Способ создания пористых люминесцентных структур на основе люминофоров, внедренных в фотонный кристалл



Владельцы патента RU 2700875:

Федеральное государственное бюджетное учреждение науки Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии науки (ИБХ РАН) (RU)

Изобретение относится к нанотехнологии. При получении пористых люминесцентных структур, содержащих люминофоры, внедренные в фотонный кристалл, сформированный в виде пористых слоев на подложке, сначала формируют одномерный фотонный кристалл с упорядоченным массивом пористых слоев, которые получают химическим или электрохимическим травлением подложки, в качестве которой используют пластину из кремния, SiO2, Si3N4, SiC. Затем полученный фотонный кристалл окисляют термически или химически для создания поверхностной пленки SiO2. Термическое окисление проводят путём нагрева от 300 до 1000°С, а химическое - в растворах, содержащих перекись водорода. После этого проводят силанизацию в растворах алкоксисиланов для создания гидрофобной поверхности фотонного кристалла и внедряют в него люминофоры с шириной линии люминесценции, перекрывающей по длине волны резонансную моду фотонного кристалла, посредством последовательного раскапывания органического раствора, содержащего люминофор, на поверхность фотонного кристалла. В качестве люминофоров используют полупроводниковые нанокристаллы или органические красители. Полученные пористые люминесцентные структуры обладают узким спектром люминесценции за счет уменьшения вероятности безызлучательной рекомбинации при взаимодействии с поверхностью подложки. 5 з.п. ф-лы, 2 ил., 4 пр.

 

Изобретение относится к области нанотехнологии, в частности к способу создания пористых люминесцентных структур на основе люминофоров, внедренных в фотонный кристалл. Способ создания пористых люминесцентных структур на основе люминофоров, внедренных в фотонный кристалл, может применяться для производства эффективных люминесцентных пористых структур с узким спектром и выделенной направленностью люминесценции.

Известен способ создания прибора, представляющего собой оптико-химический детектор паров различных химических соединений, образованный проточной ячейкой с чувствительным элементом на основе пористого кремния, пропитанного органическим полимером, патент US 2011/01941 15 А1, (кл. G01N 21/00, 2011). Недостатком данного способа является низкая фотостабильность органических полимеров по сравнению с полупроводниковыми квантовыми точками. Кроме того, в данных системах отсутствует эффект усиления люминесцентного сигнала по механизму слабой связи.

Известен способ использования массивов упорядоченных отверстий, формирующих двумерный фотонный кристалл для усиления сигнала люминесценции меток в аналите, используемый для создания биосенсоров, патент US 2008/0278722 (кл. G01J 3/30, 2008). В этой системе показано усиление люминесцентного сигнала люминофора за счет взаимодействия с резонансными модами фотонного кристалла. Длина волны люминесцентных меток должна совпадать с резонансной модой фотонного кристалла. Усиленный сигнал меток детектируется в биосенсоре. Основными недостатками данного способа является технологическая сложность, так как изготовление подложек, содержащих двумерные массивы отверстий, требует применения реактивного ионного травления и электронно-лучевой литографии высокого разрешения. Также данные подложки уступают пористым системам в сорбционных свойствах. Данный способ выбран в качестве прототипа предложенного решения.

Изобретение решает задачу реализации возможности эффективного внедрения квантовых точек в объем пористого фотонного кристалла за счет многостадийной химической обработки поверхности, а также изменения ее свойств для предотвращения тушения люминесценции полупроводниковых квантовых точек за счет подавления безызлучательных каналов релаксации при контакте с поверхностью кремния и уменьшения поглощения пористой структуры в видимом диапазоне.

Пористые люминесцентные структуры представляют собой пористый фотонный кристалл, в который внедрены люминофоры, равномерно распределенные по объему пористой структуры. Изменение люминесцентных характеристик внедренных люминофоров достигается за счет взаимодействия люминофора с фотонным кристаллом в режиме слабой связи. В результате наблюдается усиление люминесценции в области повышенной плотности фотонных состояний (эффект Парселла), что выражается в уменьшении ширины спектра люминесценции и изменении пространственного распределения люминесценции. Повышение эффективности данного усиления, по сравнению с другими способами, основано на улучшении проникновения люминофоров в пористую структуру за счет обработки поверхности, а также уменьшения вероятности безызлучательной релаксации возбуждения люминофора при взаимодействии с поверхностью фотонного кристалла.

