Вакуумная установка пиролиза

Изобретение относится к вакуумной установке пиролиза метана. Установка содержит вакуумную рабочую камеру, соединенную линией откачки с механическим вакуумным насосом. При этом в линию откачки между механическим вакуумным насосом и вакуумной рабочей камерой установлен уравнительный вакуумный бак, разделенный герметичной перегородкой на две равные части. Нижняя часть уравнительного вакуумного бака соединена с вакуумной рабочей камерой посредством вакуумного трубопровода, а с другой стороны соединена через вакуумный клапан с механическим вакуумным насосом. Верхняя часть уравнительного вакуумного бака соединена через вакуумный клапан с вакуумным насосом, а с другой стороны соединена с вакуумной рабочей камерой посредством вакуумного трубопровода, в котором герметично установлена упругая мембрана, соединенная штоком с подвижным поршнем, корпус которого снабжен сквозными осевыми каналами. На внешней цилиндрической поверхности установлены два вакуумных кольцевых уплотнения, пространство между которыми соединено с вакуумной рабочей камерой сквозными каналами. Технический результат заключается в повышении безопасности и точности поддержания заданного рабочего давления в процессе пиролиза метана в вакуумной рабочей камере и качества выпускаемой продукции. 4 з.п. ф-лы, 2 ил.

 

Изобретение относится к области машиностроения, а именно к вакуумным установкам пиролиза метана, предназначенных для получения изделий из углерод-углеродных композитных материалов путем пиролитического разложения магистрального природного газа (метана - СН4) в вакууме.

Из уровня техники известна вакуумная установка пиролиза для получения изделий из углерод-углеродных композиционных материалов, выбранная за наиболее близкий аналог (прототип) (патент РФ №2016843, дата публикации 30.07.1994). Установка содержит вакуумную рабочую камеру, соединенную линией откачки с вакуумным насосом. В вакуумной рабочей камере установлены нагреватели.

Недостатком прототипа является сложность устройства в целом.

Технической проблемой, на решение которой направлено заявленное изобретение является появление избыточного давления в процессе пиролиза, которое приводит к выпадению сажи на поверхность изделия из композита, что значительно ухудшает его качество и увеличивает брак.

Технический результат заключается в повышение безопасности и точности поддержания заданного рабочего давления в процессе пиролиза метана в вакуумной рабочей камере и качества выпускаемой продукции за счет исключения выпадения сажи на ее поверхность.

Технический результат достигается тем, что вакуумная установка пиролиза метана, содержит вакуумную рабочую камеру, соединенную линией откачки с механическим вакуумным насосом. При этом в линию откачки между механическим вакуумным насосом и вакуумной рабочей камерой установлен уравнительный вакуумный бак, разделенный герметичной перегородкой на две равные части, объем каждой из которых составляет не менее от объема вакуумной рабочей камеры. Нижняя часть уравнительного вакуумного бака соединена с вакуумной рабочей камерой посредством вакуумного трубопровода, а с другой стороны соединена через вакуумный клапан с механическим вакуумным насосом. Верхняя часть уравнительного вакуумного бака соединена через вакуумный клапан с вакуумным насосом, а с другой стороны соединена с вакуумной рабочей камерой посредством вакуумного трубопровода, в котором герметично установлена упругая мембрана, соединенная штоком с подвижным поршнем, корпус которого снабжен сквозными осевыми каналами, а на внешней цилиндрической поверхности установлены два вакуумных кольцевых уплотнения, пространство между которыми соединено с вакуумной рабочей камерой сквозными каналами, выполненными в корпусе указанного вакуумного трубопровода.

Технический результат достигается также тем, что нижняя и верхняя части уравнительного вакуумного бака соединены с механическим вакуумным насосом посредством вакуумных трубопроводов разного сечения.

Технический результат достигается также тем, что вакуумная рабочая камера содержит нагреватели, которые подключены к блоку регулирования и поддержания температуры.

Технический результат достигается также тем, что вакуумные клапана имеют ручной (механически) тип регулирования.

Сущность заявленного изобретения поясняется следующими иллюстрациями:

- на фиг. 1 вакуумная установка графитизации пиролиза природного газа (метана CH4);

- на фиг. 2 механизм сброса избыточного давления из объема рабочей камеры 2.

На иллюстрациях обозначены следующие позиции: механический вакуумный насос 1; вакуумная рабочая камера 2; изделие 3; вакуумные клапана 4, 5, 6, 7; газовый вентиль 8; уравнительный вакуумный бак 9; перегородка 10; вакуумметр 11; нагреватели 12; блок регулирования и поддержания температуры 13; упругая мембрана 14; поршень 15; каналы в поршне 16; шток 17; кольцевые вакуумные уплотнения 18; сквозные каналы 19; вакуумные трубопроводы 20, 21, 22, 23; нижняя часть уравнительного вакуумного бака 24; верхняя часть уравнительного вакуумного бака 25; факел сжигания водорода 26.

