Способ бесфлюсовой плавки магниевых сплавов системы магний-алюминий-цинк-марганец и устройство для его осуществления

Изобретение относится к области металлургии и может быть использовано для бесфлюсовой плавки магниевых сплавов системы магний-алюминий-цинк-марганец. Защитную газовую среду над поверхностью расплава создают в виде смеси бескислородных углесодержащих газов и инертного газа в соотношении (1-10)÷(1-20), которую подают через трубку, имеющую отверстия в ее нижней кольцеобразной части, при этом при создании защитной атмосферы упомянутую смесь подают над поверхностью расплава до достижения его температуры 730 - 750°С, а затем проводят модифицирование и рафинирование расплава путем погружения в расплав упомянутой нижней кольцеобразной части трубки, через которую подают упомянутую смесь газов в течение 10-20 минут с одновременным перемешиванием расплава посредством механизма для его перемешивания, а после завершения процесса модифицирования и рафинирования извлекают упомянутые механизм и трубку из расплава и проводят подачу упомянутой смеси газов над поверхностью расплава до момента заливки расплава в формы. Изобретение позволяет создавать защитную газовую среду из активного и инертного газов для продувки расплава, осуществляя одновременно модифицирование и рафинирование. 2 н. и 3 з.п. ф-лы, 1 ил.

 

Изобретение относится к области металлургии и может быть использовано при бесфлюсовой плавке магниевых сплавов системы магний-алюминий-цинк-марганец (Mg-Al-Zn-Mn).

Известен способ бесфлюсовой плавки магниевых сплавов системы Mg-Al-Zn-Ma, включающий расплавление магния, введение компонентов сплава в защитной газовой среде, продувку расплава модификатором при температуре 730÷750°С (см. напр. патент РФ 2623965, МПК B22D 1/00, опубл. 27.06.2017).

Недостатком известного способа является то, что для создания защитной газовой среды и продувки расплава модификатором используют различные газы и их смеси, то есть необходима широкая номенклатура газов и соответственно усложняется процесс плавки за счет наличия этапа создания над расплавом защитной газовой среды, а только затем при достижении расплавом заданной температуры производят продувку расплава модификатором содержащим смесь других газов.

В основу изобретения поставлена задача усовершенствования способа бесфлюсовой плавки магниевых сплавов путем использования предложенной смеси активного и инертного газов, которая создает защитную газовую среду и используется для продувки расплава, осуществляя одновременно модифицирующий эффект и рафинирование, и предложено устройство для осуществления предложенного способа.

Поставленная задача решается тем, что в способе бесфлюсовой плавки магниевых сплавов системы Mg-Al-Zn-Ma, включающем расплавление магния, введение компонентов сплава в защитной газовой среде, продувку расплава модификатором при температуре 730÷750°С, над поверхностью расплава располагают трубку с кольцеобразной нижней частью и через отверстия выполненные в кольцеобразной части подают смесь активного и инертного газов в соотношении (1÷10)÷(1÷20) над поверхностью расплава до достижения его температуры 730÷750°С, затем погружают кольцевую часть трубки в расплав и производят подачу смеси газов в течение 10÷20 минут с одновременным перемешиванием расплава, после завершения процесса подачи смеси газов непосредственно в расплав, извлекают мешалку и кольцевую часть трубки из расплава одновременно или в любой последовательности и проводят подачу смеси газов над поверхностью расплава до момента заливки расплава в формы, при этом в качестве активного газа могут подавать смесь бескислородных углесодержащих газов в виде бесхлоридного и хлорсодержащего фреонов в соотношении (1÷20)÷(1÷30), перемешивание расплава начинать и производить при температуре расплава 720÷730°С передопусканием кольцевой части трубки в расплав, во время подачи смеси активного и инертного газов непосредственно в объем расплава производят перемещение кольцевой части трубки в расплаве вверх-вниз.

