Способ определения содержания металлов в жидких пробах и устройство для его осуществления

Изобретение относится к аналитической химии, в частности к способам и устройствам определения содержания металлов в жидких пробах атомно-эмиссионной спектроскопией, может быть использовано для ранней диагностики некоторых заболеваний и коррекции лечебно-восстановительных процессов в арсенале клинических лабораторий. Сущность заявленного решения заключается в том, что в способе определения содержания металлов в жидких пробах путем подготовки пробы, помещения ее в микрокювету с электродом в нижней части, расположения над микрокюветой верхнего электрода, при этом верхний и нижний электроды соединены между собой, возбуждения искрового разряда между пробой в микрокювете и верхним электродом, регистрации аналитического сигнала эмиссионного спектра излучения, возникающего в момент разряда, и определения наличия металлов в пробе по длинам волн и их концентраций по интенсивности свечения с использованием калибровочной зависимости, верхний электрод выполнен в виде стержня из тугоплавкого металла с заостренном концом, возбуждение искрового разряда проводят путем предварительной подачи на электроды постоянного высокого напряжения и последующего сближения конца верхнего электрода и верхнего мениска капли пробы, непрерывное сближение осуществляют в процессе разряда до полной разрядки конденсатора, запись спектра начинают после броска тока, регистрируют эмиссионный спектр разряда в диапазоне 200-1100 нм, одновременно дополнительно регистрируют интенсивность свечения и ток в разрядной цепи, при этом аналитическим сигналом служит интегральная интенсивность свечения при соответствующей длине волны электромагнитного излучения за первые 10-50 мс разряда с отступом 0,1-2 мс от момента возникновения пробоя или интегральная интенсивность, разделенная на прошедшее через разряд количество электричества, зарегистрированное за время регистрации интенсивности свечения. Предложен планшетный анализатор для осуществления способа. Техническим результатом при реализации заявленной группы решений является возможность создания недорогих экспрессных способов и устройств, пригодных для прямого определения металлов в малых объемах биологических жидкостей сложного состава и технологических растворах. 2 н. и 4 з.п. ф-лы. 4 ил.

 

Изобретение относится к аналитической химии, в частности, к способам и устройствам определения содержания металлов в жидких пробах атомно-эмиссионной спектроскопией и может быть использовано для решения ряда социально значимых задач, например, ранней диагностики некоторых заболеваний и коррекции лечебно-восстановительных процессов в арсенале клинических лабораторий.

Известен способ анализа жидких проб атомно-эмиссионной спектроскопией. Способ основан на термическом возбуждении свободных атомов или одноатомных ионов и регистрации оптического спектра испускания возбужденных атомов. Для атомизации и возбуждения жидкой пробы используются различные типы источников атомизации: пламя, индуктивно связанная плазма [Основы аналитической химии, В 2, кн. Кн 2, Методы химического анализа: Учеб. Для вузов / Под ред. Ю.А. Золотов. - 3-е изд., М.: Высш. Шк., 2004 г., _ 503 с.].

Существенным недостатком используемых источников атомизации и возбуждения является то, что для выполнения анализа необходимы существенные объемы жидкой пробы, как правило, несколько мл. Однако при анализе биологических жидкостей (слюна, пот, раневой экссудат и т.д.) доступный объем жидкости может составлять несколько мкл.

Кроме этого, как правило анализ одной пробы требуют значительных временных затрат и переход от одного образца к другому требует существенный промывки системы ввода пробы для избежание эффекта памяти.

Имеет значение и существенная стоимость выполнения анализа биологических жидкостей, включающая высокую стоимость оборудования и расходные материалы (например, непрерывный расход горючего газа в случае использования пламени и инертный газ в случае применения индуктивно связанной плазмы) во время выполнения анализа.

Известен микропланшетный фотометр для иммуноферментного анализа STAT FAX® 4200, включающий корпус с цветным сенсорным экраном для управления прибором, установленные в корпусе планшет с ячейками для исследуемой пробы, механизм его перемещения, размещенную над планшетом вольфрамовую ксеноновую лампу с функцией сохранения, систему линз для фокусировки луча лампы, установленные под ячейками планшета колесо опциональных фильтров от 405 до 700 нм и фотодетектор для преобразования падающего света в электрический сигнал, блоки усиления и обработки сигнала [Awareness Technology, Inc. - Palm City, FL, 34991, USA; www.awareness.ru].

