Ротор для турбомашины

Ротор для турбомашины содержит множество сегментов ротора, оснащенных центральным отверстием и расположенных на одной оси рядом друг с другом, отдельный продолжающийся через отверстия сегментов ротора стяжной болт и два зажимных устройства, расположенных на противоположных по оси концах стяжного болта и натягивающих сегменты ротора относительно друг друга. Сегменты ротора образуют две группы сегментов ротора, между которыми расположено другое зажимное устройство. Стяжной болт содержит множество цилиндрических участков, расположенных на одной оси рядом друг с другом и относящихся к одной группе сегментов ротора. Диаметры цилиндрических участков стяжного болта постепенно уменьшаются, исходя от конца стяжного болта, образуя ступенчатый внешний профиль. Зажимные устройства содержат для натягивания множество прижимных элементов с возможностью перемещения по оси, с помощью которых сегменты ротора нагружаются осевым усилием в направлении соответствующих упорных элементов. Каждый прижимной элемент образован навинченной на внешнюю резьбу стяжного болта гайкой, расположенной в определенной сегментом ротора приемной полости и прижимающейся к этому сегменту ротора. Зажимные устройства содержат упорный элемент и выполненный с возможностью перемещения для затягивания прижимной элемент, с помощью которого сегменты ротора одной группы сегментов ротора нагружаются осевым усилием в направлении упорного элемента. Расположенные рядом цилиндрические участки стяжного болта свинчиваются друг с другом. Цилиндрический участок стяжного болта имеет продолжающееся по оси резьбовое отверстие, в которое введена наружная резьба, выполненная на открытом конце расположенного рядом цилиндрического участка стяжного болта. Изобретение позволяет повысить максимально возможную частоту вращения ротора турбомашины. 3 з.п. ф-лы, 1 ил.

 

Изобретение относится к ротору для турбомашины, содержащему множество сегментов ротора, оснащенных соответственно центральным отверстием и расположенных на одной оси рядом друг с другом, отдельный продолжающийся через отверстия сегментов ротора стяжной болт и два зажимных устройства, расположенных на противоположных по оси концах стяжного болта и натягивающих сегменты ротора относительно друг друга.

Такие роторы известны из уровня техники в разных выполнениях и, они служат в турбомашинах для преобразования видов энергии друг в друга. Например, энергию потока и/или энтальпию рабочей среды можно преобразовывать в паровой-газовой турбине в энергию вращения ротора (ротора турбины). Альтернативно, вращающийся ротор можно использовать для всасывания любого газа и его уплотнения для дальнейшего применения в рамках промышленного процесса (ротор компрессора).

Известные роторы содержат множество сегментов ротора, оснащенных соответственно центральным отверстием и расположенных на одной оси рядом друг с другом. Некоторые из сегментов ротора выполнены в виде, так называемых дисков рабочего колеса, несущих соответственно венец радиально продолжающихся лопаток (рабочих лопаток). Кроме того, такой ротор содержит, по меньшей мере, один продолжающийся через отверстия сегментов ротора центральный стяжной болт. На противоположных по оси концах стяжного болта расположены два зажимных устройства, стягивающие сегменты ротора друг с другом.

Во время эксплуатации турбомашины в стяжном болте возбуждаются колебания. При этом нужно предотвращать частоты колебания стяжного болта величиной с собственную частоту или близкой к ней, так как такие резонансные колебания стяжного болта могут приводить к нарушению функционирования турбомашины или к повреждению, или разрушению стяжного болта.

Роторы турбины эксплуатируются, как правило, с низкой частотой вращения, соответствующие, по существу, промышленной частоте соответствующей электросети. Обычно собственные частоты, используемых в роторах турбины стяжных болтов, соответственно заметно выше этой частоты вращения, из-за чего вряд ли возможно возникновение вредных резонансных колебаний стяжного болта в ступенях турбины.

Иначе представляет собой ситуация для роторов компрессора, так как они эксплуатируются с наиболее высокими частотами вращения. Так как, чем выше частота вращения, тем больше достижимая мощность компрессора. Поскольку собственная частота стяжного болта ротора компрессора не может находиться ниже частоты вращения ротора компрессора, она является для мощности компрессора ограничивающим мощность фактором.

