Способ получения обогащенного карналлита

Изобретение относится к способу получения обогащенного карналлита - сырья для производства металлического магния - по галургической схеме методом «растворения-кристаллизации». Способ включает подземное растворение карналлитовой либо смешанной калийно-магниевой руды оборотным раствором с температурой 30-60°С и массовой долей хлорида магния, не превышающей 25%. Раствор выпаривают с осаждением и отделением хлорида натрия и охлаждают с получением суспензии карналлита. При разделении суспензии получают карналлит и оборотный раствор, который направляют на конденсацию пара, образующегося при охлаждении раствора, с одновременной рекуперацией тепла, а затем объединяют с горячей суспензией хлорида натрия и конденсатом пара со стадии выпаривания хлормагниевого раствора. Обеспечивается получение при подземном растворении карналлитовой либо смешанной калийно-магниевой руды раствора с оптимальным соотношением хлоридов магния и калия для получения обогащенного карналлита с высоким содержанием основного вещества, снижение расхода теплоэнергии в виде пара, а также безотходное производство обогащенного карналлита. 1 з.п. ф-лы.

 

Изобретение относится к технологии получения обогащенного карналлита - сырья для производства металлического магния - по галургической схеме методом «растворения-кристаллизации».

Широко известны способы получения обогащенного карналлита, включающие измельчение карналлитовой руды до требуемой крупности, растворение руды в горячем оборотном растворе (растворяющем щелоке) с получением раствора, насыщенного по MgCl2, осветление горячего насыщенного раствора от нерастворимых компонентов, охлаждение осветленного раствора, насыщенного по MgCl2, на вакуум-кристаллизационной установке с получением суспензии карналлита, разделение суспензии отстаиванием и центрифугирование целевого продукта - обогащенного карналлита («Соликамские карналлиты». Сб. научных трудов. С. - Петербург. Изд. ЛИК. 2007. С. 117-123).

Способ получения обогащенного карналлита по галургической схеме путем переработки карналлитовой руды реализован в промышленности, в том числе, на действующих обогатительных фабриках ПАО «Уралкалий». Недостатком способа является образование большого количества отходов при переработке карналлитовой руды (галитовые отходы, суспензия глинисто-солевого шлама), утилизация которых сложна и энергоемка. Отходы производства обогащенного карналлита складируют на поверхности в виде галитовых отвалов, либо направляют на гидрозакладку в выработанные пространства рудников.

Альтернативным вариантом шахтного способа добычи карналлитовой руды является ее подземное растворение («Соликамские карналлиты». Сб. научных трудов. С. - Петербург. Изд. ЛИК. 2007. С. 49-53); вышеуказанные отходы производства обогащенного карналлита при этом не образуются.

Известен способ переработки карналлитовой руды с получением сырья для производства металлического магния, подробно описанный в предпочтительных вариантах осуществления изобретения, включающий подземное выщелачивание руды хлормагниевым раствором и водой при температуре примерно от 20°С до 100°С, предпочтительно от 30°С до 60°С, с получением шахтного раствора, содержащего не менее 25% MgCl2, выпаривание из шахтного раствора воды, охлаждение упаренного раствора, при котором в твердую фазу кристаллизуется смесь хлористого натрия NaCl и карналлита MgCl2⋅KCl⋅6H2O, фильтрацию суспензии с получением в качестве фильтрата раствора с высоким содержанием хлорида магния, часть которого, после дополнительного нагревания, направляют на подземное выщелачивание карналлитовой руды, а другую часть направляют на переработку методом электролиза с получением металлического магния и хлора, инконгруэнтное разложение водой осадка, отделенного фильтрацией, при котором происходит выщелачивание хлорида магния, возврат получаемого раствора хлорида магния на стадию выпаривания совместно с шахтным раствором, и получение в твердой фазе «искусственного сильвинита», который может быть переработан с получением хлористого калия галургическим, либо флотационным методом с образованием в качестве отхода производства хлорида натрия (патент US 3829559, C01D 3/04, C01F 5/30, 13.08.1974 - прототип).

По прототипу шахтный раствор содержал 26,9% MgCl2 и 3,8% KСl; соотношение хлоридов магния и калия не позволит на последующих стадиях переработки получать обогащенный карналлит по причине недостаточного содержания KСl в шахтном растворе.

