Способ получения отбеленного слоя на поверхности рабочих органов из высокопрочного чугуна


C21D1/09 - Изменение физической структуры черных металлов; устройства общего назначения для термообработки черных или цветных металлов или сплавов; придание ковкости металлам путем обезуглероживания, отпуска или других видов обработки (цементация диффузионными способами C23C; поверхностная обработка металлов, включающая по крайней мере один процесс, предусмотренный в классе C23, и по крайней мере другой процесс, охватываемый этим подклассом, C23F 17/00; однонаправленное отвердевание эвтектики или однонаправленное разделение эвтектик C30B)

Владельцы патента RU 2700898:

федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный аграрный университет" (ФГБОУ ВО Волгоградский ГАУ) (RU)

Изобретение относится к способам термической обработки металлов и может быть использовано для получения износостойких структур при изготовлении рабочих органов почвообрабатывающих орудий из высокопрочного чугуна ВЧ50. Поверхность инструмента подвергают лазерному воздействию с мощностью пучка Р = 1,9 кВт и коэффициентом перекрытия пятна лазерного луча 0,3. Обрабатывают поверхность режущих частей и лезвий рабочих органов многоканальным СО2-лазером с непрерывным режимом работы. Диаметр пятна лазерного луча в зоне обработки равен d = 9 мм. Скорость его перемещения составляет υ = 460 мм/с. Технический результат заключается в получении чистого отбеленного слоя высокой твердости глубиной 0,12 мм. 1 табл., 1 пр.

 

Изобретение относится к способам термической обработки металлов, в частности к способам получения износостойких структур при изготовлении рабочих органов почвообрабатывающих орудий.

Известны высокоэнергетические лазерные и электроннолучевые импульсные обработки с эффективным модифицированием структуры приповерхностного слоя изделий из различных материалов (Ivanov Y.F., Rotshtein V.P., Proskurovsky D.I., Qrlov P.V., Polestchenko K.N., Ozur G.E., Goncharenko I.M. Pulsed electronbeam treatment of WC-TiC-Co hard-alloy cutting tools: wear resistance and microstructural evolution // Surface and coating technology, 2000. - V. 125. - P. 255-256). Сверхвысокие скорости нагрева (до 106 град/с) тонкого приповерхностного слоя материала (10-1 мм для лазерного и 10-4-10-3 мм для электронного пучков) до закритических температур и формирование предельных градиентов температуры (до 107-108 град/м), обеспечивающих охлаждение приповерхностного слоя за счет теплоотвода в основной объем материала со скоростью 104-109 град/с, определяют необходимые условия образования в приповерхностном слое неравновесных структурно-фазовых состояний. Последние характеризуются более высокими значениями плотности и дисперсности внутренней структуры по сравнению с исходным состоянием материала.

К недостаткам аналога следует отнести низкую стабильность получения равномерной глубины отбела поверхности чугунных рабочих органов почвообрабатывающих орудий.

Известен способ лазерного упрочнения полой металлической заготовки, включающий воздействие лазерным лучом непрерывного действия на поверхность заготовки с образованием расплавленного слоя металла, воздействие лазерным лучом непрерывного действия осуществляют на по меньшей мере одну локальную зону металлической заготовки на заданную глубину с образованием на внешней и внутренней поверхностях стенки заготовки локальных зон переплава с функциональным градиентным слоем, при этом в начале переплава плавно увеличивают мощность лазерного луча от 2 до 10 кВт в течение 200 миллисекунд и плавно уменьшают мощность лазерного луча с 10 кВт до 0 за 400 миллисекунд в конце локального переплава, локальными зонами являются зоны детали, которые при работе подвергают фрикционному, коррозионному, эрозионному износу, металлическую заготовку при необходимости снятия напряжений после локального переплава дополнительно подвергают термической обработке печной или ТВЧ, источник лазерного луча используют в виде волоконного лазера, или твердотельного лазера, или CO2 - лазера, или диодного лазера, для заготовок толщиной свыше 8 мм для равномерности наружного и внутреннего участков переплава может применяться заглубление фокуса в диапазоне 1-4 мм (Патент РФ №2640516 C1, C21D 1/09, В23K 26/354, 09.01.2018 г).

К недостаткам аналога следует отнести то, что способ не предусматривает термообработку металлических поверхностей.

Известен способ обработки изделий из керамики на основе диоксида циркония. Суть способа заключается в том, что после спекания керамики на основе диоксида циркония, стабилизированного оксидом иттрия, поверхность облучают 1-10 импульсами пучка электронов с энергией 15-30 кэВ, длительностью импульса 30-100 мкс и плотностью 40-100 А/см2 (Патент РФ №2287503 C1, С04В 41/80, С04В 35/48, 20.11.2006 г).