Поставленная задача решается за счет того, что в способе создания пористых люминесцентных структур содержащих люминофоры, внедренные в фотонный кристалл, сформированный в виде пористых слоев на подложке, в качестве которой используют пластину из кремния, SiO2, Si3N4, SiC, формируют одномерный фотонный кристалл с упорядоченным массивом пористых слоев, которые получают в результате химического или электрохимического травления подложки, затем полученный фотонный кристалл окисляют, силанизируют и внедряют в него люминофоры с шириной линии люминесценции, перекрывающей по длине волны резонансную моду фотонного кристалла.

Существует также вариант, в котором фотонный кристалл окисляют термически, нагревая до температур от 300 до 1000°С для создания поверхностной пленки SiO2.

Возможен также вариант, в котором фотонный кристалл окисляют химически в растворах, содержащих перекись водорода для создания поверхностной пленки SiO2.

Возможен также вариант, в котором для создания гидрофобной поверхности фотонного кристалла проводят силанизацию в растворах алкоксисиланов.

Существует также вариант, в котором внедрение люминофоров производится методом последовательного раскапывания раствора, содержащего люминофор на поверхность фотонного кристалла.

Возможен также вариант, в котором в качестве люминофоров используют полупроводниковые нанокристаллы или органические красители.

Технический эффект заключается в обеспечении возможности создания люминесцентных пористых структур с узким спектром люминесценции.

Изобретение иллюстрируют следующие фигуры:

На фиг. 1 изображен скол одномерного фотонного кристалла.

На фиг. 2 изображена поверхность массива пористых слоев.

Одномерный фотонный кристалл формируется массивом пористых слоев с поочередно меняющимся значением пористости, расположенных один над другим. Пористые слои формируют методом электрохимического травления монокристаллической подложки кремния в водно-спиртовых растворах плавиковой кислоты. Параметры травления определяют исходя из требований к спектральным характеристикам фотонных кристаллов: шириной линии люминесценции, должна перекрывать по длине волны резонансную моду фотонного кристалла, при этом, для получения наибольшего усиления люминесценции собственная мода микрорезонатора должна совпадать с максимумом люминесценции внедряемых люминофоров.

Далее поверхность пористой структуры окисляют для создания пленки SiO2 , что приводит к уменьшению безызлучательной релаксации и уменьшению поглощения в видимом диапазоне, проводят силанизацию поверхности с помощью алкоксисиланов, что делает поверхность гидрофобной и облегчает проникновение растворов на основе органических растворителей. Внедрение люминофоров проводят способом раскапывания слабо концентрированных растворов (на уровне 0.01-0.1 мг/мл) люминофора в органических растворителях. Характер внедрения может быть оценен по спектрам люминесценции полученных гибридных структур. В случае неоднородного внедрения люминофора проводят отмывку образцов методом инкубации в органических растворителях на лабораторном шейкере при слабом перемешивании в течение 24 часов.

Изобретение иллюстрируют следующие примеры:

Пример 1

Перед проведением электрохимического травления монокристаллического кремния проводят его подготовку, состоящую из следующих этапов. В первую очередь исходную пластину кремния типа КДБ (100) с одной полированной стороной раскалывают на части квадратной формы размером порядка 4 см2. Полученные образцы промывают в метиловом спирте для удаления малых осколков на поверхности, после чего переносят в раствор изопропилового спирта и помещают в ультразвуковую ванну для очистки поверхности от загрязнений на 10 минут. После проведения данных процедур образцы кремниевых пластинок переносят в емкость, содержащую метиловый спирт, герметично запечатывают до непосредственного проведения процедуры травления.

Перед электрохимическим травлением образцы переносят из метилового спирта в 5% водно-спиртовой раствор плавиковой кислоты на время порядка 5 минут для удаления оксидного слоя с поверхности кремния, после чего высушивают в течение 10 минут.

