Состав и способ приготовления катализаторов гидроочистки смеси дизельных фракций

Изобретение относится к способу приготовления катализатора гидроочистки нефтяных фракций, включающему пропитку носителя раствором соединений металлов VI группы и оксикарбоната никеля или кобальта, из совместного пропиточного раствора, содержащего фосфорно-молибденовый или фосфорно-вольфрамовый гетерополикомплекс и ионы металлов никеля или кобальта Me2+. При этом носитель представляет собой композитный материал, состоящий из смеси оксидов ZnO и Al2O3 состава, полученный путем смешения гидроксидов Zn и Al, их пептизации раствором органической кислоты (ледяной СН3СООН), экструзии, сушки при температурах 60-80-100°С, прокаливания при конечной температуре 550°С. Изобретение также относится к катализатору гидроочистки нефтяных фракций, полученному вышеуказанным способом, содержащему оксид кобальта или оксид никеля, фосфорно-молибденовый или фосфорно-вольфрамовый гетерополикомплекс, при следующем содержании компонентов, мас.%: СоО или NiO 3,0-5,0; MoO3 14,0-20,0; WO3 6,0-20,0; Р2О5 0,3-0,8; ZnO от 0,1 до 10,0; оксид алюминия - остальное. Технический результат - повышение каталитической активности катализатора гидроочистки. 2 н. и 4 з.п. ф-лы., 1 табл., 6 пр.

 

Изобретение относится к области химии, а именно к области производства катализаторов, предназначенных для глубокой гидроочистки смесей дизельных фракций с вторичными газойлями (ЛГКК и ЛТК) от соединений серы, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.

Известные катализаторы для гидроочистки дизельных фракций от соединений серы содержат молибден и/или вольфрам и кобальт и/или никель в оксидной форме, нанесенные на поверхность пористого термостойкого оксида металла. Известным способом получения катализаторов гидроочистки, содержащих диспергированные на носителях оксиды Co(Ni)-Mo(W), является пропитка носителя растворами соединений активных компонентов, сушка, прокаливание и сульфидирование. Нанесение активных компонентов осуществляют как последовательной пропиткой из отдельных растворов, так и одностадийной пропиткой из совместного раствора.

Известны способы получения катализатора на основе алюмосиликата, полученные путем смешения гидрооксида алюминия с соединением кремния, с последующей пропиткой полученного модифицированного оксида или гидроксида алюминия водными растворами молибденовокислого аммония и азотнокислого никеля или кобальта, сушкой и прокаливанием, в качестве соединения кремния используют гидроксилированный кремнезем с диаметром мицеллы 100-180Å и удельной поверхностью 150-400 м2/г (а.с. СССР 825135, МПК B01J 23/88; B01J 37/02, 1981). Недостатком катализатора является его низкая механическая прочность.

Наиболее близким к предлагаемому (прототипом) является катализатор гидроочистки нефтяного сырья, характеризующийся следующим соотношением компонентов, % масс.: оксид молибдена (МоО3) 12,0-20,0, оксид вольфрама (WO3) 1,0-6,0, оксид никеля или оксид кобальта (NiO или СоО) 4,0-6,0, оксид фосфора (Р2О5) 0,5-0,9, оксид цинка (ZnO) 0,2-6,0, оксид алюминия 61,1-82,3. Описан способ получения указанного катализатора, который включает пропитку носителя совместным пропиточным раствором, содержащим фосфорномолибденовую и фосфорновольфрамовую гетерополикислоты, оксикарбонат никеля или кобальта и уксусную кислоту. В качестве носителя используется оксид алюминия, пропитанный ацетатом цинка и подвергнутый термической обработке - сушке, а затем прокаленный при 500°С. Технический результат - повышение гидродесульфуризующей (ГДС) активности катализатора в гидроочистке масляного сырья (RU 2497585, 06.02.2012). Недостатком катализатора является сложный и энергоемкий способ приготовления носителя, включающий две стадии сушки и прокаливания. Кроме того, данный катализатор в гидроочистке смеси прямогонной дизельной фракции с легким газойлем каталитического крекинга (ЛГКК) показал не высокую ГДС активность, т.к. в составе ЛГКК в значительных количествах содержатся ингибиторы ГДС, например, соединения азота, ненасыщенные углеводороды - олефины и ароматические углеводороды. Для того, чтобы достичь высокой ГДС активности в гидроочистке смешанного сырья, катализатор должен иметь высокую устойчивость к ингибированию данными соединениями.

