Комбинированный сепаратор




Владельцы патента RU 2700775:

федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) (RU)

Устройство относится к аппаратам для очистки промышленных сточных вод от загрязняющих веществ и может быть использовано в машиностроении, приборостроении, нефтехимии, строительной индустрии и других отраслях промышленности. Комбинированный сепаратор для очистки сточных вод содержит спиральный канал прямоугольного сечения, выполненный в виде конуса, обращенного вершиной с отводящим патрубком вниз, имеющего подвижные пластины с прорезями на внешней стороне спирали и подвижные камеры на выходе отводящего канала. Внутри спирального канала перед прорезями расположена ограничительная пластина, эквидистантная стенке спирали и образующая конфузорный канал перед прорезью. Подвижные камеры расположены друг над другом и заполнены ионообменными гранулами: анионитом в одной и катионитом в другой. Камеры снабжены патрубками подачи и отвода регенерирующих растворов. Подвижные камеры могут вращаться от внешнего привода с различными скоростями, и регулирование скоростей обеспечивается торовым вариатором. Технический результат: повышение качества очистки, расширение диапазона использования и увеличение производительности процесса. 2 з.п. ф-лы, 4 ил.

 

Предлагаемое устройство относится к аппаратам для очистки промышленных сточных вод от загрязняющих веществ и может быть использова6но в машиностроении, приборостроении, нефтехимии, строительной индустрии и других отраслях промышленности для очистки производственных вод от взвешенных и растворенных загрязнителей.

Известны устройства для очистки промышленных сточных вод от загрязняющих веществ и они имеют различные диапазоны применения. Для очистки от взвешенных веществ используют механические методы - отстаивание, центробежное разделение - фильтрацию, физико-химические методы - флотацию

Коагуляцию и др. Для очистки от растворенных веществ применяют реагентные методы, ионный обмен и др. Все эти процессы реализуются в различных устройствах. В реальных условиях сточные воды содержат загрязняющие вещества различного агрегатного состояния - как взвешенные компоненты, так и растворенные вещества. Поэтому приходится для очистки создавать системы из нескольких последовательных аппаратов очистки. Например, фирма «Кащукава Кечио» разработала схему (см. кн. «Инженерная защита поверхностных вод от промышленных стоков». Учебн. Пособие / Д.А. Кривошеин, П.П. Кукин, В.Л. Лапин и др. - М. Высшая школа. 2003 - 344 с., рис. 6.26, стр. 195) в которой установлены последовательно несколько устройств (механический фильтр с антрацитовой загрузкой, сорбционный угольный фильтр, далее катионитный и анионитный фильтры, причем, таких линий две, одна из которых работает в режиме очистки, а другая в режиме регенерации.

В работе (Тимонин А.С. Инженерно-экологический справочник. Т. 2 - Калуга. Изд. Н. Бочкаревой. 2003 - 884 с) приводится схема (рис. 9.6, 9.7, стр. 138, 139) в которых с указанием ряда последовательных устройств (механические, сорбционные и ионнообменные аппараты). Все приведенные схемы систем очистки сточных вод содержат большое количество устройств и аппаратов, являются материалоемкими, энергозатратными и занимают значительные производственные площади.

Известны устройства, в которых реализуются несколько факторов очистки. Например, в устройстве по а.с. №785203 «Устройство для очистки сточных вод». Бюл. №45 от 07.12.80 г. В одном аппарате осуществляется центробежное разделение, фильтрация и флотация. Однако, в таком устройстве растворенные загрязнители не задерживаются и для их очистки необходим еще один агрегат.

Известно устройство (патент №158792 на полезную модель, бюл. №2 от 20.01.2016 г.), в котором реализуется центробежное разделение и очистка от взвешенных веществ и сорбция твердым поглотителем с непрерывной регенерацией сорбента. Данное устройство принято нами за прототип. Недостатками прототипа следующие. Во-первых, наличие отгибов стенки спирального канала в области прорезей увеличивает гидравлическое сопротивление тракта и турбулизирует поток жидкости, ухудшая центробежную сепарацию.

