Синтез полусинтетических производных природных лютеина и астаксантина



Синтез полусинтетических производных природных лютеина и астаксантина
Синтез полусинтетических производных природных лютеина и астаксантина

Владельцы патента RU 2702005:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный медицинский университет" Министерства здравоохранения Российской Федерации (RU)

Изобретение относится к фармации, в частности к химико-фармацевтической отрасли, и касается способа получения новых полусинтетических производных лютеина и астаксантина и может использоваться для получения лекарственных препаратов на основе этих соединений. Описан синтез полусинтетических производных индивидуальных природных каротиноидов, в частности сложных эфиров лютеина и бензойной кислоты, лютеина и n-метилбензойной кислоты (n-толуиловой кислоты), лютеина и никотиновой кислоты, лютеина и миндальной кислоты, астаксантина и бензойной кислоты, астаксантина и n-метилбензойной кислоты (n-толуиловой кислоты), астаксантина и никотиновой кислоты, астаксантина и миндальной кислоты. Способ синтеза сложных эфиров лютеина и астаксантина проводят в присутствии биокатализатора Новозима 435. Синтез полусинтетических производных природных лютеина и астаксантина не требует сложного и дорогостоящего технического оснащения, позволяет получать сложные эфиры лютеина и астаксантина, которые в дальнейшем используют для разработки новых лекарственных средств. 1 ил., 1 табл., 8 пр.

 

Изобретение относится к фармации, в частности, к химико-фармацевтической отрасли и касается способа получения новых полусинтетических производных лютеина и астаксантина и может использоваться для получения лекарственных препаратов на основе этих соединений.

В периодической научной литературе отсутствуют данные по получению полусинтетических производных лютеина и астаксантина.

При этом существуют публикации, посвященные получению полностью синтетических каротиноидов, повторяющих, по мнению авторов, их активный молекулярный центр [Recent progress in the synthesis of butenolide carotenoids and retinoids / Masayoshi Ito // Pure & Appl. Chem., 199. - Vol. 63. - N. 1. - P. 13-22, https://iupac.org/publications].

Вместе с тем к активно разрабатываемому фармацевтическому направлению можно отнести получение полусинтетических продуктов на основе других природных биологически активных веществ (БАВ), например, тритерпеноидов лупанового ряда [Производные бетуленола как перспективные анти-ВИЧ агенты / А.З. Абышев, Р.А. Абышев, В.X. Нгуен, В.А. Морозова // Медицинский академический журнал, 2013. - Т. 13, - №2. - С. 15-32], алкалоидов [Синтез аналогов алкалоидов, содержащих изоксазольные и изотиазольные фрагменты / Дикусар Е.А., Петкевич С.К., Клецков А.В., Кадуцкий А.П., Козлов Н.Г., Поткин В.И. // Фенольные соединения: свойства, активность, инновации: сб. науч. ст., Москва, 14-19 мая 2018 г. С. 47-49], терпенофенолов [Синтез новых гетероциклических соединений на основе терпенофенолов / Попова С.А., Чукичева И.Ю. // Фенольные соединения: свойства, активность, инновации: сб. науч. тр., Москва, 14-19 мая 2018 г. - С. 133-135; Новые перспективы полусинтетических терпенофенолов / Чукичева И.Ю., Буравлёв Е.В., Дворникова И.А., Федорова И.В., Щукина О.В., Кучин А.В. // Фенольные соединения: свойства, активность, инновации: сб. науч. ст., Москва, 14-19 мая 2018 г. С. 190-192], флавоноидов [Современные тенденции создания лекарственных средств на основе флавоноидов / Тюкавкина Н.А., Селиванова И.А., Терехов Р.П. // Фенольные соединения: свойства, активность, инновации: сб. науч. ст., Москва, 14-19 мая 2018 г. С. 526-532; Rutin derivatives obtained by transesterification reactions catalyzed by Novozym 435: Antioxidant properties and absence of toxicity in mammalian cells / Anete Souza Mecenas, Camila Rodrigues Malafaia, Leandro Stefano Sangenito, Daniel Luiz Reis Simas, Thelma de Barros Machado, Ana Claudia F. Amaral, Luis Souza dos Santos, Denise Maria Freire, Ivana Correa Ramos Leal // https://journals.plos.org - September 19, 2018] и др..