Травление пористых слоев производят в специальной электрохимической ячейке, изготовленной из политетрафторэтилена, устойчивой к воздействию плавиковой кислоты. Для этого образцы кремниевых пластинок помещают на алюминиевую фольгу, представляющую из себя один из электродов, и помещают в корпус ячейки, где через прижимное кольцо образец фиксируют 4-мя прижимными винтами. Для травления предварительно подготавливают рабочий раствор-электролит, представляющий из себя смесь 50% водного раствора фторводорода с этиловым спиртом. Рабочую камеру электрохимической ячейки заполняют данным раствором примерно в объеме 5 мл. Сверху в камеру помещают платиновый электрод, который должен быть погружен в ячейку таким образом, чтобы быть полностью покрытым раствором. На электроды подают напряжение с помощью программируемого источника питания, в котором подготавливают требуемый профиль плотности тока травления в диапазоне от 1 до 50 мА. При этом периоды травления с разной плотностью тока чередуются, формируя сначала переднее брэгговское зеркало из 6-12 слоев, затем формируют резонансный пористый слой, имеющий удвоенное время травления, за ним формируют заднее брэгговское зеркало с количеством слоев порядка 36-50.

После завершения травления из ячейки удаляют рабочий раствор. Объем ячейки дважды промывают этиловым спиртом, после чего пластинку кремния, содержащую пористую фотонную структуру помещают в раствор метилового спирта и инкубируют при слабом помешивании в течение 10 минут для удаления продуктов реакции из пористой структуры. После образец переносят в раствор гексана и выдерживают при слабом помешивании в течение 10 минут, после чего высушивают в атмосфере воздуха и переносят в пластиковые промаркированные пакеты с замком типа зип-лок для предотвращения загрязнения из атмосферы.

Далее проводят процедуру окисления, что приводит к уменьшению безызлучательной релаксации и уменьшению поглощения в видимом диапазоне. Для этого предварительно подготавливают окисляющий раствор на основе перекиси водорода, серной кислоты и деионизованной воды в соотношении 1:3:6. Раствор смешивают, перемешивают со скоростью 600 об/мин, после чего переносят в холодильную камеру на 4°С. В процессе окисления изготовленную пластину кремния с фотонной структурой помещают в раствор-окислитель и при слабом перемешивании и нагреве до 60°С окисляют в течение 30-50 минут. После завершения окисления пластину с фотонной структурой промывают в деионизованной воде при слабом помешивании в течение 30 минут. В итоге часть кремния переходит в состояние диоксида кремния, имеющего существенно меньшие коэффициенты поглощения в видимой области, а также уменьшается вероятность безызлучательной релаксации.

Для создания гидрофобной поверхности пористой структуры предварительно готовят раствор (октадецилтриметокси)силана (ОДТМС) в этиловом спирте. На каждый образец готовят в отдельной емкости раствор: 10 мл этилового спирта, 0,4 ммоль (160 мкл) ОДТМС. Образцы помещают в раствор, ставят в лабораторный шейкер на слабое перемешивание на 8 часов. После завершения обработки образцы трижды промывают, меняя раствор, в чистом этиловом спирте по 2 часа, ополаскивают в гексане и высушивают на воздухе.

Далее проводят внедрение растворов люминофоров. Для этого предварительно подготавливают слабо-концентрированные (0.01-0.1 мг/мл) растворы полупроводниковых квантовых точек в гексане. Внедрение проводится методом последовательного нанесения малых объемов (порядка 5 мкл) раствора с люминофором на поверхность пористых образцов с помощью автоматических пипеток, после чего образцам дают высохнуть в атмосфере воздуха при комнатной температуре. Для устранения неоднородности дополнительно наносят аналогичные объемы чистого гексана. После внедрения поученные гибридные наноструктуры хранят в индивидуальных герметичных пластиковых пакетах с маркировкой.