Исходя из этого, желательно увеличивать собственную частоту стяжного болта, в частности, ротора компрессора, определяемую, по существу, габаритами и свойствами материала стяжного болта, а также растягивающим усилием, прикладываемым к стяжному болту зажимными устройствами. Причем указанные факторы по-разному отражаются на собственной частоте стяжного болта.

Собственная частота стяжного болта тем ниже, чем длиннее свободная длина колебания стяжного болта. Вследствие множества дисков рабочего колеса и других сегментов ротора, длина ротора компрессора, а вместе с ним также проходящего через него стяжного болта, может стать вполне совместимой с относительно низкой собственной частотой стяжного болта, что сильно ограничивает возможные частоты вращения ротора компрессора.

Напротив, собственная частота стяжного болта настолько выше, чем больше прикладываемое зажимными устройствами к стяжному болту растягивающее усилие. Вследствие этого можно увеличивать собственную частоту стяжного болта посредством более сильного затягивания сегментов ротора относительно друг друга. Правда, растягивающее усилие стяжного болта нельзя увеличивать бесконечно, так как нельзя превышать максимально допустимое растягивающее усилие стяжного болта, обусловленное материалом стяжного болта и его габаритами, для предотвращения его повреждения или разрыва.

Поэтому на практике, в конструктивном плане, не всегда можно отрегулировать достаточно высокую собственную частоту стяжного болта для достижения желаемой мощности компрессора.

Эту проблему до настоящего времени решали, используя отличающиеся компоновки стяжного болта, состоящие, как правило, из нескольких, более коротких, автономно расположенных стяжных болтов. Однако недостатком этого решения является отсутствие возможности реализации преимуществ, предоставляемых отдельным центральным стяжным болтом таких, как, например, его простое изготовление и монтаж.

Другие роторы, указанного ранее типа, раскрыты в документах WO 2015/091436 A1, WO 2014/037321 A1 и JP 2006 138 255 A.

Поэтому задачей предложенного изобретения является создание усовершенствованного ротора, лишенного указанных недостатков и имеющим более высокие частоты вращения.

Для решения этой задачи с помощью данного изобретения создан ротор прежде указанной конструкции, сегменты ротора которого образуют, по меньшей мере, две группы сегментов ротора, между которыми располагается, по меньшей мере, другое зажимное устройство.

В основе изобретения лежит идея разделить сегменты ротора, по меньшей мере, на две группы сегментов ротора и предусмотреть между ними, по меньшей мере, другое зажимное устройство. Это, по меньшей мере, другое зажимное устройство используется для совместного с зажимным устройством со стороны конца натягивания сегментов ротора одной из обеих групп сегментов относительно друг друга. Сегменты ротора второй группы сегментов ротора натягивают затем посредством расположенным напротив друг друга со стороны конца зажимными устройствами относительно уже натянутой группы сегментов ротора. Таким образом первоначальная длина колебания стяжного болта делится на части между обоими зажимными устройствами со стороны конца на две более короткие длины колебания, вследствие чего первоначальная собственная частота стяжного болта заменяется двумя более высокими собственными частотами более коротких участков стяжного болта. Соответствующим образом увеличивается максимально возможная частота вращения ротора.

Стяжной болт содержит множество участков стяжного болта, расположенных на одной оси рядом друг с другом и относящихся к одной группе сегментов ротора. Такой разделенный на несколько участков стяжной болт может быть оптимально подогнан в отношении разных групп сегментов ротора и облегчать компоновку и функционирование других зажимных устройств между группами сегментов ротора.

Согласно изобретению, участки стяжного болта выполнены цилиндрическими, причем диаметры цилиндрических участков стяжного болта постепенно уменьшаются, исходя от конца стяжного болта, образуя ступенчатый внешний профиль. Такой ступенчатый стяжной болт обеспечивает простое манипулирование другими зажимными устройствами при установке и регулировке. Кроме того, такой стяжной болт можно изготавливать без проблем монолитным.