Идея получения сложных эфиров ксантофиллов, в частности лютеина и астаксантина, с активностью в отношении периферических сосудов возникла в результате анализа структуры вазодилататора цикланделата, обладающего прямым действием на гладкую мускулатуру сосудов (Рис. 1). В частности, при получении цикланделата в качестве спирта был использован 3,3,5-триметилциклогексанол-1 [United States Patent 2,707,193, 1955, https://www.drugbank, United States Patent: 3,663,597, 1972; https://www.drugbank.ca/drugs; United States Patent: 3,673,239, 1972, https://www.drugbank.ca/drugs], обладающий прямым действием на гладкую мускулатуру сосудов, т.е. папавериноподобным действием в отношении периферических сосудов.

Экспериментальный успех получения сложных эфиров лютеина и астаксантина был спрогнозирован и обоснован положительным результатом в рамках исследования, описанного в патенте [United States Patent: 7,566,795, 2009 http://patft.uspto.gov], авторы которого получили сложные эфиры ретинола, соединения родственного каротиноидам, с линолевой кислотой и ее производных, пальмитиновой, олеиновой, липолевой, пимелиновой (гептандиовой) и другими кислотами.

Впервые получение цикланделата описано в патенте [United States Patent 2,707,193, 1955 https://www.drugbank]. При этом 50 г миндальной кислоты (смесь d-, l-изомеров) нагревают в течение 6 часов при приблизительно 100°С с 50 г 3,3,5-триметилциклогексанол (смесь цис- и транс-изомера), пропуская через реакционную смесь газообразный хлороводород, затем продукт реакции выливают в воду. После нейтрализации бикарбонатом калия сложный эфир экстрагируют эфиром. Эфирную фракцию сушат сульфатом натрия, эфир отгоняют и остаток перегоняют в вакууме, 3,3,5-триметилциклогексиловый эфир миндальной кислоты получают с выходом около 70%. Необходимо отметить, что согласно описанию патента, авторами проводилось получение сложных эфиров миндальной кислоты со следующими спиртами: 3,3,5-триметилциклогексанолом-1, метанолом, этанолом, пропанолом-1, бутанолом-2, 2-метилбутанолом-1, бензиловым спиртом, папаверином и др. Сложный эфир миндальной кислоты с 3,3,5-триметилциклогексанолом-1 показал наиболее выраженную спазмолитическую активность.

В 1972 в США зарегистрирован патент, [United States Patent: 3,673,239, 1972 https://www.drugbank], в котором согласно описанию 142 г 3,3,5-триметилциклогексанола (1,0 моль), 76 грамм миндальной кислоты (0,5 моль), 126 г толуола (1,37 моль), 2,0 г порошка цинка и 2 г 35% водный раствор соляной кислоты загружали в реакционную смесь и реакцию этерификации проводили при 110-130°С в течение 1 часа. В течение периода реакции 18 г 35% водного раствора хлористоводородной кислоты добавляли по каплям до получения водорода в реакционной системе. Затем продукт выдерживали при 130°С в течение примерно 2 часов. После охлаждения, не прореагировавший цинковый порошок отфильтровывали, и фильтрат промывали 5% водным раствором карбоната натрия и воды. Толуол и не прореагировавший 3,3,5-триметилциклогексанол отгоняли при пониженном давлении. Выход продукта составил 84,5% в расчете на миндальную кислоту. В патенте описано 13 примеров получения цикланделата, отличающихся использованием разных металлов: цинка, олова, магния, никеля, свинца и их сочетаний; временем введения в реакционную систему кислоты и металла; органическим растворителем (бензол и толуол) и его количеством. Получение цикланделата по реакции этерификации проводилось при нагревании до температуры выше 100°С. Кроме того, в патенте [United States Patent: 3,663,597, 1972 https://www.drugbank] описан способ дополнительной очистки цикланделата, получаемого по патенту [United States Patent: 3,673,239, 1972 https://www.drugbank].