Еще одним недостатком данного способа является необходимость выпаривания значительного количества воды из хлормагниевого раствора, что требует большого расхода теплоэнергии (пара). Так, в соответствии с примером II прототипа шахтный раствор с температурой 40°С содержит 26,9% MgCl2, 3,8% KСl, 1,6% NaCl и 67,7% Н2О. Шахтный раствор объединяют с оборотным («ре-циркулирующим») раствором с получением объединенного раствора, содержащего 26,7% MgCl2, 3,6% KСl, 1,9% NaCl и 67,8% Н2O, который направляют на выпаривание, в процессе которого испаряется 24% воды от общего расхода раствора. Таким образом, из 100 т объединенного раствора необходимо испарить 24 т воды.

При выпаривании солевых растворов в трехкорпусной вакуум-выпарной установке расход греющего пара с давлением 2,5 кгс/см2, составляет, по практическим данным, 0,49 т на 1 т испаряемой воды. Таким образом, выпаривание 100 т хлормагниевого раствора по прототипу будет сопровождаться существенным расходом теплоэнергии (греющего пара), который составит: 24×0,49=11,76 т.

Поэтому по прототипу предложена достаточно энергозатратная схема, заключающаяся в выпаривании из шахтного раствора 24% воды с кристаллизацией в твердую фазу смеси хлористого натрия и карналлита и образованием на последующих стадиях переработки хлористого натрия в качестве отхода производства.

Техническим результатом предлагаемого изобретения является получение при подземном растворении карналлитовой либо смешанной калийно-магниевой руды раствора с оптимальным соотношением хлоридов магния и калия для получения на последующих стадиях переработки обогащенного карналлита с высоким содержанием основного вещества; снижение расхода теплоэнергии (пара) на стадии выпаривания хлормагниевых растворов подземного выщелачивания; создание безотходного производства обогащенного карналлита.

Технический результат достигается за счет того, что в способе получения обогащенного карналлита, включающем подземное растворение карналлитовой либо смешанной калийно-магниевой руды оборотным раствором с температурой 30-60°С и массовой долей хлорида магния, не превышающей 25%, выпаривание полученного раствора с осаждением и отделением хлорида натрия, охлаждение горячего, насыщенного по хлористому магнию, раствора с кристаллизацией в твердую фазу карналлита и получением суспензии карналлита, разделение суспензии карналлита с получением карналлита и оборотного раствора, который возвращают на стадию подземного растворения руды, в соответствии с изобретением оборотный раствор перед возвратом на стадию подземного растворения руды объединяют с горячей суспензией хлорида натрия со стадии выпаривания хлормагниевого раствора и конденсатом пара, образующимся при выпаривания раствора.

Кроме того, в предлагаемом способе оборотный раствор после отделения карналлита направляют на конденсацию растворного пара, образующегося при охлаждении горячего насыщенного раствора под вакуумом, с одновременной рекуперацией тепла растворного пара оборотным раствором.

Объединение оборотного раствора с горячей суспензией хлорида натрия (солевого шлама) со стадии выпаривания хлормагниевого раствора и конденсатом пара, образующимся при выпаривании раствора позволяет получить раствор с температурой до 60°С, насыщенный по NaCl, и ненасыщенный хлоридами магния и калия, который направляют для подземного растворения карналлитовой или смешанной калийно-магниевой руды, создавая таким образом условия для селективного выщелачивания MgCl2 и KСl без дополнительного растворения из руды хлорида натрия, благодаря чему при подземном растворении образуется хлормагниевый раствор с оптимальным соотношением MgCl2 и KСl для последующей кристаллизации на стадии охлаждения целевого продукта - обогащенного карналлита - с высоким содержанием основного вещества; одновременно снижается расход теплоэнергии (пара) для выпаривания хлормагниевого раствора.

Предлагаемый способ позволяет снизить расход теплоэнергии (греющего пара) на выпаривание хлормагниевых растворов с получением сырья для производства металлического магния не менее, чем в 2 раза, по сравнению с прототипом. Отходы производства при реализации предлагаемого способа отсутствуют.

Использование оборотного раствора после отделения карналлита для конденсации растворного пара, образующегося при охлаждении горячего насыщенного раствора, сопровождается рекуперацией тепла растворного пара оборотным раствором, температура которого при этом повышается от 50°С до 55-58°С. После объединения оборотного раствора, имеющего температуру 55-58°С, с горячей суспензией хлорида натрия (солевого шлама) со стадии выпаривания хлормагниевого раствора и конденсатом пара, образующимся при выпаривании раствора, температура объединенного раствора составит более 60°С, что позволит интенсифицировать процесс подземного растворения карналлитовой либо смешанной калийно-магниевой руды. При этом, в отличии от прототипа, не требуется дополнительного нагревания раствора, подаваемого на подземное растворение.

Способ осуществляется следующим образом.