Во-вторых, подвижная камера, заполненная ионнообменными гранулами, позволяет очищать воду от растворенных загрязнителей только одного вида (соответственно, катионов или анионов) в зависимости от вида гранулированной засыпки (катионита или анионита). Для катионитов регенерирующим раствором является кислота, а для анионитов - щелочнрй раствор. Если засыпка будет состоять из смеси гранул анионита и катионита, то весь состав будет только одноразового употребления, что существенно удорожает весь процесс очистки воды. В случае прямого использования прототипа с засыпкой одного вида, для очистки от загрязнителей противоположного по знаку вида, необходимо всю установку переналаживать, менять засыпку в подвижной камере и повторять весь цикл очистки, что снижает в два раза производительность процесса.

Технический результат, на достижение которого направлено предлагаемое устройство - повышение качества очистки, расширение диапазона использования и увеличение производительности процесса очистки.

Поставленная цель достигается тем, что в устройстве для очистки сточных вод, содержащем спиральный канал прямоугольного сечения, выполненный в виде конуса вершиной с отводящим патрубком вниз, имеющее подвижные прорези на внешней стороне спирали и подвижную камеру на выходе отводящего канала, заполненную ионообменными гранулами, внутри спирального канала, перед подвижными пластинами с прорезями расположена ограничительная пластина, эквидистантная стенке спирали и образующая конфузорный канал перед прорезью, а на выходе отводящего канала имеются две подвижные камеры, заполненные ионообменными гранулами (анионитом в одной и катионитом в другой) с устройством регенерации, при этом две подвижные камеры, заполненные анионитом и катионитом, могут вращаться с различными скоростями и регулирование скоростей обеспечивается торовым вариатором.

Предлагаемое устройство представлено на:

Фиг. 1 - общий вид устройства,

Фиг. 2 - сечение А-А (привод с торовым вариатором),

Фиг. 3 - вид I (прорезь для отвода шлама и ограничительная пластина).

Фиг. 4 - конфузрный пристеночный канал.

1 - патрубок отвода шлама

2 - спиральный канал прямоугольного сечения

3 - общий канал отвода шлама

4 - патрубок подвода исходной загрязненной воды

5 - патрубок отвода воды из спирального канала

6 - патрубок для раствора №1

7 - подвижная камера (камера 1)

8 - ионообменные гранулы

9 - патрубок

10 - червячное колесо

11 - червяк на червячном колесе

12 - патрубок

13 - червяк на червячном колесе

14 - червячное колесо

15 - патрубок

16 - подвижная камера

17 - ионообменные гранулы

18 - патрубок для раствора №2

19 - привод

20 - пружина

21 - торовое колесо

22 - сателлит

23 - рычаг регулирования

24 - ведомое торовое колесо

25 - пружина

26 - ограничительная пластина

27 - подвижная пластина

28 - коническая шестерня

29 - коническая шестерня

Комбинированный сепаратор предоставляет собой спиральный канал прямоугольного сечения 2, выполненный в виде конуса вершиной вниз. В верхней части канала 2 расположен патрубок подвода исходной загрязненной воды 4. В нижней части конического канала 2 находится патрубок 5 отвода воды из спирального канала. На внешней стороне спирального канала 2 находится несколько подвижных пластин 27 с прорезью, расположенных по длине гидравлического тракта на каждом витке спирали. Перед прорезью установлена ограничительная пластина 26, эквидистантная стенка спирали и образующая конфузорный канал перед прорезью. Все окна с прорезью объединены в общий канал отвода шлама 3, который оканчивается патрубком отвода шлама 1.