Поскольку над поверхностью расплава располагают трубку с кольцеобразной нижней частью и через отверстия выполненные в кольцеобразной части подают смесь активного и инертного газов в соотношении (1÷10)÷(1÷20) над поверхностью расплава до достижения его температуры 730÷750°С, затем погружают кольцевую часть трубки в расплав и производят подачу смеси газов в течение 10÷20 минут с одновременным перемешиванием расплава, после завершения процесса подачи смеси газов непосредственно в расплав, извлекают мешалку и кольцевую часть трубки из расплава одновременно или в любой последовательности и проводят подачу смеси газов над поверхностью расплава до момента заливки расплава в формы, при этом в качестве активного газа могут подавать смесь бескислородных углесодержащих газов в виде бесхлоридного и хлорсодержащего фреонов в соотношении (1÷20)÷(1÷30), перемешивание расплава начинать и производить при температуре расплава 720÷730°С перед опусканием кольцевой части трубки в расплав, во время подачи смеси активного и инертного газов непосредственно в объем расплава производить перемещение кольцевой части трубки в расплаве вверх-вниз, обеспечивается использование предложенной смеси активного и инертного газов для создания защитной газовой среды и для продувки расплава, осуществляя одновременно модифицирующий эффект и рафинирование, посредством устройства для осуществления способа бесфлюсовой плавки магниевых сплавов системы Mg-Al-Zn-Ma содержащем стойки и смонтированные в них с возможность возвратно-поступательного перемещения трубку с кольцеобразной нижней частью и механизм для перемешивания расплава, а также дополнительно содержащем блок автоматического контроля, управления и регулирования движениями трубки с кольцеобразной нижней частью и механизмом для перемешивания расплава, подачей смеси газов в зависимости от режимов плавки, при этом механизм для перемешивания расплава установлен на стойке с возможностью вхождения в кольцеобразную часть трубки при их относительных возвратно-поступательных перемещениях, а кольцеобразная часть трубки выполнена с отверстиями для круговой подачи смеси газов.

Устройство для осуществления способа бесфлюсовой плавки магниевых сплавов системы Mg-Al-Zn-Ma содержит стойки 6 и 8 и смонтированные в них с возможность возвратно-поступательного перемещения трубку 7 с кольцеобразной нижней частью и механизм для перемешивания расплава 5. Механизм 5 для перемешивания расплава установлен на стойке 6 с возможностью вхождения в кольцеобразную часть трубки 7 при ихотносительных возвратно-поступательных перемещениях, а кольцеобразная часть трубки 7 выполнена с отверстиями (на графическом материале условно не показаны) для круговой подачи смеси газов. Стойки 6 и 8 установлены на плавильной печи 1, внутри которой находится плавильный выемной тигель 2 с крышкой 3, которая имеет съемную часть 4, которой закрывают тигель после окончания модифицирования. Блок 9 автоматического контроля, управления и регулирования движениями трубки с кольцеобразной нижней частью и механизмом для перемешивания расплава, а также подачей смеси газов в зависимости от режимов плавки позволяет, в частности, точно соблюдать временные режимы плавки, особенно в части подачи газов при изменении температуры расплава.

Способ бесфлюсовой плавки магниевых сплавов системы Mg-Al-Zn-Ma осуществляют следующим образом.

С тигля 2 помещенного в плавильную печь 1 убирают съемную часть 4 крышки 3 и в тигель 2 опускают трубку 7 с кольцеобразной нижней частью и подают смесь активного и инертного газов в соотношении (1÷10)÷(1÷20) над поверхностью расплава до достижения его температуры 730÷750°С, создавая защитную газовую среду. Затем посредством привода (на графическом материале условно не показан) погружают кольцевую часть трубки 7 в расплав и производят подачу смеси газов в течение 10÷20 минут с одновременным перемешиванием расплава механизмом 5, который может быть выполнен в виде мешалки с лопастями направленными навстречу друг другу. Механизм 5 имеет привод вращения и возвратно- поступательного перемещения (на графическом материале условно не показан) в стойке 6. Поскольку кольцевая часть трубки 7 выполнена с отверстиями, а мешалка с лопастями расположена над центром кольцевой части трубки 7, то это позволяет равномерно подавать смесь газов, как над расплавом, так и при погружении кольцевой части трубки 7 в расплав, обеспечивая полнообъемное равномерное распределение смеси газов в расплаве, учитывая, что при этом идет интенсивное перемешивание расплава механизмом 5. Все это в совокупности позволяет равномерно распределить углерод образующийся в процессе реакций по всему объему расплава и осуществлять одновременно модифицирующий эффект и рафинирование. Подачу смеси газов проводят в течение 10÷20 минут с одновременным перемешиванием расплава. Снабжение устройства для осуществления способа блоком 9 автоматического контроля, управления и регулирования движениями трубки с кольцеобразной нижней частью и механизмом для перемешивания расплава, а также подачей смеси газов в зависимости от режимов плавки позволяет, в частности, точно соблюдать временные режимы плавки, особенно в части подачи газов при изменении температуры расплава.