Пример 2

Процесс проводят аналогично описанному в примере 1: электрохимически травят кремниевые пластины в растворах плавиковой кислоты, проводят окисление, создают гидрофобную поверхность и внедряют люминофоры. Однако окисление пластин кремния с фотонными структурами производят термически, что приводит к уменьшению безызлучательной релаксации и уменьшению поглощения в видимом диапазоне. Для этого пластины кремния, содержащие фотонные структуры, в керамических ванночках помещают в трубчатую печь. Окисление проводят в атмосфере воздуха при температуре 700°С в течение 3 часов, плавно повышая температуру с комнатной до рабочей в течение 2,5 часов. После завершения термической обработки дают образцам медленно остывать, не вынимая из печи, для предотвращения разрушения вследствие перепада температур.

Пример 3

Процесс проводят аналогично описанному в примере 1: электрохимически травят кремниевые пластины в растворах плавиковой кислоты, проводят окисление, создают гидрофобную поверхность и внедряют люминофоры. Однако профиль плотности тока травления меняется плавно, что приводит к градиентному изменению показателя преломления по глубине кристалла.

Пример 4

Процесс проводят аналогично описанному в примере 1: электрохимически травят кремниевые пластины в растворах плавиковой кислоты, проводят окисление, создают гидрофобную поверхность и внедряют люминофоры. Однако в фотонной структуре формируют более одной резонансной области.

Таким образом, из описания видно, что данный способ расширит возможности создания люминесцентных пористых структур с узким спектром люминесценции благодаря усилению люминесценции внедренных люминофоров за счет эффективного внедрения, а также уменьшения вероятности безызлучательной рекомбинации при взаимодействии с поверхностью кремния.

1. Способ создания пористых люминесцентных структур, содержащих люминофоры, внедренные в фотонный кристалл, сформированный в виде пористых слоев на подложке, в качестве которой используют пластину из кремния, SiO2, Si3N4, SiC, отличающийся тем, что формируют одномерный фотонный кристалл с упорядоченным массивом пористых слоев, которые получают в результате химического или электрохимического травления подложки, затем полученный фотонный кристалл окисляют, силанизируют и внедряют в него люминофоры с шириной линии люминесценции, перекрывающей по длине волны резонансную моду фотонного кристалла.

2. Способ по п. 1, отличающийся тем, что фотонный кристалл окисляют термически, нагревая до температур от 300 до 1000°С для создания поверхностной пленки SiO2.

3. Способ создания пористых люминесцентных структур, содержащих люминофоры, внедренные в фотонный кристалл, по п. 1, отличающийся тем, что фотонный кристалл окисляют химически в растворах, содержащих перекись водорода, для создания поверхностной пленки SiO2.

4. Способ создания пористых люминесцентных структур, содержащих люминофоры, внедренные в фотонный кристалл, по п. 2 или 3, отличающийся тем, что для создания гидрофобной поверхности фотонного кристалла проводят силанизацию в растворах алкоксисиланов.

5. Способ создания пористых люминесцентных структур, содержащих люминофоры, внедренные в фотонный кристалл, по п. 4, отличающийся тем, что внедрение люминофоров производят способом последовательного раскапывания органического раствора, содержащего люминофор, на поверхность фотонного кристалла.

6. Способ создания пористых люминесцентных структур, содержащих люминофоры, внедренные в фотонный кристалл, по п. 5, отличающийся тем, что в качестве люминофоров используют полупроводниковые нанокристаллы или органические красители.



 

Похожие патенты:

Изобретение относится к технологии изготовления кристаллов для энергетической и вибрационной лечебной терапии, использующей драгоценные камни. Кристалл синтетического кварца имеет модифицированную форму правильного тетраэдра и содержит четыре по существу одинаковые треугольные грани, выполненные с возможностью задания четырех усеченных вершин и шести скошенных ребер, при этом шесть скошенных ребер имеют среднюю длину l, среднюю ширину w и 8≤l/w≤9,5; каждая из четырех усеченных вершин кристалла параллельна по меньшей мере одной из четырех по существу идентичных треугольных граней и содержит три стороны y и три стороны z, причем 1,3≤у/w≤1,7 и 0,8≤z/w≤1,2.

Изобретение относится к композиции химического механического полирования для обработки наружной сапфировой поверхности и способу полирования сапфировой подложки.