Классическая реакция этерификации протекает в водной фазе и наиболее полно и быстро в присутствии металлов и сильных кислот, например, концентрированной серной или хлористоводородной кислот. Другим обязательным и необходимым условием протекания реакции этерификации является нагревание более 50°С, а в некоторых случаях свыше 100°С. Очевидно, что получение сложных эфиров ксантофиллов требует адаптации этих традиционных условии протекания реакции этерификации, что, в первую очередь, обусловлено особенностями растворимости ксантофиллов: они не растворимы в воде и растворимы в неполярных органических растворителях. Другим немаловажным фактором является температурный - проведение реакции с ксантофиллами при температурах свыше 50°С приведет к разрушению полиеновой цепи. Реакция этерификации является каталитической, а использование в этом качестве металлов и кислот приведет к выделению водорода. Одновременное присутствие в реакционной системе ксантофиллов и водорода, вызовет частичное или полное гидрирование полиеновой цепи ксантофилла и, как следствие, потерю каротиноидной структуры.

В связи с выше сказанным, по нашему мнению, является перспективным использование в качестве катализаторов реакции этерификации ксантофиллов биокатализаторов, которые позволяют проводить реакции этерификации в среде органических растворителей [Enzymatic esterification of oleic acid and propanol by Novozym435 / Sawittree Mulaleea, Karnjana Senab, and Muenduen Phisalaphong // Applied Mechanics and Materials, 2015. - Vol. 705. - P. 29-33; Ферментативный катализ в неводных средах / Гамаюрова B.C., Зиновьева М.Е. // Бутлеровские сообщения, 2011. - Т. 25. - №7. - С. 87-95], в более мягких условия [Основные аспекты использования липаз для получения биодизеля (обзор) / А.В. Гарабаджиу, В.А. Галынкин, М.М. Карасев, Г.В. Козлов, Т.Б. Лисицкая // ИЗвестия Санкт-Петербургского государственного технологического института (технического университета), 2010. - №7 (33). - С. 63-67] и с большим практическим выходом продукта реакции [Solvent free lipase catalyzed synthesis of butyl caprylate / Meera T Sose, Sneha R Bansode, Virendra K Rathod // J. Chem. Sci., 2017. - Vol. 129. - №11. - P. 1755-1760; High Enantioselective Novozym 435-Catalyzed Esterification of (R,S)-Flurbiprofen Monitored with a Chiral Stationary Phase / Tomasz Debby Mangelings, Yvan Vander Heyden, Marta Ziegler-Borowska, Piotr Marsza // Appl Biochem Biotechnol, 2015. - Vol. 175. - P. 2769-2785].

За прототип был принят способ получения сложных эфиров ретинола - родственного каротиноидам соединения [United States Patent: 7,566,795, 2009 http://patft.uspto.gov]. Согласно описанию сложные эфиры ретинола получали, используя в качестве растворителей диизопропиловый эфир, трет-бутилметиловый эфир, тетрагидрофуран и их смеси; бензол, толуол, ксилол, гексан, гептан,

циклогексан, лимонен, дихлорметан, дихлорэтан, дибромэтан, тетрахлорэтилен, хлорбензол и их смеси; ацетонитрил, диметилформамид, диметилсульфоксид и их смесей. Температура реакционной среды составляет от 20 до 100°С. Время протекания реакции от 1-2 часов до 19-23 часов. В качестве ферментагых катализаторов авторы использовали липазу, фосфолипазу или эстеразу, при этом предпочтительнее использовать липазы, в частности, коммерческие липазы иммобилизированные на носителях, а именно Lipase PS, Lipase PS-C, Lipase PS-D, Lipoprime 50T, Lipozyme TL IM или Novozyme 435. Анализ полученных сложных эфиров проводили методом ВЭЖХ.

Заявляемое изобретение ставит своей целью синтез полусинтетических производных индивидуальных природных каротиноидов, в частности, сложных эфиров:

лютеина и бензойной кислоты,

лютеина и n-метилбензойной кислоты (n-толуиловой кислоты),

лютеина и никотиновой кислоты,

лютеина и миндальной кислоты,

астаксантина и бензойной кислоты,

астаксантина и n-метилбензойной кислоты (n-толуиловой кислоты),

астаксантина и никотиновой кислоты,

астаксантина и миндальной кислоты (таблица 1).