Выполняемые тесты планшетным иммуноферментным анализатором Stat Fax 4200: инфекции, опухолевые маркеры, щитовидная железа, репродуктивная функция, эндокринология, аллергия, беременность, аутоиммунные и системные заболевания.

Однако микропланшетный фотометр обладает следующими существенным недостатком.

Микропланшетный анализатор не может реализовать атомно-эмиссионный способ анализа жидкостей. Поэтому не может проводить прямые определения в жидких пробах на содержания в металлов. Так, как в микропланшетном анализаторе нет источника атомизации и возбуждения для получения эмиссионного спектра излучения анализируемой жидкой пробы.

Наиболее близким техническим решением к предложенному является способ определения содержания металлов в жидких пробах, путем подготовки пробы, помещения ее в микрокювету в виде электроизоляционного стакана с электродом в нижней части, расположения над микрокюветой верхнего электрода, при этом верхний и нижний электроды соединены между собой через балластное сопротивление, подключенное к конденсатору, возбуждения искрового разряда между пробой в микрокювете и верхним электродом, регистрации аналитического сигнала эмиссионного спектра излучения, возникающего в момент разряда, и определения наличия металлов в пробе по длинам волн и их концентраций по интенсивности свечения с использованием калибровочной зависимости [А.А. Жирков, 1, В.В. Ягов, А.А. Власова, Б.К. Зуев, Микроплазменный анализатор для определения щелочных и щелочноземельных металлов в малых объемах проб сложного фазового состава, ж. Аналитической химии, 2015, том 70, №12, с. 1276-1282].

В указанном способе источником эмиссионных спектров служит электрический разряд между верхним мениском капли пробы и нижним мениском жидкой линзы. Пробу в виде капли наносят пипет-дозатором на торец электрода из нержавеющей стали диаметром 1.5 мм, на который плотно насажена фторопластовая трубка. Электрод соединен с заземленным отрицательным полюсом высоковольтного источника, а раствор, образующий жидкую линзу, через удаленный от разряда вспомогательный электрод с положительным полюсом ВС-22. Параметры разрядной цепи: напряжение - 2,2 кВ, емкость - 3 мкФ, балластное сопротивление - 1 кОм. Время разрешенный сигнал - силу тока, напряжение и интенсивность света - регистрировали с помощью платы ввода-вывода L154 (L-Card, Россия). Для регистрации излучения, возникающего в момент разряда, используют оптическую систему, состоящую из кварцевого световода, монохроматора МДР-3 с и фотоприемного модуля Н8249 (Hamamatsu,, Япония).

Главным недостатком указанного способа является сложная регулировка работы жидкой линзы. Необходимо обеспечить заданную скорость жидкости и удалять пузыри, рассеяние света на которых искажает сигнал.

Кроме того, поверхность жидкой линзы легко искажается вследствие вибрации, что усложняет применение способа вне лаборатории. Значительный объем вспомогательного раствора кислоты (20 мл и более), соединенного с электродом под напряжением более 2 кВ, создает проблемы в плане электробезопасности.

Кроме этого, жидкая линза (раствор кислоты) при разряде распыляется в воздух, что приводит к попаданию значительного количества токсичных компонентов в окружающую среду.

Наконец, механические манипуляции с нанесением пробы в непосредственной близости от жидкой линзы достаточно сложны и требуют определенного навыка от оператора.

Наиболее близким техническим решением к предложенному является планшетный анализатор, включающий корпус, расположенные в нем установочный узел для размещения планшета с микрокюветами для исследуемых проб, считывающий узел, выполненный в виде излучателя и измерительного фотоприемника с узлом передачи светового сигнала, каретку для перемещения излучателя и планшета относительно друг друга, блок обработки сигнала и блок регистрации и управления, соединенные с измерительным фотоприемником, при этом узел передачи светового сигнала в фотоприемник выполнен в виде волоконно-оптического жгута [Патент РФ №2442973, кл. G01N 21/59, опубл. 20.02.2012].

Планшетный анализатор используют для иммунотурбидиметрического анализа множества различных образцов, в частности для проведения массового скрининга населения как в крупных, так и в средних и малых лабораториях, а также для контроля сырья и материалов при их производстве.