Под патрубком отвода воды 5 расположены подвижные камера 7 (камера 1) и камера 16 (камера 2) одна над другой, с вертикальной осью вращения. Внутри камер 7 и 16 имеется гранулированная засупка из ионообменного материала. В одном из них находится состав 1 (анионит 8), а в другом состав 2 (катионит 17). Засыпка в подвижных камерах сверху и снизу ограничивается непровальными сетками. Подвижные камеры 7 и 16 приводятся во вращение от внешнего привода 19. Вращение от привода 19 передается через торовые колеса 21 и 24 с коническими зубьями, конические шестерни 28 и 29. Передача вращения от торового колеса 21 к торовому колесу 24 осуществляется через сателлит 22, положение которого определяется регулировочным рычагом 23. Необходимый контакт торовых колес 21 и 24 с коническими шестернями 29 и 28 и сателлитом 22 обеспечивается пружиной №1-20 и пружиной №2-25. Вращение от конических шестерен 28 и 29 передается на соответствующие червяки 11 и 13, которые вращают червячные колеса 10 и 14 связанные с камерами 7 и 16. Соосно с патрубком отвода 5, под подвижными камерами 7 и 16 расположен патрубок отвода очищенной воды 12. Диаметрально противоположно патрубкам5 и 12, над каждой камерой 7 и 16 расположены патрубки подачи регенерирующих растворов 6 и 18. Патрубок 6 для раствора №1и патрубок 18 для подачи раствора №2. Под каждой подвижной камерой имеются патрубки отвода регенерирующих растворов - соответственно под патрубком 6 находится патрубок 9 для раствора №1, а под патрубком 18 для раствора №2. Выбор регенерирующих растворов определяется составом ионообменного материала, находящегося в подвижных камерах 7 и 16. Если в камере 7 находится засыпка из анионита, то регенерирующим раствором №1 должен быть щелочной состав, и, соответственно, если в камере 16 находится засыпка из катионита, то реагирующий раствор №2 должен быть кислый состав.

Комбинированный сепаратор работает следующим образом. Производится настройка и регулирование элементов и режимов работы сепаратора, исходя из анализа вида и состава загрязняющих компонентов в исходной очищенной воде. Регулирование спирального канала 2 базируется на составе и исходной концентрации взвешенных и веществ в очищенной воде общем расходе жидкости. В зависимости от этих параметров регулируется положение прорезей вместе с подвижной пластиной 27. Регулируется и скорость движения жидкости в спиральном канале, путем дросселирования во входном патрубке 4.

В зависимости от химсостава и концентрации загрязняющих растворенных веществ выбирается гранулированная засыпка для подвижных камер 7 и 16 (соответственно анионит 8 и катионит 17). В зависимости от изотерм ионообменной сорбции каждого ионита выбирается скорость вращения подвижных камер 7 и 16, которая будет обеспечивать полное использование ионообменной емкости каждого ионита. Исходя из концентрации каждого загрязнителя и изотерм сорбции выбирается необходимая скорость вращения каждой подвижной камеры 7 и 16. Необходимые скорости вращения подвижных камер 7 и 16 могут быть различными, поэтому используя рычаг регулирования 23 можно обеспечить нужную скорость. Передаточное отношение между ведущим колесом 21 и ведомым колесом 24 определяется отношением диаметров Д1 и Д2. Выбранный торовый вариатор может обеспечить бесступенчатое регулирование камер 7 и 16 в диапазоне от 0.4 до 2.5. Таким образом, после настройки комбинированного сепаратора происходит очистка загрязненной жидкости, сначала осуществляется отделение от взвешенных веществ в спиральном канале 2, за счет центробежных сил. Частицы загрязнителя отбрасываются к стенке камеры и в виде слоя сгущенного шлама движутся по стенке канала. Слой сгущенного шлама попадает в зону 26. За счет конфузорности в этой зоне скорость жидкости возрастает и слой шлама, достигая прорези на пластинке 27отводится в канал отвода шлама 3 и удаляется через патрубок 1. Подобный процесс происходит на каждом витке спирального канала 2. Очищенная от взвешенных веществ вода через патрубок 5 сливается в подвижную камеру 7, и проходит через ионообменные гранулы 8 (состав №1), где реализуется ионный обмен, причем, при вращении камеры 7 используются новые порции ионообменных гранул. Когда используются гранулы, заполняющие половину длины подвижной камеры 7, они попадают в зону действия патрубка 6 подачи регенерирующего раствора №1 и происходит процесс десорбции, ионообменные гранулы очищаются и восстанавливается их ионообменная емкость. После этого гранулы 8, за счет движения подвижной камеры 7 опять попадают в зону патрубка 5 и весь процесс ионного обмена и регенерации повторяется. Вода, пройдя слой ионита в подвижной камере 7, попадает в зону ионита 17 (состава №2), находящегося в подвижной камере 16, в которой повторяется такой - же процесс ионного обмена в гранулах состава №2 и регенерация в зоне подачи раствора №2 через патрубок 18. Далее полностью очищенная вода от взвешенных частиц и растворенных веществ, через патрубок 12 отводится потребителю.