Отличительным признаком предлагаемого изобретения является совокупность предлагаемых решений, включающая: способ приготовления катализатора, отличающегося составом и способом приготовления носителя, представляющего собой композитный материал, состоящий из смеси оксидов ZnO и Al2O3 состава; полученный путем смешения гидроксидов Zn и Al, их пептизации раствором органической кислоты (ледяной СН3СООН), экструзии, сушки при температурах 60-80-100°С, прокаливания при конечной температуре 550°С; пропитку носителя раствором соединений металлов VI и VIII групп из совместного пропиточного раствора, содержащего фосфорно-молибденовый и/или фосфорно-вольфрамовый гетерополикомплекс, ионы металлов VIII группы (Me2+), органический комплексообразователь из ряда оксикислот (лимонная, винная, яблочная, щавелевая кислоты); способ приготовления катализатора, отличающийся тем, что содержание ZnO в катализаторе составляет от 0,1 до 10% масс.; способ приготовления катализатора, отличающийся тем, что мольное отношение ZnO к Al2O3 составляет от 0,1 до 12,4; способ приготовления катализатора, отличающийся тем, что количество органической кислоты (СН3СООН) для пептизации составляет от 0,1 до 0,5 мл ледяной СН3СООН на 100 г массы смеси гидроксидов; способ приготовления катализатора, отличающийся тем, что мольное отношение Me к комплексообразователю (-СООН) в составе пропиточного раствора составляет от 2 до 4; катализатор гидроочистки нефтяных фракций, содержащий оксид кобальта и/или оксид никеля, фосфорно-молибденовый и/или фосфорно-вольфрамовый гетерополикомплекс, при следующем содержании компонентов, масс. %: СоО или NiO 3,0-5,0; MoO3 14,0-20,0; WO3 6,0-20,0; P2O5 0,3-0,8; ZnO от 0,1 до 10,0; оксид алюминия - остальное.

Катализаторы испытывали в виде частиц размером 0,25-0,5 мм, приготовленных путем измельчения и рассеивания исходных гранул прокаленного катализатора. Загрузка катализатора 20 см3. Катализаторы сульфидировали в испытательном реакторе при атмосферном давлении и температуре 400°С в смеси 20% об. H2S и Н2 в течение 2 часов. Испытания активности катализаторов проводили на лабораторной проточной установке под давлением водорода. Испытание одного образца катализатора проводилось в непрерывном круглосуточном режиме в течение 48-60 ч. Испытания в гидроочистке прямогонной дизельной фракции (ПДФр) и смеси ПДФр с ЛГКК 4:1 об. проводили при следующих условиях: температура 340°С; давление водорода 4,0 МПа; ОСПС 2,0 ч-1; соотношение водород/сырье 350 нл/л; объем катализатора 10 см. Полученные гидрогенизаты отбирали с периодичностью 1 ч в течение 10-15 ч при одних и тех же параметрах ведения процесса. Отобранные пробы гидрогенизатов обрабатывали 15%-ным раствором NaOH в течение 15 мин для удаления растворенного сероводорода. Обработанные пробы промывали дистиллированной водой до нейтральной реакции и осушали хлоридом кальция.

Образцы полученных нефтепродуктов исследуются далее с использованием современных методов физико-химического анализа и требованиями ГОСТ (ASTM), в том числе содержание серы с точностью определения в пределах ± 5 ppm (ГОСТ 51947). Активность катализаторов в реакции гидродесульфуризации (ГДС) оценивали по содержанию серы в гидрогенизатах. Сырье: прямогонная дизельная фракция с содержанием серы 0,9090% масс. (9090 ppm), и смеет ПДФр с ЛГКК 4:1 об. с содержанием серы 1,211% масс. (12110 ppm). Гидрогенизаты отделяли от водорода в сепараторе при давлении, практически равном давлению в реакторе и температуре 20°С, затем подвергали обработке 10%-ным раствором NaOH в течение 10 мин, отмывали дистиллированной водой до нейтральной реакции промывных вод, высушивали в течение суток над прокаленным CaCl2. Содержание серы определяли с помощью рентгенофлюоресцентного анализатора. Брали среднее значение из трех параллельных измерений. Содержание активных компонентов было определено в катализаторах, специально прокаленных при 550°С, с помощью рентгенофлюоресцентного анализатора. Характеристика и результаты испытания катализаторов представлены в табл. 1.