Согласно одному варианту исполнения данного изобретения, зажимные устройства содержат упорный элемент и с возможностью перемещения для затягивания прижимной элемент, с помощью которого сегменты ротора одной группы сегментов ротора нагружаются осевым усилием в направлении упорного элемента. Элементы упора и прижимной элементы представляют собой распространенные зажимные устройства для натягивания сегментов ротора относительно друг друга. При перемещении прижимного элемента в направлении упорного элемента можно нагружать сегменты ротора одной

группы сегментов ротора осевым растягивающим усилием стяжного болта.

Предпочтительно, если упорный элемент образован, по меньшей мере, сегментом ротора. Это уменьшает число необходимых зажимных устройств, а вследствие этого - необходимых для ротора компонентов.

Согласно варианту данного изобретения, по меньшей мере, один упорный элемент образован сегментом ротора, имеющим продолжающееся по оси резьбовое отверстие, в которое завинчивается выполненная на открытом конце стяжного болта наружная резьба. Этот сегмент ротора образует тогда конец стяжного болта и может служить, например, для установки ротора в корпусе турбомашины.

Согласно другому варианту данного изобретения, по меньшей мере, один упорный элемент может быть образован сегментом ротора расположенной рядом группы сегментов ротора.

Согласно изобретению, по меньшей мере, один прижимной элемент образован навинченной на наружную резьбу стяжного болта гайкой, расположенной, по меньшей мере, в определенной сегментом ротора приемной полости и прижимающейся к расположенному рядом сегменту ротора. Такие гайки представляют собой стандартизованные, легкодоступные детали, позволяющие точно регулировать приложенное на сегменты ротора усилие при соответственно небольшом шаге наружной резьбы стяжного болта.

Расположенные рядом цилиндрические участки стяжного болта могут также свинчиваться друг с другом, причем цилиндрический участок стяжного болта имеет продолжающееся по оси резьбовое отверстие, в которое завинчена наружная резьба, выполненная на открытом конце расположенного рядом цилиндрического участка стяжного болта. Разборный стяжной болт имеет преимущества при транспортировке и изготовлении. Резьбовые соединения облегчают соединение отдельных участков стяжного болта.

Другие признаки и преимущества данного изобретения становятся понятными посредством последующего описания одного варианта исполнения предлагаемого ротора со ссылкой на единственную фигуру, на которой показано поперечное сечение ротора согласно варианту исполнения данного изобретения.

На фигуре показан ротор 1 для турбомашины (не изображена), который может быть использован, например, в виде ротора компрессора в центробежном компрессоре. Ротор 1 содержит множество сегментов 2 ротора, расположенных на одной оси рядом друг с другом. Сегменты 2 ротора имеют торцевые зубья и снабжены соответственно центральным отверстием, через которые продолжается отдельный стяжной болт 3. Стяжной болт 3 содержит множество участков 4 стяжного болта, расположенных на одной оси рядом друг с другом. Участки 4 стяжного болта выполнены цилиндрическими, причем диаметры цилиндрических участков 4 стяжного болта постепенно уменьшаются, исходя от конца стяжного болта 3, образуя ступенчатый внешний профиль. Расположенные рядом цилиндрические участки 4 стяжного болта соединены друг с другом посредством резьбового соединения. Для этого соответственно один цилиндрический участок стяжного болта имеет продолжающееся по оси резьбовое отверстие 5, в которое завинчена наружная резьба 6, выполненная на открытом конце расположенного рядом цилиндрического участка 4 стяжного болта. Следует учесть, что цилиндрические участки стяжного болта могут быть также соединены или свинчены друг с другом другим способом. Возможно даже монолитное выполнение.

Кроме того, ротор 1 содержит зажимные устройства, расположенные на одной оси на противоположных концах стяжного болта 3 и натягивают сегменты 2 ротора относительно друг друга, а также другие зажимные устройства, расположенные между элементами 2 ротора.

С одной стороны, зажимные устройства содержат упорные элементы 7, в данном случае соответственно образованные сегментом 2 ротора. Для этого служащий в качестве упорного элемента 7 сегмент 2 ротора расположен на открытом конце стяжного болта 3 и имеет продолжающееся по оси резьбовое отверстие 5, в которое завинчена наружная резьба 6, выполненная на открытом конце стяжного болта 3. Однако упорные элементы 7 могут быть предусмотрены также в виде отдельных конструктивных элементов, не образующих сегмент 2 ротора.