Изобретение относится к оптике. Кристаллическое тело, образованное из монокристалла типа граната, имеет пару пропускающих свет поверхностей, которые противостоят друг другу и пропускают свет, и по меньшей мере одну боковую поверхность, которая соединяет пару пропускающих свет поверхностей, при этом отношение В/А плотности А (количества на 1 см2) дислокаций в пропускающих свет поверхностях и плотности В (количества на 1 см2) дислокаций в боковой поверхности удовлетворяет следующей общей формуле: 1≤(В/А)≤3600.

Изобретение относится к способам обработки поверхности алмаза для его использования в электронной технике СВЧ. Способ включает взаимное расположение в одной плоскости исходной поверхности алмаза и металлической поверхности из стали, обеспечение непосредственного контакта упомянутых поверхностей, термическую обработку исходной поверхности алмаза на заданную глубину, обеспечивающую заданную конечную поверхность алмаза, при этом предусматривающую нагрев упомянутых поверхностей в инертной среде, с заданной скоростью, вблизи температуры образования эвтектического сплава железо - углерод, выдержку при этой температуре и естественное охлаждение, при этом металлическую поверхность из стали берут с содержанием углерода 3,9-4,1 мас.

Изобретение относится к технологии обработки алмаза и может быть использовано в микроэлектронной технике СВЧ. Способ обработки поверхности алмаза включает взаимное расположение в одной плоскости исходной поверхности алмаза и металлической поверхности из стали, обеспечение непосредственного контакта упомянутых поверхностей, термическую обработку исходной поверхности алмаза на заданную глубину, обеспечивающую заданную конечную поверхность алмаза, при этом предусматривающую нагрев упомянутых поверхностей до температуры образования эвтектического сплава железо - углерод, выдержку при этой температуре и естественное охлаждение, причем металлическую поверхность из стали берут с содержанием углерода 3,9-4,1 мас.

Изобретение относится к производству термоэлектрических материалов на основе теллуридов висмута и сурьмы. Способ заключается в предварительной очистке исходных компонентов методом вакуумной дистилляции, синтезе исходных компонентов в вакуумированных ампулах при нагреве до плавления и охлаждении, выращивании кристаллов методом вертикальной зонной перекристаллизации с применением высокочастотного нагрева, при этом выращивание кристаллов осуществляют путем не менее двух проходов со скоростью не более 2,5-3 см/ч, высокочастотный нагрев ведут на частоте 1,76 МГц с градиентом температур 200 К/см, а после выращивания кристаллов осуществляют приготовление порошка с наноструктурой размером не более 200 нм, обеспечивающей анизотропию свойств каждой частицы, брикетирование, спекание, а затем горячую экструзию.

Изобретение относится к технологии получения тонких пленок графена, которые могут быть использованы в качестве прозрачного проводящего покрытия. Способ включает гетероэпитаксиальное выращивание тонкой пленки графена на тонкой пленке катализатора, нанесение покрытия на основе полимера на поверхность тонкой пленки графена, которая является противоположной относительно поверхности тонкой пленки катализатора, отверждение покрытия на основе полимера и отслаивание тонкой пленки графена и покрытия на основе полимера от тонкой пленки катализатора, при этом тонкую пленку катализатора располагают на несущей подложке, сформированной со стороны тонкой пленки катализатора, которая является противоположной относительно поверхности тонкой пленки графена, и между несущей подложкой и каталитической тонкой пленкой располагают тонкую пленку разделительного слоя из оксида цинка.
Изобретение относится к области выращивания из расплава профилированных кристаллов тугоплавких соединений методом Степанова и изготовления из них монокристаллических цилиндрических шайб, которые могут быть использованы в приборостроении, машиностроении.

Изобретение относится к технологии получения алмазов для ювелирных целей. Способ включает помещение подложки, имеющей алмазное зерно с предварительно заданным размером и предварительно заданной оптической ориентацией, в камеру для осуществления химического парофазного осаждения (CVD), подачу в камеру водорода, углеводородного газа, содержащего углерод, газа, содержащего азот, и газа, содержащего диборан, оба из которых приспособлены для ускорения скорости роста алмаза на подложке, приложение электрического поля для образования плазмы близ подложки, приводя тем самым к поэтапному росту алмаза на подложке, завершение процесса CVD в камере, огранку и удаление нежелательного углерода из выращенного алмаза, очистку и огранку алмаза, отжигаемого при предварительно заданной температуре в течение заданного периода времени, проведение окончательной огранки алмаза, полировки и придания цвета.