Раствор со стадии подземного выщелачивания карналлитовой руды поступает на трехкорпусную вакуум-выпарную установку, на который из раствора выпаривают воду. В твердую фазу при этом кристаллизуется хлорид натрия. После сгущения горячей суспензии отделяют сгущенную суспензию хлорида натрия. Горячий насыщенный по хлористому магнию раствор поступает на стадию вакуум-кристаллизации, на которой при охлаждении под вакуумом до температуры 50°С испаряется вода и кристаллизуется карналлит.Суспензию карналлита разделяют сгущением и центрифугированием с получением обогащенного карналлита. Получаемый продукт отвечает требованиям, предъявляемым к сырью для производства металлического магния.

Оборотный раствор после отделения целевого продукта направляют для конденсации растворного пара вакуум-кристаллизационной установки с одновременной рекуперацией тепла растворного пара, в процессе которой маточный раствор нагревается до 55-58°С, затем объединяют с суспензий хлористого натрия со стадии выпаривания раствора подземного выщелачивания и конденсатом вторичного пара вакуум-выпарной установки. Получаемый раствор направляют для подземного выщелачивания карналлитовой либо смешанной калийно-магниевой руды.

Предлагаемый способ может быть реализован на действующих карналли-товых обогатительных фабриках с использованием установленного оборудования (вакуум-кристаллизационных установок, оборудования для разделения суспензии карналлита).

Пример осуществления способа.

100 т раствора подземного выщелачивания карналлитовой руды, содержащего 25,59% MgCl2, 5,44% KСl, 1,89% NaCl, 0,95% СаСl2, 0,12% CaSQ4 и 66,01 % Н2O, поступает на трехкорпусную вакуум-выпарную установку, на который из раствора выпаривают 10,595 т воды. В твердую фазу при этом кристаллизуется 0,086 т хлорида натрия.

После сгущения горячей суспензии отделяют 0,214 т сгущенной суспензии хлорида натрия, состоящей из 0,086 т твердой фазы, представленной хлоридом натрия, и 0,128 т жидкой фазы.

89,191 т горячего насыщенного раствора, содержащего 28,65% MgCl2, 6,09% KСl, 2,02% NaCl, 1,06% CaCl2, 0,14% CaSO4 и 62,04% H2O, поступает на стадию вакуум-кристаллизации, на которой при охлаждении под вакуумом до температуры 50°С испаряется 1,090 т воды и кристаллизуется 15,126 т твердой фазы, представленной 14,302 т карналлита, 0,110 т свободного хлористого калия и 0,714 т хлорида натрия. Суспензию разделяют сгущением и центрифугированием с получением 15,873 т обогащенного карналлита, содержащего 32,03% MgCl2, 23,95% KСl, 4,43% NaCl, 0,12% CaCl2, 0,02% CaSO4 и 39,45% H2O. Получаемый продукт отвечает требованиям, предъявляемым с сырью для производства металлического магния.

Оборотный раствор после отделения целевого продукта, содержащий 28,34% MgCl2, 2,26% KСl, 1,52% NaCl, 1,29% CaCl2, 0,16% CaSO4 и 66,43% H2O, направляют для конденсации растворного пара вакуум-кристаллизационной установки с одновременной рекуперацией тепла растворного пара, в процессе которой маточный раствор нагревается до 55°С, затем объединяют с суспензий хлористого натрия со стадии выпаривания раствора подземного выщелачивания и конденсатом вторичного пара вакуум-выпарной установки. Получаемый раствор, содержащий 24,70% MgCl2, 1,97% KСl, 1,43% NaCl, 1,12% CaCl2, 0,14% CaSO4 и 70,64% H2O, с температурой 62°С направляют для подземного выщелачивания карналлитовой либо смешанной калийно-магниевой руды.

Раствор указанного состава имеет максимальную емкость по KСl и MgCl2; минимальную емкость по NaCl. При подземном выщелачивании карналлитовых либо смешанных калийно-магниевых руд в растворе указанного состава может раствориться на 1 т воды:

где

24,79% и 70,64% - соответственно, массовая доля MgCl2 и Н2О в растворе, направляемом на подземное выщелачивание;

25,59% и 66,01% - соответственно, массовая доля MgCl2 и Н2О в растворе, получаемом после подземного выщелачивания.

где

1,97% и 70,64% - соответственно, массовая доля КСl и Н2О в растворе, направляемом на подземное выщелачивание;

5,44% и 66,01% - соответственно, массовая доля KСl и Н2O в растворе, получаемом после подземного выщелачивания.

где

1,43% и 70,64% - соответственно, массовая доля NaCl и Н2О в растворе, направляемом на подземное выщелачивание;

1,89% и 66,01% - соответственно, массовая доля NaCl и Н2O в растворе, получаемом после подземного выщелачивания.