Известный анализатор обладает рядом недостатков.

Отсутствие эмиссионного источника излучения позволяющего импульсно нагревать анализируюмую жидкую микропробу до температур в несколько тысяч градусов. Такой источник необходим, так как целью является определения металлов в жидкости с использованием атомно - эмиссионной спектроскопии.

Кроме того, система регистрации не позволяет настраиваться на спектральную линии определяемого элемента, по интенсивности которой можно проводить количественный анализ элемента в жидкой пробе.

Задачей изобретения является разработка недорогих экспрессных способа и устройства, пригодных для прямого определения металлов в малых объемах биологических жидкостей сложного состава и технологических растворах.

Кроме того, техническими задачами являются повышение точности анализа, выполнение многоэлементного анализа в одной пробе, существенное уменьшение токсичных реагентов (кислоты) распыляемых в воздух, уменьшение энергозатрат при выполнении анализа и автоматизация выполнения анализа.

Поставленные задачи решаются способом определения содержания металлов в жидких пробах, путем подготовки пробы, помещения ее в микрокювету в виде электроизоляционного стакана с электродом в нижней части, расположения над микрокюветой верхнего электрода, при этом верхний и нижний электроды соединены между собой через балластное сопротивление, подключенное к конденсатору, возбуждения искрового разряда между пробой в микрокювете и верхним электродом, регистрации аналитического сигнала эмиссионного спектра излучения, возникающего в момент разряда, и определения наличия металлов в пробе по длинам волн и их концентраций по интенсивности свечения с использованием калибровочной зависимости, верхний электрод выполнен в виде стержня из тугоплавкого металла с заостренном концом, возбуждение искрового разряда проводят путем предварительной подачи на электроды постоянного высокого напряжения и последующего сближения конца верхнего электрода и верхнего мениска капли пробы, непрерывное сближение осуществляют в процессе разряда до полной разрядки конденсатора, запись спектра начинают после броска тока, регистрируют эмиссионный спектр разряда в диапазоне 200-1100 нм, одновременно дополнительно регистрируют интенсивность свечения и ток в разрядной цепи, при этом аналитическим сигналом служит интегральная интенсивность свечения при соответствующей длине волны электромагнитного излучения за первые 10-50 мс разряда с отступом 0,1-2 мс от момента возникновения пробоя или интегральная интенсивность, разделенная на прошедшее через разряд количество электричества, зарегистрированное за время регистрации интенсивности свечения.

Кроме того, поставленные задачи решаются тем, что в планшетном анализаторе, включающем корпус, расположенные в нем установочный узел для размещения планшета с микрокюветами для исследуемых проб, считывающий узел, выполненный в виде излучателя и измерительного фотоприемника с узлом передачи светового сигнала, каретку для перемещения излучателя и планшета относительно друг друга, блок обработки сигнала и блок регистрации и управления, соединенные с измерительным фотоприемником, при этом узел передачи светового сигнала в фотоприемник выполнен в виде волоконно-оптического жгута, микрокюветы представляют из себя стаканы в виде изолирующих оболочек, в дно которых вставлены направленные вверх металлические стержни, излучатель представляет из себя электрод в виде стержня, выполненного из тугоплавкого металла с заостренном концом, закрепленным на держателе каретки, стрежень излучателя и металлические стержни микрокювет соединены друг с другом через балластное сопротивление, подключенное к высоковольтному конденсатору, волоконно-оптический жгут фотоприемника закреплен на держателе каретки, а его конец расположен около конца электрода излучателя, при этом каретка выполнена с возможностью вертикального и горизонтального перемещения относительно планшета с микрокюветами

Целесообразно чтобы металлические стержни выступали из дна стаканов микрокювет на 2-20 мм и были выполнены диаметром от 1 до 10 мм, а изолирующие оболочки выступали на 1-5 мм выше проводящих торцов стержней.

Предпочтительно чтобы высоковольтный конденсатор через размыкатель был соединен с высоковольтным блоком, позволяющим осуществлять зарядку конденсатора

Целесообразно чтобы стержень излучателя был соединен с конденсатором гибким экранированным проводом через балластное сопротивление, а перед концом волоконно-оптического жгута уставлена оптическая система.