После завершения процесса подачи смеси газов непосредственно в расплав, извлекают механизм 5 и кольцевую часть трубки 7 из расплава одновременно или в любой последовательности и проводят подачу смеси газов над поверхностью расплава до момента заливки расплава в формы. В качестве активного газа подают смесь бескислородных углесодержащих газов в виде бесхлоридного и хлорсодержащего фреонов в соотношении (1÷20)÷(1÷30).

Перемешивание расплава в некоторых случаях, что является ноу-хау, начинают и производят при температуре расплава 720÷730°С перед опусканием кольцевой части трубки 7 в расплав.

Предложенный способ бесфлюсовой плавки магниевых сплавов системы Mg-Al-Zn-Ma и устройство для его осуществления позволяют обеспечить использование заявленной смеси газов и в определенном их соотношении использовать эту смесь для создания защитной среды, как модификатор и осуществлять рафинирование. Выполнение устройства с блоком 9 автоматического контроля, управления и регулирования движениями трубки с кольцеобразной нижней частью и механизмом для перемешивания расплава, а так же подачей смеси газов в зависимости от режимов плавки позволяет осуществлять временной, температурный контроли, осуществлять изменение состава смеси газов и ее давления, то есть проводить полный контроль над режимом плавки и протекании соответствующих процессов.

1. Способ бесфлюсовой плавки магниевых сплавов системы магний-алюминий-цинк-марганец, включающий введение и расплавление компонентов сплава в тигле плавильной печи в защитной газовой среде, созданной над поверхностью расплава, модифицирование и рафинирование, отличающийся тем, что защитную газовую среду над поверхностью расплава создают в виде смеси бескислородных углесодержащих газов и инертного газа в соотношении (1-10)÷(1-20), которую подают через трубку, имеющую отверстия в ее нижней кольцеобразной части, при этом при создании защитной атмосферы упомянутую смесь подают над поверхностью расплава до достижения его температуры 730-750°С, а затем проводят модифицирование и рафинирование расплава путем погружения в расплав упомянутой нижней кольцеобразной части трубки, через которую подают упомянутую смесь газов в течение 10-20 минут с одновременным перемешиванием расплава посредством механизма для его перемешивания, а после завершения процесса модифицирования и рафинирования извлекают упомянутые механизм и трубку из расплава и проводят подачу упомянутой смеси газов над поверхностью расплава до момента заливки расплава в формы.

2. Способ по п. 1, отличающийся тем, что соотношение бесхлоридного и хлорсодержащего фреонов в смеси бескислородных углесодержащих газов составляет (1-20)÷(1-30).

3. Способ по п. 1, отличающийся тем, что перемешивание расплава начинают и производят при температуре расплава 720-730°С перед опусканием кольцеобразной части трубки в расплав.

4. Способ по п. 1, отличающийся тем, что во время подачи упомянутой смеси газов непосредственно в объем расплава производят перемещение нижней кольцеобразной части трубки в расплаве вверх-вниз.

