения эффективности удельных энергетических показателей.

Электродвигатель с беспазовым магнитопроводом статора, выполненного в виде полого цилиндра, внутри которого расположена обмотка, содержащая катушки в виде ромба с длинным шагом, магнитоэлектрический ротор, отличающийся тем, что полый цилиндр беспазового магнитопровода статора состоит из витых секторов аморфного железа, электрически изолированных друг от друга, собранных в аксиальном направлении, и обмотка содержит катушки в виде ромба с укороченным шагом.



 

Похожие патенты:

Изобретение относится к области электротехники и может применяться в асинхронных двигателях с короткозамкнутым ротором. Техническим результатом является повышение интенсивности охлаждения без использования вентиляционных лопаток на роторе.

Изобретение относится к области электротехники, в частности к блоку контактных выводов электрической машины. Технический результат - повышение стабильности удерживания электрической шины, соединяющей нейтральные точки схем друг с другом.

Изобретение относится к области электротехники и может быть использовано в системах электромеханического преобразования энергии, а именно в асинхронных машинах. Техническим результатом является автоматическое формирование оптимальной механической характеристики на всех режимах без применения реостатов, дросселей, реакторов, коммутационной аппаратуры, а также каких-либо электронных устройств.

Изобретение относится к области электротехники, в частности к вентильным индукторным машинам. Технический результат – увеличение рабочего момента на единицу массы вентильного индукторного двигателя.

Изобретение относится к электрическим машинам, а именно к явнополюсным электрическим машинам, в частности к конструкциям для крепления обмоток на роторе электрической машины.

Изобретение относится к электротехнике, а именно к способу изготовления вращающихся электрических машин, а также к вращающимся электрическим машинам. Способ изготовления свободнонесущей катушки электрической машины, при котором катушка охватывает внутреннюю деталь уже при изготовлении, которая используется и при изготовлении катушки в качестве вспомогательного средства для формообразования катушки.

Изобретение относится к устройству для производства электромеханической работы, в частности к электромагнитным турбинам. Технический результат - осуществление турбины, выполненной с возможностью функционирования в условиях относительно сильных магнитных полей.

Изобретение относится к области электротехники, а именно к низкооборотным электрическим генераторам, и может быть использовано, в частности, в ветроэнергетических установках.

Изобретение относится к области электротехники, а именно к низкооборотным электрическим генераторам. Технический результат - упрощение конструкции, повышение надежности и эффективности работы.

Изобретение относится к области электротехники, а именно к электрическим машинам, касается конструктивного выполнения обмоток статоров и роторов электрических машин переменного тока и якорей коллекторных электрических машин.

Изобретение относится к электротехнике, в частности к электрическим машинам с постоянными магнитами и солнечными модулями. Технический результат – повышение эффективности работы.

Изобретение относится к электротехнике. Технический результат состоит в повышении надежности и эффективности отвода выделяемого тепла электромеханических преобразователей энергии, повышении КПД за счет предохранения постоянных магнитов ротора от теплового размагничивания.

Изобретение относится к области электротехники. Технический результат – улучшение рабочих характеристик и КПД машины.

Изобретение относится к области электротехники. Технический результат - снижение потерь на вихревые токи.

Изобретение относится к области электротехники, в частности к двигателю на постоянных магнитах. Технический результат – улучшение рабочих характеристик.

Изобретение относится к области электротехники, в частности к конструкции узла статора для электродвигателя. Технический результат – повышение эффективности и улучшение рабочих характеристик электродвигателя.

Изобретение относится к электротехнике. Технический результат состоит в обеспечении работы при существенно низкой частоте пульсаций магнитного поля и относительно низких напряжении и токе.

Изобретение относится к электротехнике и может быть использовано для получения энергии преобразованием силовых полей - магнитного и гравитационного в незамкнутой механической системе.

Изобретение относится к области электротехники, в частности, к конструкции ротора с охлаждающими каналами. Технический результат – повышение эффективности охлаждения постоянных магнитов ротора.

Изобретение относится к области электротехники, в частности к ротору реактивной машины. Технический результат – улучшение массогабаритных характеристик синхронной реактивной машины.

Изобретение относится к электротехнике и может быть использовано в электромашиностроении при производстве электродвигателей. Техническим результатом является повышение энергетических характеристик: полезной мощности, механического момента, коэффициента мощности, кпд при снижении массогабаритных показателей. Магнитная система синхронного двигателя содержит ротор, магнитные полюса, выполненные из постоянных магнитов, два ряда короткозамкнутых стержней, выполненных из разных электропроводящих материалов. На внешней стороне ротора расположены постоянные магниты, образующие магнитные полюса, поверх постоянных магнитов расположен бандаж, состоящий из двух и более электропроводящих цилиндров разного удельного электрического сопротивления. 3 ил.
Наверх