На фиг. 1 представлена общая схема планшетного анализатора для анализа жидкой пробы.

На фиг. 2 - типичный спектр шестикомпонентной системы, на котором видны наиболее интенсивные линии элементов

На фиг. 3 - градуировочные графики для определения 6 элементов, линейные в координатах интегральная интенсивность в относительных едн. - концентрация элемента в жидкой микропробе.

На фиг. 4 - градуировочные графики для определения 6 элементов, линейные в координатах интегральная интенсивность, деленная на количество электричества за время регистрации в относительных едн. - концентрация элемента в жидкой микропробе.

Планшетный анализатор содержит корпус, расположенные в нем установочный узел для размещения планшета 1 с микрокюветами 2 для исследуемых проб, считывающий узел, выполненный в виде излучателя 3 и измерительного фотоприемника 4 с узлом передачи светового сигнала, каретку 5, выполненную с возможностью вертикального и горизонтального перемещения относительно планшета 1 с микрокюветами 2, блок обработки сигнала и блок регистрации и управления, соединенные с измерительным фотоприемником 4.

Узел передачи светового сигнала в фотоприемник 4 выполнен в виде волоконно-оптического жгута 6.

Микрокюветы 2 представляют из себя стаканы в виде изолирующих оболочек, в дно которых вставлены направленные вверх металлические стержни.

Излучатель 3 представляет из себя электрод в виде стержня, выполненного из тугоплавкого металла с заостренном концом, закрепленным на держателе каретки 5.

Стрежень излучателя 3 и металлические стержни микрокювет 2 соединены друг с другом через балластное сопротивление, подключенное к высоковольтному конденсатору 7. Высоковольтный конденсатор 7 через размыкатель соединен с высоковольтным блоком, позволяющим осуществлять зарядку конденсатора до 5 кВ. Стержень излучателя 3 соединен с конденсатором 7 емкостью от 0,1 до 10 мкф. гибким экранированным проводом через балластное сопротивление.

Волоконно-оптический жгут 6 фотоприемника закреплен на держателе каретки 5, а его конец расположен около конца электрода излучателя 3. Перед концом волоконно-оптического жгута уставлена оптическая система 8. Оптическая система собирает электромагнитное излучение (свет) из пространства около конца электрода и по волоконно-оптическому жгуту 6 передает это излучение в спектральный прибор (например, Ocean Optics).

Металлические стержни, размещенные в кюветах 2 выступают от дна стаканов микрокювет 2 на 2-20 мм. и выполнены диаметром от 1 до 10 мм, а изолирующие оболочки выступают на 1-5 мм выше проводящих торцов стержней.

Планшетный анализатор работает следующим образом.

Анализируемые жидкие пробы небольшого объема и градуировочные растворы такого же объема помещают в микрокюветы 2. Микрокюветы 2 находятся на поверхности планшета 1 анализатора. Планшет 1 располагается в горизонтальной плоскости параллельно поверхности Земли. Затем к металлическим стержням микрокювет 2 подключают один конец обкладки высоковольтного конденсатора 7. Другой конец конденсатора 7 подсоединяют через балластное сопротивление к электроду в виде стержня, выполненному из тугоплавкого материала и имеющему форму с заостренным наконечником. Предварительно электрод закрепляют в держателе каретки 5, позволяющим проводить 3D перемещения электрода относительно поверхности планшета 1. Рядом с концом электрода опущенного вниз устанавливают оптическую систему 8, которая позволяет собирать излучения в пространстве около конца электрода (фиг. 1). Эта оптическая система 8 при движении электрода перемещается вместе с электродом.

С помощью программного обеспечения, первоначально перемещают электрод с оптической системой 8 в точку (координату), расположенную в углу планшета 1 на высоте нескольких сантиметров от поверхности дна микрокювет 2, в которых залиты анализируемые растворы. Это делается для того, чтобы в начальный момент измерений в пространстве зафиксировать начальное положение конца электрода закрепленного в держателе каретки 5. Затем подают высокое постоянное напряжение (например до 2 кВ) на конденсатор 7. Фиксируют полную зарядку конденсатора 7. Далее с помощью программы, управляющей анализатором, подводят нижний конец электрода к вертикали, идущей от мениска жидкости налитый в микрокювету. Затем с помощью программы вертикально опускают конец электрода так, чтобы уменьшалось расстояния между мениском жидкости и концом электрода.