С другой стороны, зажимные устройства содержат несколько с возможностью перемещения на одной оси для натягивания прижимных элементов 8, с помощью которых сегменты 2 ротора нагружаются осевым усилием в направлении соответственно связанных упорных элементов 7. Каждый прижимной элемент 8 образован в данном случае навинченной на наружную резьбу 6 стяжного болта 3 гайкой, расположенной в определенной сегментом 2 ротора приемной полости 9 и прижимающейся к этому сегменту 2 ротора. Однако, альтернативно, прижимные элементы могут быть образованы сегментами ротора, центральное отверстие которых сформовано, например, в виде резьбового отверстия.

Сегменты 2 ротора образуют в изображенном примере исполнения изобретения три группы 10 сегментов ротора, между которыми соответственно расположен упорный элемент 7 и прижимной элемент 8. При этом группа 10 сегментов ротора может содержать единственный сегмент 2 ротора или множество сегментов 2 ротора. Каждая группа 10 сегментов ротора соответствует одному цилиндрическому участку стяжного болта. Однако, количество групп 10 сегментов ротора может изменяться в зависимости от конструкции ротора 1.

Во время эксплуатации турбомашины ротор 1 вращается вокруг оси X вращения. Вращение ротора 1 приводит стяжной болт 3 к колебаниям, причем колебания стяжного болта 3 происходят в каждом цилиндрическом участке 4 стяжного болта изолированно. Так, как длины отдельных цилиндрических участков 4 стяжного болта короче длины всего стяжного болта 3, собственные частоты цилиндрических участков 4 стяжного болта соответственно заметно выше собственной частоты не разделенного на несколько участков стяжного болта одинаковой общей длины. Это обеспечивает, что частоты колебания стяжного болта 3 во время эксплуатации турбомашины остаются заметно ниже соответствующих собственных частот. Это надежно исключает возникновение вредных резонансных колебаний стяжного болта 3, во всяком случае, не отказываясь от присущих отдельному центральному стяжному болту 3 таких преимуществ, как, например, его простое изготовление и монтаж.

Хотя изобретение подробно проиллюстрировано и описано посредством предпочтительного примера выполнения, оно не ограничено известными примерами и, специалист может извлечь из них другие варианты, не выходя за рамки объема правовой охраны изобретения.

1. Ротор (1) для турбомашины, содержащий множество сегментов (2) ротора, оснащенных соответственно центральным отверстием и расположенных на одной оси рядом друг с другом, отдельный продолжающийся через отверстия сегментов (2) ротора стяжной болт (3) и два зажимных устройства, расположенных на противоположных по оси концах стяжного болта (3) и натягивающих сегменты (2) ротора относительно друг друга,

причем сегменты (2) ротора образуют, по меньшей мере, две группы (10) сегментов ротора, между которыми расположено, по меньшей мере, другое зажимное устройство,

причем стяжной болт (3) содержит множество цилиндрических участков (4) стяжного болта, расположенных на одной оси рядом друг с другом и соответственно относящихся к одной группе (10) сегментов ротора,

причем диаметры цилиндрических участков (4) стяжного болта (3) постепенно уменьшаются, исходя от конца стяжного болта (3), образуя ступенчатый внешний профиль,

причем зажимные устройства содержат для натягивания множество прижимных элементов (8) с возможностью перемещения по оси, с помощью которых сегменты (2) ротора нагружаются осевым усилием в направлении соответствующих упорных элементов (7),

причем каждый прижимной элемент (8) образован навинченной на внешнюю резьбу (6) стяжного болта (3) гайкой, расположенной в определенной сегментом (2) ротора приемной полости (9) и прижимающейся к этому сегменту (2) ротора,

при этом зажимные устройства содержат упорный элемент (7) и выполненный с возможностью перемещения для затягивания прижимной элемент (8), с помощью которого сегменты (2) ротора одной группы (10) сегментов ротора нагружаются осевым усилием в направлении упорного элемента (7) отличающийся тем, что расположенные рядом цилиндрические участки (4) стяжного болта свинчиваются друг с другом, причем цилиндрический участок (4) стяжного болта имеет продолжающееся по оси резьбовое отверстие (5), в которое введена наружная резьба (6), выполненная на открытом конце расположенного рядом цилиндрического участка (4) стяжного болта.