К недостаткам аналога следует отнести то, что способ не предусматривает термообработку металлических поверхностей.

В качестве прототипа выбран способ лазерной обработки пластически деформирующего инструмента из оксидной циркониевой керамики, при котором поверхность инструмента подвергают импульсному лазерному воздействию, каждая пачка импульсов которого формирует пятно лазерного луча с определенной мощностью пучка на образце, с коэффициентом перекрытия пятна лазерного луча в диапазоне от 0,1 до 0,9, при этом обработку проводят с частотой следования импульсов от 120 до 130 кГц, числом импульсов в пачке более 95 и мощностью пучка на образце от 12 до 13 Вт, поверхность инструмента подвергают импульсному лазерному воздействию с коэффициентом перекрытия пятна лазерного луча в диапазоне от 0,3 до 0,5. (Патент РФ №2612182 C1, С04В 41/91, В21С 3/02, 02.03.2017).

Недостатками прототипа является отсутствие условий для формирования стабильного по глубине отбеленного поверхностного слоя по всей поверхности режущей части рабочих органов.

Технической задачей данного изобретения является - повышение износостойкости и эксплуатационных характеристик лезвий рабочих органов почвообрабатывающих орудий.

Технический результат - получение заданной стабильной глубины чистого отбеленного слоя глубиной 0,12 мм в режущей части рабочих органов почвообрабатывающих орудий из высокопрочного чугуна, повышение твердости.

Технический результат достигается способом получения отбеленного слоя на поверхности рабочих органов их высокопрочного чугуна, при котором поверхность инструмента подвергают лазерному воздействию, формируя пятно лазерного луча с определенной мощностью пучка на образце, с коэффициентом перекрытия пятна лазерного луча в диапазоне от 0,1 до 0,9, при этом обрабатывают поверхности режущих частей и лезвий рабочих органов из высокопрочного чугуна ВЧ 50 многоканальным СО2 - лазером непрерывным режимом работы, формируют пятно лазерного луча на образце мощностью Р = 1,9 кВт, при этом диаметром пятна излучения в зоне обработки формируют равным d = 9 мм, обрабатывают со скоростью перемещения υ = 460 мм/с и коэффициентом перекрытия пятна лазерного луча 0,3.

Отличительные существенные признаки, влияющие на достижение заявленного технического результата:

- обработку проводят лезвий рабочих органов почвообрабатывающих орудий из высокопрочного чугуна ВЧ 50;

- получение отбела осуществляли многоканальным СО2 - лазером непрерывным режимом работы, мощностью пучка на образце W = 1,9 кВт, диаметром пятна излучения в зоне обработки d = 9 мм, с коэффициентом перекрытия пятна лазерного луча 0,3 и скоростью перемещения υ = 460 мм/с..

Оптимальные режимы способа определялись в процессе эксперимента на автоматизированном лазерно-технологическом комплексе АЛТКУ-3 (многоканальный СО2-лазер).

Зональное структурирование отливок долота, обеспечивает их высокую износостойкость и сохранность остроты режущей кромки за счет высокой твердости отбеленного слоя и реализации эффекта самозатачивания при работе плуга, а также создает достаточный уровень сопротивления динамическим нагрузкам за счет бейнитной структуры в основном объеме детали.

Пример конкретного выполнения.

Исследование проводили на термически обработанных образцах (отливках) из чугуна ВЧ50. Режим термической обработки приведен в таблице.

Полученные в результате термической обработки структуры исследовали с помощью металлографического микроскопа «Neophot-21» на микрошлифах, травленых 4% ниталем. Локальную твердость упрочненных зон и отдельных структурных составляющих определяли с помощью прибора ПМТ-3. Общую твердость по Роквеллу, а также ударную вязкость по Шарли определяли стандартными методами по ГОСТ 9012-59, 9013-59 и 9454-78 соответственно. Микротвердость отбеленного ледебуритного слоя, сформированного на чугуне была примерно Н50 = 10210±1403 МПа. В процессе лазерного термоупрочнения удалось получить отбеленный слой глубиной 0,12 мм.

Таким образом, заявленный способ получения отбеленного слоя на поверхности рабочих органов их высокопрочного чугуна обеспечивает получение заданной стабильной глубины чистого отбеленного слоя глубиной 0,12 мм в режущей части рабочих органов почвообрабатывающих орудий из высокопрочного чугуна, повышение твердости.