В определенный момент расстояние становится таким, что происходит разряд между жидкостью и концом двигающегося к ней электрода (разряд между электродами с меняющимся разрядным промежутком в процессе разряда). Этот импульсный разряд является источником атомизации и возбуждения металлов, находящихся в растворе анализируемой жидкости. Эмиссионный спектр в процессе разряда с помощью измерительного фотоприемника 4 с узлом передачи светового сигнала направляют в спектральный прибор, где по длинам волн фиксируется наличие элемента в пробе, а по интенсивности с использованием калибровочной зависимости определяется концентрация.

После полной разрядки конденсатора 7 держатель каретки 5 с электродом и оптической системой поднимается вверх и находится в верхним положении, относительно микрокювет 2 до полной зарядке конденсаторной батареи. Затем процесс измерения повторяется для следующего специального гнезда с анализируемой жидкостью и так далее до тех пор, пока не будет выполнен анализ жидкости во всех микрокювете 2 планшета 1. Растворы со стандартным значением концентрации используются для построения калибровочного графика, с помощью которого определяют концентрацию элементов в анализируемых растворах.

Пример 1

Стержни микрокювет 2 соединяют с заземленным отрицательным полюсом источника высокого напряжения (напряжение - 2.5 кВ, емкость - 6 мкФ, балластное сопротивление - 6 кОм). Излучатель 3, изготовленный из вольфрамового стержня с диаметром 2 мм, закрепляют на держателе каретки 5 и соединяют гибким изолированным кабелем с положительным полюсом указанного выше источника высокого напряжения. На том же держателе на расстоянии 15 мм закрепляют волоконно-оптический жгут с оптической системой спектрометра Maya 2000 Pro, ориентированный на точку, находящуюся на 1 мм ниже обреза стержня излучателя 3 на его оси. Спектрометр работает в режиме внешней синхронизации, то есть запись спектра начинается после броска тока.

В течение программно заданного времени (40 мс) Maya 2000 Pro собирает свет и регистрирует эмиссионный спектр разряда в диапазоне 200-1100 нм с оптической шириной щели около 0.5 нм.

Используют свежеприготовленную дистиллированную воду. Кальций, магний, литий, натрий, калий, рубидий (все растворы 1 мг/мл в 0.1 М HCl, ГСО, «Экоаналитика», Россия); соляная кислоты, ос. ч. (Химмед, Россия). Растворы готовят непосредственно перед проведением эксперимента. Аликвотные части (40 мкл) отбирают при помощи набора микропипеток ThermoScience (20-200 мкл) и помещают в микрокюветы, закрепленные в планшете. Микрокюветы представляют собой стержни из нержавеющей стали диаметром 4 мм, на которые плотно насажена фторопластовая трубка, образующая «бортики» высотой 5 мм. Используют планшет из 36 гнезд, размещенных в узлах квадратной решетки с шагом 40 мм.

Аналитическим сигналом служила интегральная интенсивность свечения при соответствующей длине волны за первые 40 мс разряда с отступом 1 мс от момента пробоя.

Для работы прибора используют специальные программы. Первая управляет перемещением каретки, обеспечивая позиционирование стержня излучателя и волоконно-оптического жгута согласно предварительно заданному маршруту обхода микрокювет с пробами. Вторая программа управляет работой спектрометра Maya 2000 Pro в режиме внешней синхронизации, запуская измерения спектра после того, как сближение стержня излучателя с очередной микрокюветой с пробой вызывало пробой и зажигание разряда. Одновременно с регистрацией эмиссионного спектра регистрируется ток разряда и вычисляется количества электричества за время регистрации спектра.

На фиг. 2 показан спектр шестикомпонентной системы, на котором видны наиболее интенсивные линии элементов.

В микрокюветах первых двух рядов помещают растворы, содержащие различные концентрации указанных металлов в диапазоне 0.1-40 мг/л. По результатам измерений получили градуировочные графики для определения 6 элементов, линейные в интегральная интенсивность (ось Y) концентрация в жидкой пробе определяемого элемента (ось X) (Фиг. 3).