Существенными отличительными признаками изобретения являются следующие особенности:

сложные эфиры получены на основе природных ксантофиллов лютеина и астаксантина, которые использованы как спиртосоставляющая сложных эфиров;

сложные эфиры получены с применением бензойной, n-метилбензойной (n-толуиловой), никотиновой кислот;

реакция этерификации проводится без доступа света, с целью предотвращения деструкции ксантофиллов;

время реакции - 6 часов;

скорость перемешивания - 30 об/мин, смена направления перемешивания через 10 мин;

температуры процесса не должна превышать 37°С;

высушивание полученных соединений при комнатной температуре над безводным сульфатом натрия, предохраняя от действия света;

установление структуры полученных эфиров проведено - методом масс-спектрометрии (carL001: 777 (М, 100%), 655 (35), 519 (17), 105 (61); carL002: 779 (М, 100%), 656 (33), 520 (15), 107 (62); carL003: 805 (М, 100%), 669 (36), 533 (17), 119 (60); carL004: 837 (М, 100%), 703 (49), 685 (35), 549 (20), 135 (52), 107 (47); carA001: 805 (М, 100%), 683 (40), 533 (16), 105 (63); carA002: 807 (М, 100%), 684 (39), 534 (17), 106 (62); carA003: 833 (М, 100%), 697 (40), 547 (18), 119 (61); carA004: 865 (М, 100%), 847 (43), 731 (48), 713 (36), 563 (20), 135 (51), 107 (49)).

Предлагаемый способ включает следующие стадии:

1) эквимолярные навески ксантофилла (или лютеина, или астаксантина) и кислоты (или бензойной, или n-метилбензойной, или никотиновой, или миндальной) растворяют в 50 мл толуола;

2) полученные растворы помещают в химический реактор, предварительно защищенный от воздействия света (оборачивание черной бумагой или другое);

3) в реакционную среду вносят катализатор Новозим 435 (Novozyme 435) (кат. № L4777 Sigma-Aldrich);

4) реакционную среду нагревают до 37°С;

5) время протекания реакции 6 часов, скорость перемешивания 30 об/мин, смена направления перемешивания через 10 мин;

6) по истечении 6 часов пробу раствора анализируют методом ВЭЖХ, определяя количественное содержание продуктов реакции и остаточное содержание исходных компонентов;

7) раствор, содержащий продукты реакции и остаточные количества реагентов, пропускают через колонку заполненную алюминия оксидом 2,5 г, собирая вторую окрашенную фракцию;

8) раствор промывают спиртом этиловым 95% и водой;

9) упаривают в роторном испарителе;

10) высушивают при комнатной температуре над безводным сульфатом натрия, предохраняя от действия света

11) полученные вещества запаивают в ампулы темного стекла.

Пример получения сложных эфиров лютеина и астаксантина с бензойной кислотой: 0,57 г лютеина или 0,60 г астаксантина (около 0,001 моль), 2,4 г (около 0,002 моль) бензойной кислоты (кат. №242381 Sigma-Aldrich), 50 мл толуола, 1,0 г Novozyme 435 (кат. № L4777 Sigma-Aldrich) помещали в реактор, предварительно обернув его черной бумагой, для предотвращения попадания света, и продували азотом. Температура реакционной среды - 37°С, время протекания реакции - 6 часов, скорость перемешивания - 30 об/мин, смена направления перемешивания через 10 мин.

Полученный раствор анализировали методом ВЭЖХ в следующих условиях: колонка Develosil С30 150 мм×4,6 мм, подвижная фаза: ацетонитрил - хлороформ - метанол (80:18:2), детектирование 445 нм. Время удерживания лютеина - 4,2 мин, carL001 - 6,7 мин, астаксантина - 3,4 мин, carA001 - 5,9 мин. Установлено, что образуется эфир лютеина в количестве 61,3%, астаксантина 58,5%, дальнейшее проведение реакции в течение суток не приводило к значимому увеличению продукта.

Полученный раствор пропускали через колонку заполненную алюминия оксидом 2,5 г диаметр 1 см, собирая вторую окрашенную фракцию.

Затем раствор промывали спиртом этиловым 95% и водой, далее упаривали в роторном испарителе и высушивали над безводным сульфатом натрия при комнатной температуре, предохраняя от действия света, полученные вещества хранят в ампулах темного стекла.