Расход теплоэнергии (греющего пара) для выпаривания раствора подземного выщелачивания составит 10,595⋅0,49=5,19 т, что в ~2,2 раза меньше, чем по прототипу.

По предлагаемому способу хлормагниевый раствор после подземного выщелачивания содержит 25,59% MgCl2 и 5,44% KСl, соотношение хлоридов магния и калия является оптимальным для получения на последующих стадиях переработки обогащенного карналлита.

1. Способ получения обогащенного карналлита, включающий подземное растворение карналлитовой либо смешанной калийно-магниевой руды оборотным раствором с температурой 30-60°С и массовой долей хлорида магния, не превышающей 25%, выпаривание полученного раствора с осаждением и отделением хлорида натрия, охлаждение горячего насыщенного по хлористому магнию раствора с кристаллизацией в твердую фазу карналлита и получением суспензии карналлита, разделение суспензии карналлита с получением карналлита и оборотного раствора, который возвращают на стадию подземного растворения руды, отличающийся тем, что оборотный раствор перед возвратом на стадию подземного растворения руды объединяют с горячей суспензией хлорида натрия со стадии выпаривания хлормагниевого раствора и конденсатом пара, образующимся при выпаривании раствора.

2. Способ по п. 1, отличающийся тем, что оборотный раствор после отделения карналлита направляют на конденсацию растворного пара, образующегося при охлаждении горячего насыщенного раствора под вакуумом, с одновременной рекуперацией тепла растворного пара оборотным раствором.



 

Похожие патенты:

Изобретение относится к области гидрометаллургии цветных металлов и может быть использовано при переработке концентратов, промпродуктов и твердых отходов, содержащих металлы.

Изобретение относится к способам экстракционного разделения РЗЭ из нейтральных или слабокислых растворов в присутствии высаливателя нейтральными экстрагентами. Способ экстракционного разделения редкоземельных элементов из нейтральных или слабокислых растворов с помощью нейтральных фосфорорганических экстрагентов в противоточном многоступенчатом экстракционном каскаде, который состоит из экстракционной, промывной и реэкстракционной частей.
Изобретение относится к химической промышленности, в частности к технологии извлечения редкоземельных элементов из фосфогипса. Способ извлечения редкоземельных элементов из фосфогипса включает приготовление пульпы из измельченного предварительно обогащенного фосфогипса при соотношении массы фосфогипса к объему воды равном 1:(1,8-3,0) и сорбцию редкоземельных элементов, которую проводят с использованием гелевого сильнокислотного сульфокатионита в H+-форме при соотношении массы ионита к массе фосфогипса равной 1:(1-3) на двух ступенях при времени контакта фаз на ступени 3,5-4,0 часа.
Изобретение относится к области металлургии ванадия и хрома, в частности к утилизации ванадия и хрома, содержащихся в ванадиево-хромовых шлаках. Способ включает следующие этапы: а.
Изобретение относится к переработке сульфидного концентрата, содержащего драгоценные металлы. Способ включает смешивание сульфидного концентрата, содержащего драгоценные металлы, и кальцийсодержащего флюса с получением шихты, обжиг шихты в среде кислородсодержащего газа при температуре 600-750°С с получением огарка.

Изобретение относится к получению плавленого гранулированного пентоксида ванадия. Способ заключается в том, что выпуск расплавленного пентоксида ванадия на диск-гранулятор производят при толщине жидкого слоя на диске в месте падения струи 3-15 мм, а образующиеся пластины в процессе их остывания при температуре 120-580°С подвергают механическому воздействию путем их обжатия валками, рабочая поверхность которых выполнена в виде фигур.

Изобретение относится к обогащению, в частности к способам получения редкоземельных металлов (РЗМ) или их оксидов из бедного или техногенного сырья с помощью метода флотоэкстракции.

Изобретение может быть использовано в химической промышленности. Способ получения оксида алюминия из богатых алюминием материалов с интегрированной утилизацией СO2 включает измельчение и выщелачивание богатых Al материалов в соляной кислоте.

Изобретение относится к горной промышленности и может быть использовано при вторичной подземной разработке оставшихся участков ранее отработанных шахтных полей мерзлых глубокопогребенных золотороссыпных месторождений Севера.

Изобретение относится к выщелачиванию металлов из руд и концентратов. Устройство содержит реактор из кислотостойкого и термостойкого материала, выполненный со штуцером для загрузки в него исходного сырья в виде пульпы, напорный бак для подачи в реактор реагента в виде раствора кислоты или раствора хлорида натрия и размещенные в реакторе ультразвуковой диспергатор и подключенный к источнику постоянного тока электродный блок.
Наверх