Пример 1

Для приготовления катализатора было взято 82,3 г Al2O3 и 0,1 г Zn(OH)2, пептизировали 0,5 мл ледяной уксусной кислоты. Носитель был высушен при 60, 80, 100°С по 2 часа, температура прокаливания носителя - 550°С, время прокаливания 2 часа. Прокаленный носитель был пропитан совместным раствором, содержащим 14,8 г фосфорномолибденовой гетерополикислоты, 5,9 г оксикарбоната кобальта (содержание СоО равно 50,70% мас.), органический комплексообразователь - лимонную кислоту в количестве 3,8 г. Готовый катализатор был высушен при температуре 110°С. В прокаленном катализаторе содержится, % масс.: МоО3 14,0; СоО 3,0; P2O5 0,6; ZnO 0,1; Al2O3 82,3.

Пример 2

Для приготовления катализатора было взято 76,9 г Al2O3 и 0,6 г Zn(OH)2, пептизировали 0,3 мл ледяной уксусной кислоты. Носитель был высушен при 60, 80, 100°С по 2 часа, температура прокаливания носителя - 550°С, время прокаливания 2 часа. Прокаленный носитель был пропитан совместным раствором, содержащим 19,0 г фосфорномолибденовой гетерополикислоты, 7,7 г оксикарбоната кобальта (содержание СоО равно 50, 70% мас.), органический комплексообразователь - лимонную кислоту в количестве 3,3 г. Готовый катализатор был высушен при температуре 110°С. В прокаленном катализаторе содержится, % масс.: МоО3 18,0; СоО 3,9; P2O5 0,7; ZnO 0,5; Al2O3 76,9.

Пример 3

Для приготовления катализатора было взято 72,2 г Al2O3 и 2,5 г Zn(OH)2, пептизировали 0,1 мл ледяной уксусной кислоты. Носитель был высушен при 60, 80, 100°С по 2 часа, температура прокаливания носителя - 550°С, время прокаливания 2 часа. Прокаленный носитель был пропитан совместным раствором, содержащим 21,1 г фосфорномолибденовой гетерополикислоты, 9,9 г оксикарбоната кобальта (содержание СоО равно 50,70% мас.), органический комплексообразователь - яблочную кислоту в количестве 2,2 г. Готовый катализатор был высушен при температуре 110°С. В прокаленном катализаторе содержится, % масс.: MoO3 20,0; СоО 5,0; P2O5 0,8; ZnO 2,0; Al2O3 72,2.

Пример 4

Для приготовления катализатора было взято 74,5 г Al2O3 и 5,0 г Zn(OH)2, пептизировали 0,5 мл ледяной уксусной кислоты. Носитель был высушен при 60, 80, 100°С по 2 часа, температура прокаливания носителя - 550°С, время прокаливания 2 часа. Прокаленный носитель был пропитан совместным раствором, содержащим 6,3 г фосфорномолибденовой гетерополикислоты, 12,6 г фосфорновольфрамовой гетерополикислоты, 5,9 г оксикарбоната никеля (содержание NiO равно 50,85% мас.), органический комплексообразователь - щавелевую кислоту в количестве 1,8 г. Готовый катализатор был высушен при температуре 110°С. В прокаленном катализаторе содержится, % масс.: МоО3 6,0; WO3 12,0; NiO 3,0; P2O5 0,5; ZnO 4,0; Al2O3 74,5.