Предлагаемый способ синтеза полусинтетических производных природных лютеина и астаксантина не требует сложного и дорогостоящего технического оснащения, позволяет получать сложные эфиры лютеина и астаксантина, которые могут в дальнейшем быть использованы для разработки новых оригинальных лекарственных средств.

Синтез полусинтетических сложных эфиров в присутствии биокатализатора Новозим 435, отличающийся тем, что в качестве спиртосоставляющих сложных эфиров используют природные ксантофиллы, а именно лютеин или астаксантин, навески которых, соответствующие 0,001 моль вещества, и кислотосоставляющие, а именно или бензойную кислоту, или n-метилбензойную кислоту (n-толуиловую кислоту), или никотиновую кислоту, или миндальную кислоту в количестве, эквивалентном 0,002 моль вещества, растворяют в 50 мл толуола, помещают в реактор, для предотвращения попадания света и воздуха, нагревают реакционную среду до 37°С, перемешивают в течение 6 часов при скорости вращения мешалки 30 об/мин, смену направления перемешивания осуществляют через 10 мин; процесс синтеза контролируют методом ВЭЖХ; по окончании синтеза раствор пропускают через колонку, заполненную алюминия оксидом, собирая вторую окрашенную фракцию; раствор промывают спиртом этиловым 95% и водой; упаривают в роторном испарителе, высушивают над безводным сульфатом натрия при комнатной температуре, предохраняя от действия света; полученные полусинтетические сложные эфиры хранят в ампулах темного стекла.



 

Похожие патенты:

Предложен способ получения 2-нитроксисукцината 3-окси-6-метил-2-этилпиридина путем нитрования яблочной кислоты серно-азотной смесью, до образования нитроксиянтарной кислоты с последующей ее обработкой 2-этил-6-метил-3-оксипиридином, где нитрояблочную кислоту, синтезируемую в качестве промежуточного продукта, выделяют из реакционной смеси не в сухом виде, а в виде раствора в этилацетате, который затем и используют для проведения заключительной реакции с 3-окси-6-метил-2-этилпиридином.

Изобретение относится к новой соли – дигидрату оротата 2-этил-6-метил-3-гидроксипиридина и способу его получения. 2-Этил-6-метил-3-гидроксипиридина оротата дигидрат соответствует формуле С8Н11NO⋅C5H4N2O4⋅2H2O.

Изобретение относится к способу получения 6-метил-2-этилпиридин-3-ол соли (2S)-2-ацетаминопентандиовой кислоты, который включает проведение реакции солеобразования между N-ацетил-L-глутаминовой кислотой и 2-этил-6-метил-3-оксипиридином в присутствии растворителя и последующую кристаллизацию, в котором в качестве растворителя используют азеотропную смесь изопропилового спирта и воды, а кристаллизацию проводят в среде ацетона.

Изобретение относится к области органической химии, а именно к комплексным солям 2-этил-6-метил-3-гидроксипиридиния N-ацетил-6-аминогексаноата (1) и N-Ацетил-6-аминогексаноата серебра (2), стимулирующим регенерацию костной ткани, ускоряющим процессы репаративного остеогенеза, стимулирующим минерализацию костной ткани при остеопорозе.

Изобретение относится к замещенному оксимом амидному соединению, представленному формулой (I), или его приемлемой в сельском хозяйстве соли, где G1 представляет собой структуру, представленную любой одной из структур G1-1 - G1-4, G1-7 - G1-9, G1-11 - G1-13, G1-16, G1-20, G1-27, G1-30, G1-32, G1-33, G1-44 и G1-50, приведенных в формуле изобретения; G2 представляет собой структуру, представленную G2-2; W представляет собой атом кислорода или атом серы; R1 представляет собой C1-C6-алкил, C1-C4-галогеналкил, (C1-C4)-алкил, замещенный R18, C3-C6-циклоалкил, E-2, E-14, C3-C6-алкенил, C3-C4-галогеналкенил, C3-C6-алкинил или фенил, R2 представляет собой атом водорода, C1-C4-алкил или фенил или вместе с R3 может образовывать указанное ниже кольцо, R3 представляет собой атом водорода или метил, или R3 вместе с R2 может образовывать C2-C5-алкиленовую цепь с образованием 3-6-членного кольца вместе с атомом углерода, связанным с R2 и R3, R4 представляет собой атом водорода, C1-C4-алкил, (C1-C2)-алкил, замещенный R19, циклопропил, аллил, пропаргил, C1-C4-алкилкарбонил, C1-C4-алкоксикарбонил или C1-C4-галогеналкилтио, R5 представляет собой C1-C4-алкил; m является целым числом от 1, 2 или 3, n является целым числом 0, 1 или 2, и p является целым числом 0, 1 или 2, и r представляет собой 0.