Изобретение относится к области обработки полупроводниковых материалов и может быть использовано в технологии изготовления приборов, в том числе матричных большого формата на основе арсенида галлия.

Изобретение относится к физике твердого тела, в частности к квантовой электронике и может быть использовано в качестве матрицы для создания сред хранения и считывания информации в квантовых компьютерах; изобретение относится также к ядерной физике, а именно к сцинтилляционным материалам.

Изобретение относится к неорганической химии и может быть использовано при получении люминофоров. В азотной кислоте растворяют карбонат щелочного металла, взятый в 50-100 %-ном избытке по сравнению со стехиометрическим, и оксид лантана.

Изобретение может быть использовано в осветительных устройствах и средствах отображения информации. Осветительный элемент 100 содержит источник 10 излучения и люминесцентный материал 20, преобразующий, по меньшей мере, часть излучения 11 от источника 10 в излучение 51.

Изобретение относится к области нанотехнологий и может быть использовано в химии, биологии и медицине для визуализации и диагностики. Осуществляют межфазный перенос нанокристаллов из органической фазы в водную, используя в качестве катализатора межфазного переноса энантиомеры хиральных молекул с добавлением в органическую фазу 1-(2-пиридилазо)-2-нафтола (ПАН).

Изобретения относятся к неорганической химии и могут быть использованы в источниках света и осветительных устройства. Частица из люминесцентного материала покрыта первым покровным водонепроницаемым слоем на основе оксида металла или на основе нитрида, фосфида или сульфида и вторым покровным водонепроницаемым слоем, выполненным из полимера на основе кремния или одного из AlPO4 и LaPO4.

Изобретение относится к химической промышленности. Люминофоры характеризуются следующими общими формулами: Sr(SraМ1-a)Si2Al2N6:D (1) или SrxCa1-xAlSiN3:Eu (2), где М выбран из Са, Ba, Zn, Mg и/или Li; D выбран из Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm и Yb; а имеет значение от 0,6 до 1,0; 0,8<x≤1.

Изобретения относятся к неорганической химии и медицине и могут быть использованы при изготовлении сцинтилляторов. Сначала получают порошок общей формулы M1aM2bM3cM4dO12 (1), где O – кислород; M1, M2, M3 и M4 - отличные друг от друга металлы; сумма a+b+c+d составляет примерно 8; «a» от 2 до 3,5; «b» от 0 до 5; «c» от 0 до 5; «d» от 0 до 1; при этом «b» и «c», «b» и «d» или «c» и «d» не могут быть одновременно равны нулю; M1 - редкоземельный элемент, включая гадолиний, иттрий, лютеций, скандий или их сочетание; M2 - алюминий или бор; M3 – галлий; M4 - соактиватор, выбранный из таллия, меди, серебра, свинца, висмута, индия, олова, сурьмы, тантала, вольфрама, стронция, бария, бора, магния, кальция, церия, иттрия, скандия, лантана, лютеция, празеодима, тербия, иттербия, самария, европия, гольмия, диспрозия, эрбия, тулия или неодима.

Изобретение относится к технологии получения сцинтилляционного кристаллического материала для детекторов излучения, используемых для приборов позитронно-эмиссионной томографии (ПЭТ), рентгеновской компьютерной томографии (КТ), различных радиметров в области физики высоких энергий, ресурсодобывающих приборов.

Изобретение может быть использовано при изготовлении сцинтилляционных материалов для томографов. Порошок для производства сцинтилляционного материала помещают в форму и сжимают одноосным или изостатическим сжатием.

Изобретение относится к области светотехники. Техническим результатом является повышение эффективности передачи и насыщенности красного или зеленого цвета.

Изобретение относится к нефтедобывающей промышленности, а именно к технологиям интенсификации добычи нефти. Технический результат - повышение термостабильности эмульсионной системы, увеличение темпа разработки нефтегазоносного объекта, увеличение продолжительности положительного эффекта и дополнительная добыча нефти.
Наверх