Таким образом, предлагаемое устройство позволяет в одном аппарате реализовать несколько различных процессов очистки - центробежное разделение с непрерывным удалением шлама, ионообменное поглощение растворенных компонентов различного состава с одновременной регенерацией ионообменных гранул и регулирование режимов работы устройства в широком диапазоне параметров, что позволяет повысить качество очистки, расширить диапазон использования и увеличить производительность процесса.

1. Комбинированный сепаратор для очистки сточных вод, содержащий спиральный канал прямоугольного сечения, выполненный в виде конуса, обращенного вершиной с отводящим патрубком вниз, имеющего подвижные пластины с прорезями на внешней стороне спирали и подвижную камеру на выходе отводящего канала, заполненную ионообменными гранулами, отличающийся тем, что внутри спирального канала перед прорезями расположена ограничительная пластина, эквидистантная стенке спирали и образующая конфузорный канал перед прорезью, а на выходе отводящего канала имеется дополнительная подвижная камера, при этом подвижные камеры расположены друг над другом и заполнены ионообменными гранулами: анионитом в одной и катионитом в другой, причем камеры снабжены патрубками подачи и отвода регенерирующих растворов.

2. Комбинированный сепаратор для очистки сточных вод по п. 1, отличающийся тем, что две подвижные камеры, заполненные анионитом и катионитом, могут вращаться с разными скоростями.

3. Комбинированный сепаратор для очистки сточных вод по п. 2, отличающийся тем, что регулирование скоростей подвижных камер осуществляется торовым вариатором, который состоит из ведущего торового колеса, сателлита и ведомого торового колеса.



 

Похожие патенты:

Изобретение относится к водоочистке и может быть использовано для безреагентной очистки карьерных и отвальных вод от взвешенных веществ, тяжелых металлов, солей и болезнетворных бактерий.

Изобретение относится к способу безреагентной очистки и обеззараживания воды. Способ включает обработку гидроакустическими волнами звукового и ультразвукового диапазона частот с амплитудой акустического давления не менее 104 Па на расстоянии 1 м от поверхности излучателя в главном модуле, в качестве которого используют оголовок водозабора, в первом дополнительном модуле, в качестве которого используют водоприемный колодец, во втором дополнительном модуле, в качестве которого используют смеситель.

Изобретение может быть использовано при добыче нефти, газа для промышленно-бытового потребления для опреснения морской воды, а также любой соленой или пластовой воды химическими реагентами.

Изобретение может быть использовано в водоочистке. Установка содержит установленные по ходу технологического процесса блок реагентных емкостей, блок реагентной обработки, блок флокулирования и осаждения загрязнений, блок отделения и обезвоживания осадка, узлы озонирования и ультрафиолетового обеззараживания, систему трубопроводов с запорно-регулирующей арматурой, рН-метры, циркуляционные и дозирующие насосы, расходомеры и автоматизированную систему контроля параметров проведения технологического процесса.

Изобретение относится к экологии и может быть использовано для обеззараживания и очистки водопроводной воды в жилых и/или общественных зданиях, показатель загрязненности которой по химической и бактериологической потребности кислорода ПЗ=(ХПК+БПК) превышает установленные Госсанэпиднадзором нормы для питьевой воды.

Изобретение относится к экологии и может быть использовано в жилищно-коммунальном хозяйстве, в промышленности, в сельском хозяйстве, аварийными службами и военными подразделениями для быстрого обеззараживания и быстрой очистки загрязненной воды.

Изобретение может быть использовано в водоочистке. Подготовка сточных вод свеклосахарных заводов для сельскохозяйственного использования осуществляется в две стадии.

Изобретение может быть использовано в водоподготовке для предварительной очистки питьевой воды, оборотных, промышленных и бытовых сточных вод, при обезвоживании осадков.

Изобретение относится к области очистки воды, в частности к способу регенерации моющих и обезжиривающих растворов. Способ включает отстаивание с отделением масла от водной фазы с последующей обработкой последней химическим реагентом и фильтрацией.