Пример 5

Для приготовления катализатора было взято 77,7 г Al2O3 и 7,5 г Zn(OH)2, пептизировали 0,3 мл ледяной уксусной кислоты. Носитель был высушен при 60, 80, 100°С по 2 часа, температура прокаливания носителя - 550°С, время прокаливания 2 часа. Прокаленный носитель был пропитан совместным раствором, содержащим 2,1 г фосфорномолибденовой гетерополикислоты, 10,5 г фосфорновольфрамовой гетерополикислоты, 7,9 г оксикарбоната никеля (содержание NiO равно 50,85% мас.), органический комплексообразователь - винную кислоту в количестве 2,7 г.Готовый катализатор был высушен при температуре 110°С. В прокаленном катализаторе содержится, % масс.: MoO3 2,0; WO3 10,0; NiO 4,0; P2O5 0,3; ZnO 6,0; Al2O3 77,7.

Пример 6

Для приготовления катализатора было взято 64,5 г Al2O3 и 12,5 г Zn(OH)2, пептизировали 0,1 мл ледяной уксусной кислоты. Носитель был высушен при 60, 80, 100°С по 2 часа, температура прокаливания носителя - 550°С, время прокаливания 2 часа. Прокаленный носитель был пропитан совместным раствором, содержащим 20,9 г фосфорновольфрамовой гетерополикислоты, 9,8 г оксикарбоната никеля (содержание NiO равно 50,85% мас.), органический комплексообразователь - винную кислоту в количестве 2,5 г. Готовый катализатор был высушен при температуре 110°С. В прокаленном катализаторе содержится, % масс.: WO3 20,0; NiO 5,0; P2O5 0,5; ZnO 10,0; Al2O3 64,5.

1. Способ приготовления катализатора гидроочистки нефтяных фракций, включающий пропитку носителя раствором соединений металлов VI группы и оксикарбоната никеля или кобальта, из совместного пропиточного раствора, содержащего фосфорно-молибденовый или фосфорно-вольфрамовый гетерополикомплекс и ионы металлов никеля или кобальта Me2+, отличающийся тем, что носитель представляет собой композитный материал, состоящий из смеси оксидов ZnO и Al2O3 состава, полученный путем смешения гидроксидов Zn и Al, их пептизации раствором органической кислоты (ледяной СН3СООН), экструзии, сушки при температурах 60-80-100°С, прокаливания при конечной температуре 550°С.

2. Способ по п. 1, отличающийся тем, что содержание ZnO в катализаторе составляет от 0,1 до 10 мас.%.

3. Способ по п. 1, отличающийся тем, что количество органической кислоты (СН3СООН) для пептизации составляет от 0,1 до 0,5 мл ледяной СН3СООН на 100 г массы смеси гидроксидов.

4. Способ по п. 1, отличающийся тем, что пропиточный раствор содержит органический комплексообразователь из ряда оксикислот (лимонная, винная, яблочная, щавелевая кислоты).

5. Способ по п. 1, отличающийся тем, что мольное отношение Ме2+ к комплексообразователю (-СООН) в составе пропиточного раствора составляет от 2 до 4.

6. Катализатор гидроочистки нефтяных фракций, полученный способом по п. 1, содержащий оксид кобальта или оксид никеля, фосфорно-молибденовый или фосфорно-вольфрамовый гетерополикомплекс, при следующем содержании компонентов, мас.%:

СоО или NiO 3,0-5,0
MoO3 14,0-20,0
WO3 6,0-20,0
P2O5 0,3-0,8
ZnO от 0,1 до 10,0
оксид алюминия остальное



 

Похожие патенты:

Изобретение относится к каталитической композиции для гидроочистки, содержащей обожженный формованный материал подложки из неорганического оксида, пропитанный в одну стадию пропитки никельсодержащим или кобальтсодержащим компонентом, молибденсодержащим компонентом и фосфорсодержащим компонентом и высушенный без обжига, и в который включена добавка в виде соединения ацетоуксусной кислоты, причем данная каталитическая композиция является несульфидированной.

Настоящее изобретение относится к дисперсному катализатору облагораживания тяжелого нефтяного сырья, представляющему из себя наночастицы на основе молибденсодержащих фаз, формирующемуся «in situ» при облагораживании тяжелого нефтяного сырья в присутствии воды, согласно изобретению катализатор дополнительно содержит наночастицы сокатализатора на основе Fe, Co или Ni и имеет состав MoS2/MoO2 + MexOy и/или MemSn, с содержанием фазы MoS2 3–78 мас.