Пример 2

Способ осуществляют аналогично примеру 1.

В качестве аналитического сигнала служит интегральная интенсивность, разделенная на прошедшее через разряд количество электричества, зарегистрированное за время регистрации интенсивности свечения.

Для этого регистрируется ток разряда и вычисляется количества электричества за время регистрации спектра.

В результате получили градуировочный график с учетом количества электричества (Q) затраченного на разряд при регистрации эмиссионного спектра. Ось Y интегральная интенсивность деленная на Q, ось X концентрация в жидкой пробе определяемого элемента (Фиг. 4).

Таким образом, была проверена работоспособность предлагаемого подхода к анализу жидких проб объемом 40 мкл.

Предлагаемые способ и устройство позволяют проводить автоматизируемый анализ жидких микропроб без участия человека. Это исключает влияние субъективного фактора на конечные результаты анализа.

Устройство может быть использовано в полевых условиях, поскольку применение импульсного разряда существенно снижает требование к используемой мощности источника питания для работы прибора.

Изменение геометрии разрядного промежутка в процессе разряда (задание алгоритма изменения разрядного промежутка) позволит существенно влиять на условия (процессы) атомизации и возбуждения анализируемой пробы и тем самым появится возможность оптимального определения элементов в жидкой пробе.

1. Способ определения содержания металлов в жидких пробах путем подготовки пробы, помещения ее в микрокювету в виде электроизоляционного стакана с электродом в нижней части, расположения над микрокюветой верхнего электрода, при этом верхний и нижний электроды соединены между собой через балластное сопротивление, подключенное к конденсатору, возбуждения искрового разряда между пробой в микрокювете и верхним электродом, регистрации аналитического сигнала эмиссионного спектра излучения, возникающего в момент разряда, и определения наличия металлов в пробе по длинам волн и их концентраций по интенсивности свечения с использованием калибровочной зависимости, отличающийся тем, что верхний электрод выполнен в виде стержня из тугоплавкого металла с заостренном концом, возбуждение искрового разряда проводят путем предварительной подачи на электроды постоянного высокого напряжения и последующего сближения конца верхнего электрода и верхнего мениска капли пробы, непрерывное сближение осуществляют в процессе разряда до полной разрядки конденсатора, запись спектра начинают после броска тока, регистрируют эмиссионный спектр разряда в диапазоне 200-1100 нм, одновременно дополнительно регистрируют интенсивность свечения и ток в разрядной цепи, при этом аналитическим сигналом служит интегральная интенсивность свечения при соответствующей длине волны электромагнитного излучения за первые 10-50 мс разряда с отступом 0,1-2 мс от момента возникновения пробоя или интегральная интенсивность, разделенная на прошедшее через разряд количество электричества, зарегистрированное за время регистрации интенсивности свечения.

2. Планшетный анализатор содержания металлов в жидких пробах, включающий корпус, расположенные в нем установочный узел для размещения планшета с микрокюветами для исследуемых проб, считывающий узел, выполненный в виде излучателя и измерительного фотоприемника с узлом передачи светового сигнала, каретку для перемещения излучателя и планшета относительно друг друга, блок обработки сигнала и блок регистрации и управления, соединенные с измерительным фотоприемником, при этом узел передачи светового сигнала в фотоприемник выполнен в виде волоконно-оптического жгута, отличающийся тем, что микрокюветы представляют из себя стаканы в виде изолирующих оболочек, в дно которых вставлены направленные вверх металлические стержни, излучатель представляет из себя электрод в виде стержня, выполненного из тугоплавкого металла с заостренном концом, закрепленным на держателе каретки, стрежень излучателя и металлические стержни микрокювет соединены друг с другом через балластное сопротивление, подключенное к высоковольтному конденсатору, волоконно-оптический жгут фотоприемника закреплен на держателе каретки, а его конец расположен около конца электрода излучателя, при этом каретка выполнена с возможностью вертикального и горизонтального перемещения относительно планшета с микрокюветами

3. Планшетный анализатор содержания металлов в жидких пробах по п. 2, отличающийся тем, что металлические стержни выступают из дна стаканов микрокювет на 2-20 мм и выполнены диаметром от 1 до 10 мм, а изолирующие оболочки выступают на 1-5 мм выше проводящих торцов стержней.