Способ получения отбеленного слоя на поверхности рабочих органов инструмента из высокопрочного чугуна, включающий лазерное воздействие на поверхность инструмента, при этом формируют пятно лазерного луча с определенной мощностью пучка, отличающийся тем, что обрабатывают поверхности режущих частей и лезвий рабочих органов инструмента из высокопрочного чугуна ВЧ50 многоканальным СО2-лазером с непрерывным режимом работы, формируют пятно лазерного луча с мощностью пучка Р = 1,9 кВт, при этом диаметр пятна лазерного луча в зоне обработки формируют равным d = 9 мм, обрабатывают со скоростью перемещения υ = 460 мм/с и коэффициентом перекрытия пятна лазерного луча 0,3.



 

Похожие патенты:

Изобретение относится к способу переноса тепла между металлическим или неметаллическим изделием и жидким теплоносителем, содержащим жидкую среду, гидрофобные наночастицы, имеющие размер в поперечном измерении между 26 и 50 мкм, и диспергирующий агент, при этом соотношение по массе концентраций наночастиц и диспергирующего агента составляет между 3 и 18 и при этом наночастицы не содержат углеродных нанотрубок.

Изобретение относится к области металлургии. Для повышения качества и обеспечения твердости 60 HRC осуществляют закалку рабочей поверхности зуба шестерни при помощи лазерного излучателя, причем ведут поперечную подачу шестерни относительно лазерного луча и во время обработки луч лазера направлен по нормали к закаливаемой поверхности, а излучатель находится на одном расстоянии от нее.

Изобретение относится к упрочнению стали и может быть использовано в сельскохозяйственном машиностроении для повышения износостойкости лезвий почвообрабатывающих орудий.

Изобретение относится к области металлургии. Для обеспечения заданных структурных свойств малых по размеру локальных областей детали и управления ими способ (100) содержит шаги, на которых помещают (102) заготовку в печь (10) для нагревания (104) заготовки до температуры, равной или превышающей температуру аустенизации материала заготовки для перевода материала заготовки в аустенитную фазу, в установке инфракрасного (ИК) нагрева частично нагревают (106) посредством ИК излучения (24) по меньшей мере одну первую область (2а) заготовки, тем самым поддерживая материал указанной по меньшей мере одной первой области заготовки в аустенитной фазе, и помещают (108) заготовку в обрабатывающий блок (30) для формовки и закалки заготовки с целью получения горячештампованной детали.

Изобретение относится к области металлургии, в частности к производству листового проката толщиной 12-48 мм для изготовления труб магистральных трубопроводов диаметром до 1420 мм с обеспечением доли вязкой, составляющей в изломе образцов при испытаниях падающим грузом не менее 85% при температуре испытания -20°C, ударной вязкости (KCV) при температуре испытания -40°C не менее 250 Дж/см2, высоких значений равномерного удлинения при достижении прочностных свойств в трубах из данного проката на уровне К60-К80 (Х70-Х100).

Изобретение относится к области металлургии. Для улучшения сцепления покрытия со стальным листом осуществляют непрерывный отжиг в печи с атмосферой инертного газа и Н2, включающий предварительный нагрев до 200-350°С в атмосфере А1 с точкой росы ниже -20°С при давлении Р1, имеющей Н2 менее 3,0% об., последующий нагрев до 600-1000°С в атмосфере А2 с точкой росы ниже -40°С при давлении Р2 выше Р1, имеющей Н2 менее 0,5% об., выдержку в атмосфере А3, имеющей Н2 менее 3,0% об., охлаждение до 400-800°С в атмосфере А4 с точкой росы ниже -30°С, имеющей Н2 менее 2,0% об., выравнивание температуры краев и центра листа в атмосфере А5 с точкой росы ниже -30°С, имеющей Н2 менее 2,0% об., и перемещение листа с помощью устройства с горячими натяжными роликами в ванну металлического расплава для нанесения покрытия в атмосфере А5 с точкой росы ниже -30°С, имеющей Н2 менее 2,0% об., при этом атмосферу А2 непрерывно удаляют в направлении секции печи предварительного нагрева и выдержки, а атмосферы А1, А3, А5 и А6 выпускают периодически или непрерывно через отверстия печи.

Изобретение относится к области мостостроения, в частности к стабилизации геометрических размеров сварных конструкций путем виброрезонансного нагружения, и может быть использовано для снятия остаточных напряжений в сварных главных и продольных балках проезжей части пролетных строений мостов.