5. Устройство для бесфлюсовой плавки магниевых сплавов системы магний-алюминий-цинк-марганец, содержащее плавильную печь с тиглем для плавки компонентов сплава в защитной газовой среде, отличающееся тем, что оно снабжено стойками, установленными на плавильной печи, смонтированными в них с возможностью возвратно-поступательного перемещения трубкой, имеющей в кольцеобразной нижней части отверстия для подачи в тигель газов, и механизмом для перемешивания расплава, и блоком автоматического контроля, управления и регулирования движениями упомянутых трубки и механизма и подачей упомянутой смеси газов в зависимости от режимов плавки, при этом упомянутый механизм установлен на стойке с возможностью вхождения в кольцеобразную часть трубки при их относительных возвратно-поступательных перемещениях.



 

Похожие патенты:

Изобретение относится к профилированным материалам для компонентов скважинного инструмента и выполненным из него скважинным инструментам. Профилированный материал для компонента скважинного инструмента содержит магниевый сплав, включающий фазу, содержащую не менее 70 весовых % и не более 95 весовых % магния, в котором распределены не менее 0 весовых % и менее 0,3 весовых % редкоземельного металла, не менее 3 весовых % и не более 20 весовых % по меньшей мере одного металлического элемента, выбранного из группы, содержащей алюминий, цирконий, марганец и кремний, и не менее 0,1 весовых % и не более 20 весовых % стимулирующего разложение агента, причем профилированный материал имеет средний размер кристаллических зерен магниевого сплава не менее 0,1 мкм и не более 300 мкм, прочность при растяжении не менее 200 МПа и не более 500 МПа и скорость разложения в 2%-ном водном растворе хлорида калия при 93 °C не менее 20 мг/см2 и не более 20000 мг/см2 в день.

Изобретение относится к скважинным изделиям из магниевых сплавов и может быть использовано в нефте- и газодобывающей промышленности. Подверженное коррозии скважинное изделие выполнено из магниевого сплава, содержащего, мас.%: 0,01-10 одного или более из Ni, Co, Ir, Au, Pd или Cu, 1-10 Y, 1-15 по меньшей мере одного редкоземельного металла, отличного от Y, и 0-1 Zr.

Изобретение относится к восстановительно-сульфидирующей плавке окисленных никелевых руд на штейн в шахтных или руднотермических печах. Шихта для восстановительно-сульфидирующей плавки окисленных никелевых руд содержит 10,8-12,9 мас.% известняка, 2,7-3,2 мас.% кокса, 19,4-32,4 мас.% сульфидной медной руды в качестве сульфидизатора и окисленную никелевую руду – остальное.

Изобретение относится к области металлургии, в частности к механико-термической обработке магниевых сплавов, и может быть использовано в прокатном производстве магниевых деформируемых сплавов.

Изобретение относится к области металлургии, а именно к сплавам на магниевой основе и способам их получения. Способ получения сплава на магниевой основе включает обеспечение расплава магния или магниевого сплава, добавление 0,01-30 мас.% оксида щелочноземельного металла на поверхность расплава, поверхностное перемешивание в течение от 1 секунды до 60 минут на 0,1 мас.% добавленного оксида щелочноземельного металла с обеспечением его диссоциации и частичного расходования, обеспечение возможности взаимодействия щелочноземельного металла, полученного в результате расходования оксида щелочноземельного металла, с магнием и/или легирующим элементом в магниевом сплаве с получением интерметаллического соединения, удаление оксида щелочноземельного металла, остающегося после реакции, вместе со шлаком, разливку и кристаллизацию.

Изобретение относится к области металлургии, в частности к сплавам на основе магния, подходящим для применения при высокой температуре. Способ получения сплава на магниевой основе включает расплавление магния или магниевого сплава с получением жидкой фазы, добавление 0,5-4,0 мас.% СаО на поверхность расплава, поверхностное перемешивание с обеспечением по существу полного расходования СаО в магнии, образование соединения кальция (Са) с металлом или другими легирующими элементами в сплаве на магниевой основе и отверждение расплава.