Изобретение относится к левовращающемуся энантиомеру 2-этил-6-метил-3-гидроксипиридиния L-гидроксиэтанбутандионата, который обладает церебропротекторной активностью и пролонгирует период биоэлектрической активности миокарда.

Изобретение относится к комплексу ацетата цинка с 3-гидроксипиридином формулы: Предложенный металлокомплекс обладает антигипоксической активностью в условиях острой экзогенной гипоксии (гипобарической гипоксии и гипоксии с гиперкапнией).

Изобретение относится к арил-замещенным карбоксамидным производным формулы (I) или их фармацевтически приемлемым солям, где в формуле (I) R представляет собой водород; R1 независимо выбран из группы, состоящей из: (1) водорода, (2) галогена, (3) гидроксила, (4) -On-C1-6 алкила, где алкил является незамещенным или замещен одним или несколькими заместителями, независимо выбранными из R7, (5) -On-гетероциклической группы, выбранной из пиперидинила, пирролидинила, тетрагидропиранила, тетрагидрофуранила и оксетанила; n имеет значение 0 или 1, когда n имеет значение 0, вместо On присутствует химическая связь; р имеет значение 1 или 2; когда р имеет значение два, R1 могут быть одинаковыми или отличными друг от друга; R2 представляет собой C1-6 алкил, который является незамещенным или замещенным одним или несколькими заместителями, независимо выбранными из R7; или R2 вместе с R1 образует С3-С6 циклоалкил; X представляет собой 1,2-С3 циклоалкилен; W, Y и Z независимо выбраны из атома азота и атома углерода; по меньшей мере, один из W, Y и Z представляет собой азот и W, Y и Z, в одно и то же время, не являются углеродом; R3, R4, R5 и R6 являются такими, как указано в формуле изобретения; Ar означает арил, который представляет собой моно- или би-карбоциклическое или моно- или би-гетероциклическое кольцо, содержащее 0-3 гетероатома, выбранных из О, N и S, включая фенил, фурил, оксазолил, тиазолил, имидозолил, пиридил, пиперидинил, пиримидинил, изооксазолил, триазолил, тетрагидронафтил, бензофуранил, бензотиофенил, индолил, бензоимидазолил, хинолил, изохинолил, хиноксалинил, пиразоло [1,5-а] пиридил, тиено [3,2-b] пирролил, где арил необязательно замещен 1-3 заместителями, указанными в формуле изобретения.

Изобретение относится к соединению формулы [1] или его фармацевтически приемлемой соли, где R1 и R2 являются одинаковыми или отличаются и каждый из них представляет собой атом водорода, С1-6алкильную группу, С3-8циклоалкильную группу или С1-6алкоксигруппу (С1-6алкильная группа, С1-6алкоксигруппа и С3-8циклоалкильная группа могут быть замещены 1-3 заместителями, которые являются одинаковыми или отличаются и выбраны из "атома галогена, С1-6алкоксигруппы"); R3 представляет собой атом водорода или С1-6алкильную группу; R4 представляет собой атом водорода, С1-6алкильную группу, С3-8циклоалкильную группу(которые могут быть замещены заместителями, которые указаны в формуле изобретения), гетероциклическую группу, выбранную из пиридина; А1 представляет собой двухвалентную арильную группу, двухвалентную гетероциклическую группу, выбранную из пиридила, пиразинила, тиофенила, или С3-8циклоалкиленовую группу (двухвалентная арильная группа может быть замещена 1-4 заместителями, которые являются одинаковыми или отличаются и выбраны из следующей группы заместителей Ra, которые указаны в формуле изобретения); L представляет собой -С≡С-, -С≡С-С≡С-, -С≡С-(CH2)m-O-, СН=СН-, -СН=CH-С≡C-, -С≡С-СН=СН-, -O-, -(СН2)m-O-, -O-(CH2)m-, C1-4алкиленовую группу или связь; m обозначает 1, 2 или 3; А2 представляет собой двухвалентную арильную группу, двухвалентную гетероциклическую группу (приведенную в формуле изобретения), С3-8циклоалкиленовую группу, С3-8циклоалкениленовую группу, С1-4алкиленовую группу или С2-4алкениленовую группу (которые могут быть замещены 1-4 заместителями, которые являются одинаковыми или отличаются и выбраны из группы заместителей Rb, которая приведена в формуле изобретения); W представляет собой R6-X1-, R6-X2-Y1-X1-, R6-X4-Y1-X2-Y3-X3-, Q-X1-Y2-X3- или Q-X1-Y1-X2-Y3-X3-; Y2, Y1, Y3, n, X1, X3, X2, X4, Q, R6, R7, R8 и R9 приведены в формуле изобретения.