В вакуумной рабочей камере 2 размещается изделие 3 и нагреватели 12, которые подключены к блоку регулирования и поддержания температуры 13. Уравнительный вакуумный бак 9 герметично разделен перегородкой 10 на две равные части - нижнюю часть 24 и верхнюю часть 25, объем каждой из которых составляет не менее объема рабочей камеры 2. При этом указанная нижняя часть 24 соединена вакуумным трубопроводом 21 с вакуумной рабочей камерой 2, а с другой стороны соединена вакуумным трубопроводом 20 с вакуумным клапаном 4 и с механическим вакуумным насосом 1. Верхняя часть 25 соединена вакуумным трубопроводом 22 с вакуумным клапаном 5 и с механическим вакуумным насосом 1, а с другой стороны соединена вакуумным трубопроводом 23 с вакуумной рабочей камерой 2. В вакуумном трубопроводе 23 герметично установлена тонкостенная упругая мембрана 14, которая соединена штоком 17 с подвижным поршнем 15, в корпусе которого выполнены сквозные осевые каналы 16, а на его внешней цилиндрической поверхности установлены два вакуумных кольцевых уплотнения 18. В корпусе трубопровода 23 выполнены сквозные каналы 19, которые с одной стороны соединены с вакуумной рабочей камерой 2, а с другой стороны в зависимости от положений поршня 15 имеют выход либо в полость, образованную между двумя вакуумными кольцевыми уплотнителями 18 поршня 15, либо во внутреннюю полость поршня 15. Газ метан подается в вакуумную рабочую камеру 2 через газовый вентиль 8. На линии выхлопа из механического вакуумного насоса 1 установлен вакуумный клапан 7, который открыт при предварительной вакуумной откачке пиролизной установки и вакуумный клапан 6, открытый во время процесса пиролиза. Контроль давления в рабочей камере осуществляется вакуумметром 11.

Вакуумная установка пиролиза работает следующим образом.

Предварительная откачка воздуха из объемов вакуумной системы осуществляется механическим вакуумным насосом 1 при полностью открытых вакуумных клапанах 4, 5, 7 до предельного остаточного давления ≈10-3 мм.рт.ст. Подача метана в вакуумную рабочую камеру 2 с расходом 50 л/мин., обеспечивается системой напуска газа, включающей в себя расходомер (ротаметр) и ручной газовый вентиль 8. Рабочее давление в вакуумной рабочей камере 2 устанавливается с помощью регулировки газового вентиля 8 при открытых вакуумных клапанах 4, 5, 7. Температура процесса пиролиза метана в вакуумной рабочей камере 2 в диапазоне 980°С±10°С обеспечивается за счет нагревателей ленточного типа, выполненных из углерод-углеродного композитного материала и блока регулирования и поддержания температуры 13. В процессе пиролиза при рабочем давлении 30 мм.рт.ст и температуре 980°С метан разлагается на газообразный водород и углерод, который кристаллизуется из газовой фазы на твердой поверхности изделия из композита, образуя пироуглерод, а водород и остатки метана откачиваются механическим вакуумным насосом 1 и сжигаются, при открытом вакуумном клапане 6 и закрытом вакуумном клапане 7. Поддержание рабочего давления метана в вакуумной рабочей камере 2 в диапазоне 30±5 мм.рт.ст. и сглаживание его пульсаций во время процесса пиролиза осуществляется с помощью механического вакуумного насоса 1, обеспечивающего поддержание давления ≈1 мм.рт.ст. в объеме нижней части 24 уравнительного вакуумного бака 9. Возникающее во время процесса пиролиза резкие всплески давления, превышающие номинальное рабочее давление на десятки мм.рт.ст. и выше, устраняются с помощью механизма его быстрого сброса из вакуумной рабочей камеры 2 в верхнюю часть 25 уравнительного бака 9, давление в котором поддерживается механическим вакуумным насосом 1 на уровне ≈10-3 мм.рт.ст. Избыточное давление, возникающее в рабочей камере 9 деформирует упругую тонкостенную мембрану 14 с прикрепленными к ней штоком 17, который толкает поршень 15 по трубопроводу 23 в сторону верхней части 25 уравнительного вакуумного бака 9, имеющего значительно меньшее давление ≈10-3 мм.рт.ст. За счет возникшего перепада давления перемещение поршня 15 будет происходить до выхода полости между кольцевыми уплотнениями 18 из соединения (совмещения) со сквозными каналами 19, при этом избыточный газ через сквозные каналы 19 перетечет во внутреннюю полость поршня 15 и через сквозные каналы 16 в верхнюю часть 25 уравнительного вакуумного бака 9. После сброса избыточного давления упругая мембрана 14 за счет сил упругости вернется в исходное положение. Величина деформации упругой мембраны 14 зависит от величины перепада давления между вакуумной рабочей камерой 2 и верхней части 25 уравнительного вакуумного бака 9 и определяется расчетным экспериментальным путем. По окончанию процесса пиролиза нагрев печи выключается, подача метана прекращается закрытием газового вентиля 8. Вакуумный клапан 7 закрывается и открывается вакуумный клапан 6, происходит охлаждение изделия с одновременной вакуумной откачкой рабочей камеры 2.