4. Планшетный анализатор содержания металлов в жидких пробах по п. 2, отличающийся тем, что высоковольтный конденсатор через размыкатель соединен с высоковольтным блоком, позволяющим осуществлять зарядку конденсатора

5. Планшетный анализатор содержания металлов в жидких пробах по п. 2, отличающийся тем, что стержень излучателя соединен с конденсатором гибким экранированным проводом через балластное сопротивление.

6. Планшетный анализатор содержания металлов в жидких пробах по п. 2, отличающийся тем, что перед концом волоконно-оптического жгута уставлена оптическая система.



 

Похожие патенты:

Изобретение относится к основанному на фемтосекундной лазерной технологии устройству регистрации амплитуды и фазы импульсного ТГц излучения, генерируемого при помощи электронных пучков субпикосекундной длительности, формируемых ускорителем элементарных частиц.
Изобретение относится к области исследования структуры материалов и касается способа спектрального лазерного сканирования композитных материалов в соответствии с оптической плотностью его матрикса и составных компонентов.

Изобретение относится к области автоматизированных систем для длительного испытания узлов лазерных систем. Изобретение представляет собой станцию для оценки времени жизни тестируемого каскада усиления волоконного лазера, включающую задающий лазер для генерации лазерных импульсов, оптоволокно для передачи лазерных импульсов, первый предусилитель для усиления импульсов из задающего лазера и увеличения соотношения сигнала к шуму, акустооптический модулятор для управления частотой следования импульсов, второй предусилитель для усиления сигнала до уровня сигнала одного волоконного усилителя из каскада усиления, третий предусилитель для усиления сигнала до уровня нескольких волоконных усилителей из каскада усиления, разветвитель для деления сигнала из третьего предусилителя в равном соотношении и передачи его в тестируемые волоконные усилители, диоды накачки, создающие инверсную населенность в тестируемых волоконных усилителях, подключенные через электрические контакты к источникам тока, ответвители мощности с фотодиодами, которые служат для ответвления небольшой доли мощности на измерительные фотодиоды, АЦП, осуществляющий оцифровку сигнала с измерительных фотодиодов, и передающий сигнал на компьютер с управляющей программой, при этом станция включает управляющую плату, осуществляющую изменение параметров перечисленных устройств и сбор данных, а также блок данных.

Изобретение относится к экологии, лимнологии, океанологии и может быть использовано в качестве устройства для проведения in situ исследований антропогенной загрязненности природных акваторий с морской и пресной водой.

Устройство для вариативной одноцветной спектроскопии «накачка-зондирование» в терагерцовом диапазоне содержит перестраиваемый по частоте источник монохроматического излучения, первую пропускающую дифракционную решетку и вторую пропускающую дифракционную решетку.

Устройство для вариативной одноцветной спектроскопии «накачка-зондирование» в терагерцовом диапазоне содержит перестраиваемый по частоте источник монохроматического излучения, первую пропускающую дифракционную решетку и вторую пропускающую дифракционную решетку.

Изобретение относится к композиционной частице для применения в маркировке, пригодной для идентификации/установления подлинности изделия. Частица содержит по меньшей мере одну суперпарамагнитную часть и по меньшей мере одну термолюминесцентную часть.

Изобретение относится к области масс-спектрометрического анализа газообразных веществ. Технический результат - повышение чувствительности масс-спектрометрического анализа газообразных веществ, а также длительности и устойчивости работы прибора.

Настоящее изобретение относится к области технологий материалов и материаловедческих и аналитических исследований. Композиция, обладающая ГКР-активностью, для определения полиароматических гетероциклических серосодержащих соединений (ПАГС) в углеводородных продуктах представляет собой хемотропный гель, содержащий полимерную матрицу с наночастицами серебра анизотропной формы с размерами 10-90 нм и частицами оксида графена с размерами 1-2 мкм.

Изобретение относится к области измерительной техники, в частности к способам измерения сдвига частоты рассеяния Мандельштама-Бриллюэна. При реализации способа измерения сдвига частоты рассеяния Мандельштама-Бриллюэна на длине оптического волокна непрерывное оптическое излучение задающего лазера разделяют на две части.