Изобретение относится к области металлургии. Для снижения колебаний величины показателя потерь в железе материалов и стабильного получения хороших свойств потерь в железе способ получения листа электротехнической стали с ориентированной структурой, включает обработку по измельчению магнитной доменной структуры посредством облучения электронным пучком, выполняемую в вакуумной камере пониженного давления, поверхности листа, подвергшегося окончательному отжигу, при этом создают перед облучением электронным пучком листа электротехнической стали, смотанного в рулон, осуществляют его нагрев до 50°C или выше, а затем охлаждение листа таким образом, чтобы во время входа в вакуумную камеру пониженного давления лист имел температуру ниже 50°C.

Изобретение относится к области металлургии. Для обеспечения предела текучести > 550 МПа, предела прочности на растяжение TS > 980 МПа и повышенной пластичности и деформируемости лист получают из стали, содержащей, мас.%: 0,15 ≤ C ≤ 0,25, 1,2 ≤ Si ≤ 1,8, 2 ≤ Mn ≤ 2,4, 0,1 ≤ Cr ≤ 0,25, Al ≤ 0,5, остальное Fe и неизбежные примеси, нагревают до температуры между TA1 = Ac3 - 0,45*(Ms - QT) и TA2 = 830°C в течение по меньшей мере 30 с и охлаждают со скоростью выше 30°C/с до температуры закалки QT 180-300°C, затем лист нагревают до температуры PT перераспределения, равной 380-480°C, с выдержкой в течение времени Pt, составляющего 10-300 с, и охлаждают до комнатной температуры со скоростью охлаждения по меньшей мере 25°C/с.

Изобретение относится к области металлообработки и может быть использовано для восстановления и упрочнения деталей. Для повышения эксплуатационной стойкости изделий в индуктор устанавливают изделие, в котором образовались усталостные трещины, с помощью стяжных колец.

Изобретение относится к машине для лазерной резки (варианты) и способу сборки машины для лазерной резки. Защитный кожух машины состоит из верхнего защитного узла, нижнего защитного узла и расположенного между ними защитного экрана.

Группа изобретений относится к технологии ввода света, выходящего из нескольких волоконных лазерных устройств, в один оптический компонент и управления излучением, выходящим из таких лазерных устройств.

Изобретение относится к способу подготовки листового металла c предварительно нанесенным покрытием для его сварки с другим листовым металлом с предварительно нанесенным покрытием, листовому металлу и способу изготовления сварной заготовки.
Изобретение относится к химико-термической обработке металлических, в первую очередь стальных, поверхностей с применением лазерных установок и оригинальных химических составов и может быть использовано для нанесения покрытий на любые поверхности.

Энергоэффективное устройство лазерной резки материалов может быть использовано для оперативного и высокоточного изготовления сложноконтурных деталей из листовой заготовки.

Изобретение относится к гибридной лазерно-дуговой сварке металлоконструкций толщиной стенки от 8 до 12 мм. Способ гибридной лазерно-дуговой сварки тонкостенных стыковых соединений включает выполнение корневого шва электрической дуговой сваркой с плавящимся электродом в среде защитного газа совместно с лазерной сваркой в единой сварочной ванне.
Изобретение относится к гибридной лазерно-дуговой сварке металлоконструкций толщиной от 12 мм и выше, в частности к сварке продольных швов сформованных трубных заготовок при производстве труб большого диаметра из листового проката с толщиной стенки до 50 мм.

Изобретение относится к роботизированному порталу для лазерных резки и сварки цилиндрических трубных заготовок. Технический результат изобретения заключается в повышении качества сварного шва или реза при лазерной сварке и резке цилиндрических трубных заготовок.

Изобретение относится к сварке толстостенных металлоконструкций, в частности к сварке продольных швов сформованной цилиндрической заготовки, и может быть использовано при производстве сварных труб большого диаметра.

Изобретение относится к способу сварки тавровых соединений деталей и может найти применение в судостроении и машиностроении. Сварку угловых швов осуществляют одновременно с двух сторон таврового соединения без разделки свариваемых кромок с расположением тавра в горизонтальной плоскости.

Изобретение относится к способам термической обработки металлов и может быть использовано для получения износостойких структур при изготовлении режущих частей и лезвий рабочих органов почвообрабатывающих орудий из высокопрочного чугуна ВЧ50. Поверхность инструмента подвергают лазерному воздействию с мощностью пучка P=2,2 кВт и коэффициентом перекрытия пятна лазерного луча 0,3. Обрабатывают поверхность многоканальным CO2-лазером с непрерывным режимом работы. Диаметр пятна излучения в зоне обработки формируют равным d=9 мм. Скорость перемещения лазерного луча υ=490 мм/с. Технический результат заключается в получении чистого отбеленного слоя высокой твердости глубиной 0,17 мм. 1 табл., 1 пр.
Наверх