2. Ротор по п.1, отличающийся тем, что упорный элемент (7) образован, по меньшей мере, сегментом (2) ротора.

3. Ротор по п.2, отличающийся тем, что, по меньшей мере, один упорный элемент (7) образован сегментом (2) ротора, имеющим продолжающееся по оси резьбовое отверстие (5), в которое завинчивается выполненная на открытом конце стяжного болта (3) наружная резьба (6).

4. Ротор по любому из пп.1-3, отличающийся тем, что, по меньшей мере, один прижимной элемент (8) образован навинченной на наружную резьбу (6) стяжного болта (3) гайкой, расположенной, по меньшей мере, в определенной сегментом (2) ротора приемной полости (9) и прижимающейся к расположенному рядом сегменту (2) ротора.



 

Похожие патенты:

Направляющая лопатка турбомашины имеет корыто, спинку, противолежащую корыту, первый конец, второй конец и среднюю часть. Средняя часть проходит между первым концом и вторым концом.
Изобретение относится к машиностроению и может быть использовано при изготовлении и ремонте лопаток, работающих в условиях воздействия газоабразивной эрозии. Лопатка газовой турбины ГТД-110М имеет нанесенный на ее поверхность методом высокоскоростного газопламенного напыления жаростойкий подслой толщиной 150-200 мкм и керамический термобарьерный слой.

Турбомашина содержит роторный диск, имеющий периферическую часть с пазом, проходящим вокруг нее в окружном направлении и имеющим первую поверхность и вторую поверхность напротив первой, лопатку, расположенную в пазу, замыкающую лопатку, одиночный клин и ненагруженный снабженный резьбой крепежный элемент.

Изобретение относится к волокнистой заготовке лопатки газотурбинного двигателя, а также к моноблочной лопатке, полученной посредством такой заготовки, лопаточному колесу и газотурбинному двигателю, содержащим такую лопатку.

Лопаточный аппарат осевой турбомашины содержит полукруглый ряд проходящих радиально лопаток и кожух. Каждая лопатка содержит лопасть и боковые ответвления, причем у каждого ответвления есть конец с соединительной кромкой, соединенный с лопастью, и конец, радиально противоположный лопасти.

Композитная турбинная лопатка газовой турбины содержит хвостовик для установки указанной лопатки в соответствующем периферийном установочном пазу ротора, перо, соединенное с хвостовиком, а также внутреннюю несущую структуру.

Изобретение относится к машиностроению, а именно к конструкции ротора компрессора авиационного газотурбинного двигателя. Ротор компрессора газотурбинного двигателя включает диски, передние и задние торцы дисков, промежуточные кольца со штифтами фиксации.

Изобретение относится к области машиностроения и может быть использовано при контроле системы охлаждения турбинных лопаток газотурбинных двигателей. Заявлен способ контроля системы охлаждения лопаток турбины газотурбинного двигателя, характеризующийся тем, что устанавливают лопатку турбины в приспособлении, осуществляют продувку каналов охлаждения лопатки турбины рабочей средой, применяют в качестве рабочей среды воздух, оценивают бесконтактным методом систему охлаждения лопатки турбины и контролируют скорость выхода воздуха из каналов охлаждения лопаток турбины.

Роторное устройство для турбомашины содержит диск, лопатки, уплотнительный фланец, промежуточное кольцо и уплотнение. На наружной периферии диска расположены чередующиеся пазы и зубцы, проходящие в нижнем по потоку направлении на диске.

Изобретение относится к способу моделирования по меньшей мере части ванны (2) лопатки (1) турбины. Технический результат заключается в обеспечении возможности исследования разнообразной геометрии лопаток с сокращенным использованием компьютерных ресурсов.

Изобретение может быть использовано в двигателях внутреннего сгорания с турбонаддувом. Система турбонагнетателя содержит вал (161), соединенный с возможностью вращения с турбиной (164) и компрессором (162), и механизм (166) удержания вала.