Разработан активный катализатор гидрообработки, предназначенный для использования в процессах конверсии углеводородов: гидроденитрификации, гидрообессеривания, гидродеметаллирования, гидродесиликации, гидродеароматизации, гидроизомеризации, гидроочистки, гидрофайнинга и гидрокрекинга.
Предложены катализатор, пригодный для удаления мышьяка из углеводородного сырья, способ его получения и способ гидроочистки углеводородного сырья, содержащего соединения мышьяка.

Изобретение относится к области производства катализаторов гидроочистки. Описан катализатор гидроочистки вакуумного газойля, состоящий из MoO3, WO3 и NiO, содержание в прокаленном катализаторе MoO3 составляет 1,5-7,5 мас.

Изобретение относится к способам очистки дизельного топлива от соединений кремния. Описан способ, заключающийся в превращении дизельных фракций, выкипающих до 360°С, содержащих до 200 ppm кремния, до 1,0% серы, до 200 ppm азота, имеющих плотность до 0,87 г/см3 при объемной скорости подачи сырья через катализатор защитного слоя - 5-20 ч-1, соотношении Н2/сырье = 250-650 нм3 Н2/м3 сырья, давлении 3-8 МПа, температуре 340-380°С в присутствии катализатора, содержащего молибден и никель в форме алюмогетерополимолибдата никеля со структурой Андерсена NiH[Al(OH)6Mo6O18] - 5,5-7,7 мас.% и в форме молибдата никеля NiMoO4 - 4,6-6,4 мас.%; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; γ-Al2O3 - остальное.

Изобретение относится к способам приготовления катализаторов защитного слоя, располагаемых перед основным катализатором гидроочистки углеводородного сырья для предотвращения его отравления соединениями кремния, содержащимися в сырье гидроочистки.

Изобретение относится к катализаторам защитного слоя, располагаемым перед основным катализатором гидроочистки углеводородного сырья для предотвращения его отравления соединениями кремния, содержащимися в сырье гидроочистки.

Изобретение относится к способам получения малосернистых дизельных топлив. Изобретение относится к способу, заключающемуся в превращении смесевых и прямогонных дизельных фракций с высоким содержанием серы при температуре 340-380°C, давлении 3,5-8,0 МПа, массовом расходе сырья 1,0-2,5 ч-1, объемном отношении водород/сырье 300-500 м3/м3 в присутствии гетерогенного катализатора, содержащего, мас.%: [Со(H2O)2(C6H5O7)]2[Mo4O11(C6H5O7)2] - 7,7-32,0; Co2[H2P2Mo5O23] - 11,1-29,0; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; γ-Al2O3 - остальное, что после сульфидирования по известным методикам соответствует содержанию, мас.%: Мо - 10,0-16,0; Со - 2,7-4,5; Р - 0,8-1,8; S - 6,7-10,8; носитель - остальное, при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; γ-Al2O3 - остальное.

Изобретение относится к способу подготовки катализаторов гидроочистки к окислительной регенерации путем обработки пассивированного сульфидного катализатора, содержащего NiO, V2O5, Fe3O4, смесью бутилцеллозольва и нефраса, в которой растворен комплексообразователь, выбранный из щавелевой, винной или лимонной кислоты.

Изобретение может быть использовано в химической промышленности при получении адсорбентов, катализаторов гидрогенизации органических соединений газообразным водородом.

Изобретение может быть использовано в химической промышленности при получении адсорбентов, катализаторов гидрогенизации органических соединений газообразным водородом.