Изобретения могут быть использованы на станциях водоподготовки для очистки воды от содержащихся в ней взвешенных примесей. Для осуществления способа непрерывно измеряют исходную концентрацию загрязнений в воде до ее поступления в обработку, последовательно вводят загрязненную воду в зону коагуляции, флокуляции и осаждения с подачей в эти зоны необходимого количества коагулянта, балласта и флокулянта, отделяют в верхней части зоны осаждения обработанную воду от смеси осадка и балласта и направляют на гидроциклонное разделение.

Изобретение может быть использовано для очистки промышленных сточных вод, загрязненных остатками промывных вод отделочно-красильных производств текстильной промышленности.

Изобретения могут быть использованы в сельском хозяйстве в технологии получения растворов минеральных удобрений, используемых для фертигации - орошения и одновременного внесения удобрений при возделывании сельскохозяйственных культур.

Изобретение может быть использовано для получения деаэрированной и декарбонизированной воды и ее использования в теплоэнергетике. Способ дегазации воды включает предварительное осветление исходной воды, подачу в Na-катионитовые фильтры, при этом жесткость умягченной воды поддерживают в пределах 0,02-0,1 мг-экв/л.

Группа изобретений относится к переработке природных солоноватых вод с получением растворов минеральных удобрений, предназначенных для фертигации: орошения и одновременного внесения удобрений при возделывании сельскохозяйственных культур, и может быть использована в сельском хозяйстве.

Группа изобретений может быть использована в сельском хозяйстве в регионах поливного земледелия для фертигации: орошения и одновременного внесения минеральных удобрений в виде растворов.

Изобретение может быть использовано в водоочистке. Узел 100 водоочистителя включает в себя установочную часть 12 с интерфейсом 111 для фильтрующего картриджа с одной стороны множества водоводов 11 и водопропускную панель 13 с интерфейсом 112 для электрического элемента и водопропускным интерфейсом 114 с другой стороны множества водоводов 11.

Изобретение относится к области водоснабжения населения, а также очистки технологических вод предприятий, сточных вод и может быть использовано в пищевой промышленности.

Изобретение относится к области водоочистки и водоподготовки и может быть использовано для очистки питьевых, технических и сточных вод для хозяйственно-питьевого, промышленного и сельскохозяйственного водоснабжения на фильтрующих установках, использующих совместно процессы озонирования и сорбции.

Изобретение может быть использовано при проведении лабораторного анализа в медицинской, радиотехнической, электронной, фармацевтической промышленности. Водопроводную воду подвергают последовательной многостадийной очистке, включающей механическую фильтрацию, сорбцию на активированных углях, обратный осмос, дистилляцию и деионизацию с использованием фильтров с ионообменными смолами смешанного действия, предназначенных для удаления из воды остатков солей посредством катионного и анионного обмена.
Изобретение относится к технологии очистки бытовых и промышленных сточных вод. Способ очистки сточной воды от загрязнений включает реагентную обработку очищаемой воды и последующее отделение присутствующих в ней загрязнений с получением очищенной воды.

Изобретение относится к водоочистке и может быть использовано для безреагентной очистки карьерных и отвальных вод от взвешенных веществ, тяжелых металлов, солей и болезнетворных бактерий.

Устройство относится к аппаратам для очистки промышленных сточных вод от загрязняющих веществ и может быть использовано в машиностроении, приборостроении, нефтехимии, строительной индустрии и других отраслях промышленности. Комбинированный сепаратор для очистки сточных вод содержит спиральный канал прямоугольного сечения, выполненный в виде конуса, обращенного вершиной с отводящим патрубком вниз, имеющего подвижные пластины с прорезями на внешней стороне спирали и подвижные камеры на выходе отводящего канала. Внутри спирального канала перед прорезями расположена ограничительная пластина, эквидистантная стенке спирали и образующая конфузорный канал перед прорезью. Подвижные камеры расположены друг над другом и заполнены ионообменными гранулами: анионитом в одной и катионитом в другой. Камеры снабжены патрубками подачи и отвода регенерирующих растворов. Подвижные камеры могут вращаться от внешнего привода с различными скоростями, и регулирование скоростей обеспечивается торовым вариатором. Технический результат: повышение качества очистки, расширение диапазона использования и увеличение производительности процесса. 2 з.п. ф-лы, 4 ил.

Наверх