Изобретение относится к области металлургии, в частности к магниевому сплаву, подходящему для применения при комнатной температуре. Способ получения сплава на магниевой основе включает расплавление магния или магниевого сплава, добавление от 0,05 мас.% до 1,2 мас.% оксида кальция (СаО) на поверхность расплава, перемешивание с обеспечением, по существу, полного расходования СаО, обеспечение взаимодействия кальция (Са), полученного в результате указанной реакции, с указанным расплавом, литье и отверждение сплава.

Изобретение относится к материалу из магниевого сплава, имеющему отличную ударопрочность. Материал из магниевого сплава содержит магниевый сплав, содержащий 8,3-9,5 мас.% Al, причем материал из магниевого сплава имеет ударную вязкость по Шарпи 30 Дж/см2 или более, удлинение 10% или более и предел прочности на разрыв 300 МПа или более при скорости растяжения 10 м/с в испытании на высокоскоростное растяжение.

Изобретение относится к области металлургии, а именно к литейным сплавам на основе магния, и может быть использовано при получении деталей для авиакосмической промышленности, работающих под действием высоких нагрузок при температурах до 150°С и 250°С кратковременно.

Изобретение относится к области металлургии, в частности к листовому материалу из магниевого сплава. .

Изобретение относится к ферромагнитным композиционным материалам. Способ получения ферромагнитного композита MnSb-GaMn-GaSb включает нагревание смеси порошков металлов с размером частиц не более 10 мкм, состоящей из 32-38 ат.

Изобретение относится к аддитивному производству изделий с функционально-градиентной структурой из титановых сплавов. Способ включает изготовление, по меньшей мере, части изделия путем подачи первой проволоки и второй проволоки в ванну расплава с обеспечением плавления высокоэнергетическим воздействием электронного пучка.

Изобретение относится к изготовлению трубчатых фильтрующих элементов. Способ включает формирование цилиндрической газопроницаемой заготовки из металлического порошка, спекание, создание селективных слоев на поверхности заготовки путем чередующихся операций нанесения слоев пасты, состоящей из порошка и связующей добавки, с помощью вертикально движущейся фильеры и приемного конусообразного устройства, симметрично расположенного в верхней части фильеры, и последующего спекания.

Изобретение относится к изготовлению пористых материалов, в частности имплантатов, предпочтительно из титановых сплавов. Способ обработки пористых имплантатов на основе металлических материалов включает подготовку модели ячеистых структур и изготовление ячеистой структуры при воздействии на плавкий материал источником энергии.

Изобретение относится к области синтеза новых материалов и может быть использовано в деятельности, связанной с добычей полезных ископаемых, с обрабатывающими производствами, с медицинской промышленностью, для элементов конструкций и механизмов, требующих высокой износостойкости поверхностей.

Изобретение относится к материалам для защиты от радиационного излучения, обладающим повышенной теплопроводностью, термостойкостью до 400°С и низким значением коэффициента термического расширения, и может быть использовано в атомной, радиохимической промышленности, а также в военно-морской и авиакосмической промышленности в целях защиты обслуживающего персонала и окружающей среды.

Изобретение относится к спинодальным сплавам медь-никель-олово и способам их получения. Сплав медь-никель-олово, содержащий 8-20 мас.% никеля и 5-11 мас.% олова, получен литьем под давлением и имеет по меньшей мере 40%-ную пластичность и 0,2% условный предел текучести по меньшей мере 25 ksi.

Изобретение относится к области металлургии легких сплавов, в частности сплавов на основе алюминия, и может быть использовано при получении слитков различными методами литья, в частности методом полунепрерывного вертикального литья.

Изобретение относится к технологии производства супертвердых керамических материалов - алюмомагниевых боридов (ВАМ) и может быть использовано для нанесения упрочняющих покрытий на режущие и лезвийные инструменты.

Изобретение относится к получению порошковых материалов тугоплавких соединений. Способ включает приготовление экзотермической смеси переходного металла и неметалла с 1-5 мас.% порошкового полиэтилена, размещение приготовленной смеси в цилиндрическом реакторе, инициирование реакции горения в приготовленной смеси в режиме самораспространяющегося высокотемпературного синтеза (СВС) и сдвиговое деформирование продуктов горения с получением порошка.
Наверх