Изобретение относится к области измерительной техники и касается КР-газоанализатора. Газоанализатор включает в себя непрерывный лазер, газовую кювету, два объектива, голографический фильтр, блокирующий излучение в области длины волны лазера, спектральный прибор, сопряженный с многоканальным фотодетектором, и блок управления.

Изобретение относится к области измерительной техники и касается КР-газоанализатора. Газоанализатор включает в себя непрерывный лазер, газовую кювету, два объектива, голографический фильтр, блокирующий излучение в области длины волны лазера, спектральный прибор, сопряженный с многоканальным фотодетектором, и блок управления.

Изобретение относится к измерительной емкости, которая предназначена для циркуляции газа, анализируемого методом спектрометрии. Емкость выполнена в виде полой трубки (20), снабженной отражающим материалом, образующим отражающий оптический слой.

Изобретение относится к измерительной емкости, которая предназначена для циркуляции газа, анализируемого методом спектрометрии. Емкость выполнена в виде полой трубки (20), снабженной отражающим материалом, образующим отражающий оптический слой.

Изобретение относится к наборам для взятия и анализа проб, к пробоотборникам для применения в таких наборах и к способам использования таких наборов. Набор для взятия и анализа проб содержит: пробоприемник для помещения в него заданного количества жидкости и пробоотборник, содержащий: средство взятия пробы и корпус, в котором закреплено средство взятия пробы и который выполнен с возможностью установки в пробоприемник и снабжен выступающим средством, при этом у пробоприемника имеется внутренний выступ, служащий опорой для выступающего средства при вводе корпуса в пробоприемник с обеспечением позиционирования средства взятия пробы в пробоприемнике на заданном расстоянии от нижнего конца пробоприемника, причем указанный набор дополнительно содержит заглушку, у которой имеются камера для помещения в нее реагента и плунжерное устройство, способное открыть камеру, при этом у корпуса имеется заглубленная часть, обеспечивающая возможность, при установке заглушки в пробоприемник, открыть камеру с реагентом для выведения из нее реагента в пробоприемник.

Группа изобретений относится к области биохимии. Предложен способ калибровки и измерения сигнала, а также устройство для обнаружения и/или идентификации целевых бактерий.

Изобретение относится к нагревательному устройству для прибора для измерения методом спектрометрии. Данное нагревательное устройство отличается тем, что оно выполнено в виде мягкого оптического элемента (1), который включает в себя мягкую гибкую опору (10) с верхней стороной (10a) и нижней стороной (10b).

Изобретение относится к нефелометрам. Устройство для оптического исследования образца, содержит: оптический источник оптического сигнала, по меньшей мере один первый детектор для получения оптического сигнала, пропущенного непосредственно через кювету, расположенную в устройстве, выполненном с возможностью размещения в нем кюветы с суженной нижней частью и широкой верхней частью, причем периметр широкой верхней части больше периметра нижней суженной части; и второй детектор для получения оптического сигнала от оптического источника, рассеянного содержимым в нижней части кюветы, причем поверхность второго детектора проходит приблизительно параллельно оптическому пути, проходящему от оптического источника к первому детектору.

Изобретение относится к нефелометрам. Устройство для оптического исследования образца, содержит: оптический источник оптического сигнала, по меньшей мере один первый детектор для получения оптического сигнала, пропущенного непосредственно через кювету, расположенную в устройстве, выполненном с возможностью размещения в нем кюветы с суженной нижней частью и широкой верхней частью, причем периметр широкой верхней части больше периметра нижней суженной части; и второй детектор для получения оптического сигнала от оптического источника, рассеянного содержимым в нижней части кюветы, причем поверхность второго детектора проходит приблизительно параллельно оптическому пути, проходящему от оптического источника к первому детектору.

Изобретение относится к области медицинской и аналитической техники и может быть использовано при изготовлении кювет для анализа жидких проб в тонких слоях. Способ изготовления кюветы для анализа жидких проб, включает установку на предметную плоскопараллельную пластинку прокладок заданной толщины, размещение сверху на прокладках покровной плоскопараллельной пластинки, закрепление полученной конструкции при помощи стягивающегося устройства, введение в зазор между пластинками по периметру клеевого состава и выдерживание в таком состоянии в течение времени, необходимом для его отверждения.
Наверх