Настоящее изобретение относится к области гидрокрекинга каталитического дизельного масла. Описан катализатор гидрокрекинга дизельного масла, включающий подложку, компонент - активный металл и углерод, в котором, в пересчете на общую массу катализатора, содержание подложки составляет 60-90% масс., содержание компонента - активного металла в пересчете на оксиды металла составляет 15-40 % масс., и содержание углерода в пересчете на элементный С составляет 1-5% масс., причем сумма долей компонентов в катализаторе составляет 100% масс., в котором подложка представляет собой подложку на основе оксидов кремния и алюминия, которая содержит модифицированные молекулярные сита Y-типа, металл в компоненте - активном металле выбран из металлов - элементов VIII группы и/или металлов - элементов VIB подгруппы, источник углерода выбран из газообразного или жидкого углеродного материала; при этом содержание металлов - элементов VIII группы в пересчете на оксиды металла составляет 2-15% масс., а содержание металлов - элементов VIB подгруппы в пересчете на оксиды металла составляет 10-30% масс., на поверхности катализатора атомное отношение металлов - элементов VIII группы к Al составляет (0,2-0,5):1, и атомное отношение металлов - элементов VIB подгруппы к Al составляет (0,4-0,8):1; при этом полученные с помощью способа оценки кислотности методом инфракрасной спектроскопии кислотные свойства катализатора гидрокрекинга следующие: общее количество кислоты по данным метода инфракрасной спектроскопии составляет 0,4-0,8 ммоль/г, причем количество кислоты по данным метода инфракрасной спектроскопии для сильной кислоты с температурой десорбции выше 350°C составляет 0,08 ммоль/г или ниже, а отношение общего количества кислоты по данным метода инфракрасной спектроскопии к количеству кислоты по данным метода инфракрасной спектроскопии для сильной кислоты с температурой десорбции выше 350°C составляет 5-50, и описывает катализатор гидрокрекинга, способ его получения и его применение, а также способ гидрокрекинга каталитического дизельного масла.

Изобретение относится к кристаллическому бис-аммиачному молибдовольфрамату переходного металла и к его использованию в качестве катализатора гидрообработки. Заявлен материал кристаллического бис-аммиачного молибдовольфрамата переходного металла, имеющий формулу: (NH3)2-nM(OH2)nMoxWyOz, где «n» находится в диапазоне от 0,1 до 2,0; «М» представляет собой металл, выбранный из Mg, Mn, Fe, Co Ni, Cu, Zn и их смесей; «х» находится в диапазоне от 0,5 до 1,5; «у» находится в диапазоне от 0,01 до 0,25; сумма (x+y) должна быть ≤1,501; «z» представляет собой число, которое соответствует сумме валентностей M, Mo и W.

Настоящее изобретение относится к структуре для использования в процессах катализа и адсорбции, содержащей многослойные покрытые подложки и каналы между прилегающими многослойными покрытыми подложками, в которой каждая многослойная покрытая подложка содержит подложку, имеющую первую и вторую стороны, и композиционный материал по меньшей мере на первой стороне подложки, причем данный композиционный материал содержит активный материал, выбранный из катализатора или адсорбента, и имеющую отличительные признаки на поверхности композиционного материала, выбранные из канавок, холмов, плато, колонн, цилиндров, бугров, конусов или любого их сочетания, созданные посредством печати, штамповки, формования, волочения или трехмерной печати; и при этом каналы образованы при контакте отличительных признаков в покрытии на первой стороне многослойной структуры со стороной прилегающей многослойной структуры.

Предложен катализатор одностадийной переработки возобновляемого растительного сырья для получения экологически чистых компонентов моторных топлив, содержащий никель и молибден, закрепленные на поверхности пористого носителя.

Изобретение относится к области суспензионного катализа и получения катализаторов и может быть использовано в реакции синтеза Фишера-Тропша в суспензионных реакторах (сларри-реакторах).

Изобретение относится к способам приготовления катализаторов защитного слоя, располагаемых перед основным катализатором гидроочистки углеводородного сырья для предотвращения его отравления соединениями кремния, содержащимися в сырье гидроочистки.

Предложен способ получения диена, включающий дегидратацию по меньшей мере одного алкенола в присутствии по меньшей мере одного каталитического материала, содержащего по меньшей мере один кислотный катализатор на основе диоксида кремния (SiO2) и оксида алюминия (Al2O3), где в указанном катализаторе содержание оксида алюминия меньше или равно 12% масс.

Изобретение относится к области химии и может быть использовано в качестве суперионного проводника с защитным слоем и фотокатализатора с регулируемой активностью и с защитным слоем.

Изобретение относится к каталитической композиции для гидроочистки, содержащей обожженный формованный материал подложки из неорганического оксида, пропитанный в одну стадию пропитки никельсодержащим или кобальтсодержащим компонентом, молибденсодержащим компонентом и фосфорсодержащим компонентом и высушенный без обжига, и в который включена добавка в виде соединения ацетоуксусной кислоты, причем данная каталитическая композиция является несульфидированной.
Наверх