Преимущество перед другими вакуумными установками пиролиза:

1. Повышение качества и экономичность выпускаемых изделий из композита;

2. Повышение точности поддержания давления газа в вакуумной рабочей камере;

3. Повышение безопасности из-за отсутствия образования сажи в вакуумной рабочей камере;

4. Отсутствие электроавтоматики при поддержании номинального рабочего давления в рабочей камере.

1. Вакуумная установка пиролиза метана, содержащая вакуумную рабочую камеру, соединенную линией откачки с механическим вакуумным насосом, отличающаяся тем, что в линию откачки между механическим вакуумным насосом и вакуумной рабочей камерой установлен уравнительный вакуумный бак, разделенный герметичной перегородкой на две равные части, объем каждой из которых составляет не менее от объема вакуумной рабочей камеры, при этом нижняя часть уравнительного вакуумного бака соединена с вакуумной рабочей камерой посредством вакуумного трубопровода, а с другой стороны соединена через вакуумный клапан с механическим вакуумным насосом, верхняя часть уравнительного вакуумного бака соединена через вакуумный клапан с вакуумным насосом, а с другой стороны соединена с вакуумной рабочей камерой посредством вакуумного трубопровода, в котором герметично установлена упругая мембрана, соединенная штоком с подвижным поршнем, корпус которого снабжен сквозными осевыми каналами, а на внешней цилиндрической поверхности установлены два вакуумных кольцевых уплотнения, пространство между которыми соединено с вакуумной рабочей камерой сквозными каналами, выполненными в корпусе указанного вакуумного трубопровода.

2. Вакуумная установка по п.1, отличающаяся тем, что нижняя и верхняя части уравнительного вакуумного бака соединены с механическим вакуумным насосом посредством вакуумных трубопроводов разного сечения.

3. Вакуумная установка по п.1, отличающаяся тем, что вакуумная рабочая камера содержит нагреватели.

4. Вакуумная установка по п.3, отличающаяся тем, что нагреватели подключены к блоку регулирования и поддержания температуры.

5. Вакуумная установка по п.1, отличающаяся тем, что вакуумные клапаны имеют ручной тип регулирования.



 

Похожие патенты:

Изобретение относится к топливной энергетике, а именно к газогенераторным установкам, использующим отходы сельскохозяйственного производства и лесопереработки, и может быть использовано для питания двигателей внутреннего сгорания, а также для газификации и теплоснабжения в промышленности, сельском хозяйстве, для автономных поселений.

Изобретение относится к области химии и теплоэнергетики, а именно, к энергохимической установки для получения синтез-газа, электрической и тепловой энергии. Установка включает реактор частичного окисления, снабженный входами для жидкого или газообразного топлива, окислителя, водяного пара и выходом для синтез-газа, котел-утилизатор, который снабжен газовым и пароводяным трактами, контактный конденсатор, снабженный отводом дренажа из конденсатора, газотурбинную установку, состоящую из компрессора, реактора частичного окисления, турбины и генератора, резервуар для хранения воды.

Изобретение относится к области переработки твердых коммунальных и промышленных отходов, отходов древесины, а именно к устройству и способу плазменной газификации углеродсодержащего материала, а также к установке для генерирования тепловой/электрической энергии, в которой используется указанное устройство.

Изобретение относится к химической технологии и теплоэнергетике на основе переработки местного низкосортного углеродсодержащего сырья, в том числе битуминозного (древесины, торфа, бурых углей, различных отходов), путем газификации с получением горючего газа, содержащего оксид углерода и водород, для последующего использования в качестве силового газа в транспортных и энергетических установках.

Настоящее изобретение относится к энергетике, может применяться для получения горючего газа за счет газификации твердого топлива. Техническим результатом является повышение эффективности газификации применяемого топлива с получением горючего газа высокой чистоты и теплотворной способностью, превышающей теплотворную способность синтез-газа, а также упрощение конструкции газификатора по сравнению с существующими аналогами в виду отсутствия вращающихся частей предлагаемого изобретения.