Изобретение относится к машиностроению, а именно к конструкции ротора компрессора авиационного газотурбинного двигателя. Ротор компрессора газотурбинного двигателя включает диски, передние и задние торцы дисков, промежуточные кольца со штифтами фиксации.

Изобретение относится к машиностроению, а именно к конструкции ротора компрессора авиационного газотурбинного двигателя. Ротор компрессора газотурбинного двигателя включает диски, передние и задние торцы дисков, промежуточные кольца со штифтами фиксации.

Изобретение относится к элементу (1) вала турбомашины (2), способу его изготовления и турбомашине (2) с элементом (1) вала. Элемент вала имеет по меньшей мере два соединенных неразъёмно друг с другом с помощью сварного шва (23) участка (15, 16) вала.

Группа изобретений относится к области гашения вибраций рабочих лопаток бустера и компрессора авиационных газотурбинных двигателей пятого поколения. Место крепления рабочих лопаток роторов компрессора низкого и высокого давления авиадвигателей пятого поколения, выполненное в виде кольцевого выступа на внутренней и внешней поверхностях, выполненных в виде бочки роторов компрессора низкого и высокого давления, в котором выполнена кольцевая профилированная канавка со стороны внешней поверхности бочки, в которой замками «ласточкин хвост» закреплены рабочие лопатки с платформами, в кольцевой канавке в диаметрально противоположных местах выполнены выемки с такими шириной и длиной в тангенциальном направлении, чтобы в ней свободно мог разместиться замок лопатки, с прямоугольным поперечным радиальным сечением с глубиной, равной глубине кольцевой канавки, и в выемках и вырезах в платформах закреплены замки, ограничивающие смещение лопаток в тангенциальном направлении, причем наружный диаметр рабочего колеса, измеренный по замкам, равен наружному диаметру, измеренному по платформам лопаток, отличающееся тем, что кольцевая профилированная канавка выполнена с коническим дном, причем ось конической поверхности дна совпадает с продольной осью ротора компрессора низкого и высокого давления, а угол при вершине этого конуса выбран из условия создания требуемой величины натяга между замками лопаток и упругогистерезисным элементом, на который они опираются, и радиальное поперечное сечение кольцевой профилированной канавки имеет форму «ласточкина хвоста», соединенного в основании с трапецией с вертикальными боковыми стенками, причем высота трапеции, по которой она соединена с фигурой «ласточкин хвост», равна в мм где b - большее основание фигуры «ласточкин хвост», с - ее меньшее основание, а – величина, на которую трапеция выступает за величину большего основания фигуры «ласточкин хвост», равная в мм где δ - величина натяга в мм между замками лопаток и упругогистерезисным элементом, ϕ - угол при вершине конуса дна кольцевой профилированной канавки, таким образом, что в одной из боковых стенок выступа места крепления рабочих лопаток образована кольцевая технологическая канавка с наибольшей высотой, измеренной в радиальном поперечном сечении, равной в ммh=δ+H+0÷0,2,где Н - наибольшая высота поперечного радиального сечения кольцевой промежуточной проставки, и кольцевая промежуточная проставка выполнена из двух диаметрально противоположно расположенных полуколец с поперечным радиальным сечением в виде трапеции - усеченного клина, с наибольшей высотой Н, шириной, равной или меньшей ширины меньшего основания «ласточкина хвоста» кольцевой профилированной канавки, и углом наклона клина - половиной угла конуса клина, равной на торце с меньшей толщиной каждого полукольца у его концов выполнены две полукруглых технологических выемки или три таких выемки, в этом случае одна из выемок находится в средней части полукольца, и кольцевая промежуточная проставка установлена на дно кольцевой профилированной канавки таким образом, что ее торец с выемками контактирует с боковой стороной выступа места крепления лопаток, в которой нет технологической канавки, между кольцевой промежуточной проставкой и замками, установленными в выемках, и замками рабочих лопаток с радиальным натягом δ установлен кольцевой упругогистерезисный элемент с шириной, измеренной в направлении продольной оси ротора, равной или меньшей ширины меньшего основания «ласточкина хвоста» кольцевой профилированной канавки, составленный из одной, двух и более частей кольца, равнорасположенных по окружности, и между концами этих частей имеются зазоры, величина которых либо равна нулю, либо равна или меньше половины допустимой суммарной величины относительных рабочих смещений в окружном направлении концов этой части кольца и равна 0,2÷0,5 мм, и между наружной поверхностью бочки и платформой каждой лопатки, а также между торцами платформ соседних лопаток и ответными торцами платформ лопаток и замков имеются зазоры, величина которых ограничена величинами допустимых смещений лопатки под действием статических и динамических рабочих нагрузок, и под платформами лопаток между торцами замков, закрепленных в выемках кольцевой профилированной канавки, и торцами замков лопаток, а также между торцами замков лопаток с натягом по кольцевому упругогистерезисному элементу, торцам замков, закрепленных в выемках в кольцевой профилированной канавке, замкам лопаток и их платформам установлены упругогистерезисные или упругие элементы, причем величины этих натягов подобраны таким образом, что при колебаниях лопаток происходят упругие взаимные проскальзывания с сухим трением контактирующих элементов, причем в выемках в кольцевой канавке закреплены четыре, шесть или более равнорасположенных по окружности замков, и боковые стороны замков, закрепленных в выемках в кольцевой профилированной канавке, на части своей длины, у дна кольцевой канавки, срезаны и образуют заборный клин, и в боковой стенке с технологической канавкой выступа места крепления рабочих лопаток выполнено четыре или шесть отверстий, из которых два расположены в районах расположения концов полуколец промежуточной проставки, а при выполнении шести отверстий еще по одному в районе средней части каждого полукольца, и в эти отверстия до упора в кольцевую промежуточную проставку запрессованы заглушки, и все трущиеся поверхности деталей предлагаемого места крепления покрыты износостойким покрытием.

Изобретение относится к сборке набора рабочих колес, расположенных смежно друг с другом в осевом направлении и имеющих соответствующие сквозные осевые. Используют по меньшей мере два осевых стяжных стержня, как минимум с одним соединительным элементом, который в осевом направлении расположен смежно с двумя рабочими колесами соответственно на двух его сторонах и имеет сквозное осевое отверстие.

Изобретение относится к роторам многоступенчатых турбин газотурбинных двигателей авиационного и наземного применения. Ротор многоступенчатой турбины включает первый, средний и последний диски, стянутые с валом центральным стяжным болтом через сферическую шайбу и упругий элемент.

Изобретение относится к роторам многоступенчатых турбин газотурбинных двигателей авиационного и наземного применения. Ротор многоступенчатой турбины включает первый, средний и последний диски, стянутые с валом центральным стяжным болтом через сферическую шайбу и упругий элемент.

Способ балансировки ротора компрессора в сборе, включающий: переднюю сварную конструкцию и заднюю сварную конструкцию; предварительную балансировку задней сварной конструкции ротора компрессора в сборе с дисками компрессора до установки по окружности дисков ротора компрессора его лопаток.

Барабан ротора осевой турбомашины содержит стенку с профилем вращения вокруг оси вращения ротора, образующую пустотелый корпус и содержащую на своей наружной поверхности две кольцевые фиксирующие поверхности для ряда лопаток.

Неподвижный компонент турбомашины содержит корпус, имеющий базовую поверхность, которая обращена к вращающемуся компоненту турбомашины и имеет фигурные выступы, связующий слой и верхний слой. Связующий слой покрывает базовую поверхность корпуса, а покрывающий связующий слой выполнен из истираемого керамического материала. Верхняя поверхность неподвижного компонента имеет фигурные выступы, форма которых подобна форме фигурных выступов базовой поверхности. Фигурные выступы образуют истираемое уплотнение между неподвижным и вращающимся компонентами турбомашины. При изготовлении неподвижного компонента турбомашины покрывают базовую поверхность корпуса связующим слоем. Затем покрывают связующий слой верхним слоем, выполненным из истираемого керамического материала, с образованием верхней поверхности указанного неподвижного компонента. Другое изобретение группы относится к турбомашине, содержащей указанный выше неподвижный компонент. Группа изобретений позволяет упростить изготовление фигурных выступов в истираемом уплотнении компонента турбомашины. 3 н. и 11 з.п. ф-лы, 8 ил.
Наверх