Настоящее изобретение относится к системе коммунального хозяйства и малой энергетике, может быть применено для уничтожения твердых бытовых отходов (ТБО) и получения чистого горючего газа за счет применения газификатора.

Изобретение относится к газогенератору непрерывного действия. При этом газогенератор характеризуется тем, что в цилиндрической части корпуса установлен поршень со штоком, на верхнем торце которого установлен магнит и закреплен гибкий трос, соединенный с электроприводом подъемного механизма; на крышке корпуса газогенератора установлена штанга с закрепленными на ней датчиками нижнего и верхнего положения уровня топлива, а на верхнем торце штанги установлен стопорный механизм; сбоку от корпуса газогенератора установлен механизм загрузки топлива, включающий в себя бункер, соединенный с корпусом газогенератора шнековым каналом, причем конец канала, присоединенный к бункеру, содержит приводной шнек, шток которого соединен с валом электродвигателя, а конец канала, присоединенный к корпусу газогенератора, - электромеханическую заслонку, снабженную электроприводом; выходы датчиков нижнего и верхнего положения уровня топлива подключены к измерительным входам блока управления, а силовые выходы последнего подключены соответственно к электроприводу подъемного механизма, стопорному механизму, электродвигателю приводного шнека и электроприводу электромеханической заслонки.

Группа изобретений относится к области горения и газификации твердых топлив и предназначена для получения генераторного газа, в том числе силового или синтетического газа, в области когенерации электрической и тепловой энергии или полигенерации с дополнительным производством СЖТ, метанола и прочих химических продуктов из подготовленного низкосортного твердого топлива.

Изобретение относится к области химической технологии и теплоэнергетики на основе переработки топливной биомассы путем газификации с получением горючего газа, содержащего оксид углерода и водород.

Изобретение относится к области химической технологии и теплоэнергетики на основе переработки топливной биомассы, включая утилизацию твердых органических углеродсодержащих отходов, путем газификации с получением горючего газа для последующего производства тепловой и электрической энергии.

Изобретение относится к неорганической химии, а именно к получению соединений с углеродом, и может быть использовано для получения порошка на основе карбида бора в металлургии, машиностроении.
Изобретение относится к нанотехнологии, электротехнике, электронике, энергетике и биомедицине и может быть использовано при изготовлении смазочных и абразивных материалов, модификаторов поверхности, а также изолирующих материалов для полупроводников и схемных плат.
Изобретение относится к способу получения активного угля на основе полимерных композиционных материалов и может быть использовано в жидкофазных и газофазных сорбционных технологиях.

Изобретение предназначено для химической и металлургической промышленности и может быть использовано при изготовлении подшипников, уплотнений и облицовочных плит.

Изобретение относится к области водородной энергетики, органической химии и катализа, в частности к разработке составов химических систем, способных циклично аккумулировать и высвобождать водород в каталитических процессах гидрирования-дегидрирования.

Изобретение относится к соединению в виде порошка и к способу его получения, а именно карбидов, нитридов, боридов и силицидов металлов. Упомянутое соединение является продуктом реакции (i) по меньшей мере одного металла и/или металлоида и (ii) по меньшей мере одного дополнительного элемента, который является более электроотрицательным, чем упомянутый или каждый упомянутый металл и/или металлоид.

Изобретение относится к извлечению водорода из гидропереработанного отходящего газа отпарной колонны, а именно к устройству и способу гидропереработки. Способ включает гидропереработку потока углеводородного сырья в реакторе гидропереработки, чтобы получить выходящий поток гидропереработки.

Изобретение относится к области плазмохимии, а именно к плазмохимическому способу получения синтез-газа и установке для его осуществления. Способ включает электродуговой трехфазный плазмотрон, в который подают основной и дополнительный исходные компоненты и осуществляют их плазмохимическое взаимодействие.

Изобретение относится к химическому машиностроению, к технике высоких давлений и может быть использовано для выращивания кристаллов алмазов. Устройство для выращивания кристаллов алмаза содержит установленные в заглублении земли на столе 6 соосно в ряд контейнеры 1, 2 с размещенным в каждом контейнере соответствующим многопуансонным аппаратом 3 высокого давления, а между каждым из крайних контейнеров 1 и 2 и соответствующей стеной 8 заглубления установлена по меньшей мере одна разгрузочная плита 7.

Изобретение относится к производству объемных изделий (структур) из алмаза: губок, пористых структур сложной формы, и может быть использовано в твердотельной электронике для производства теплоотводов, эмиссионных электродов и высоковольтных изоляторов, в теплотехнике при конструировании эффективных теплообменников, в биологии и медицине при изготовлении фильтров и мембран.
Наверх