Изобретение относится к новым фениламидным или пиридиламидным производным формулы (I) или к их фармацевтически приемлемым солям, где A1 является CR12 или N; A2 является CR13 или N; R1 и R2 независимо друг от друга выбраны из водорода, C1-7-алкила, галогена и C1-7-алкоксигруппы; R12 и R13 независимо друг от друга выбраны из водорода, C1-7-алкила, галогена, C1-7-алкоксигруппы, аминогруппы и C1-7-алкилсульфанила; R3 выбран из водорода, C1-7-алкила, галогена, C1-7-алкоксигруппы, цианогруппы, C3-7-циклоалкила, пятичленного гетероарила и фенила; R4 выбран из метила и этила; или R3 и R4 вместе представляют собой -X-(CR14R15)n- и образуют часть кольца, где X выбран из -CR16R17-, O, S, C=O; R14 и R15 независимо друг от друга выбраны из водорода или C1-7-алкила; R16 и R17 независимо друг от друга выбраны из водорода, C1-7-алкоксикарбонила, гетероциклила, замещенного двумя группами, выбранными из галогена, или R16 и R17 вместе с атомом C, к которому они присоединены, образуют =CH2 группу; или X выбран из группы NR18; R14 и R15 являются водородом; R18 выбран из водорода, C1-7-алкила, галоген-C1-7-алкила, C3-7-циклоалкила, C3-7-циклоалкил-C1-7-алкила, гетероциклила, гетероарил-C1-7-алкила, карбоксил-C1-7-алкила, C1-7-алкоксикарбонил-C1-7-алкила, C1-7-алкилкарбонилокси-C1-7-алкила, фенила, где фенил является незамещенным, фенилкарбонила, где фенил замещен C1-7-алкоксикарбонилом, и фенилсульфонила, где фенил замещен карбоксил-C1-7-алкилом, или R18 и R14 вместе представляют собой -(CH2)3- и образуют часть кольца, или R18 вместе с парой R14 и R15 представляют собой -CH=CH-CH= и образуют часть кольца; и n имеет значение 1, 2 или 3; B1 представляет собой N или CR19 и B2 представляет собой N или CR20, при условии, что не больше чем один из B1 и B2 представляет собой N; и R19 и R20 независимо друг от друга выбраны из группы, состоящей из водорода и галоген-C1-7-алкила; R5 и R6 независимо друг от друга выбраны из группы, состоящей из водорода, галогена и цианогруппы; и один-три, или, когда R4 представляет собой метил или этил, два из остатков R7, R8, R9, R10 и R11 выбраны из группы, состоящей из C1-7-алкила, галогена, галоген-C1-7-алкила, галоген-C1-7-алкоксигруппы, цианогруппы, C1-7-алкоксикарбонила, гидрокси-C3-7-алкинила, карбоксил-C1-7-алкила, карбоксил-C2-7-алкенила, C1-7-алкоксикарбонил-C2-7-алкенила, C1-7-алкоксикарбонил-C2-7-алкинила, C1-7-алкоксикарбонил-С1-7-алкиламинокарбонила, карбоксил-C1-7-алкиламинокарбонил-C1-7-алкила, карбоксил-C1-7-алкил-(C1-7-алкиламино)-карбонил-C1-7-алкила, фенил-карбонила, где фенил является незамещенным, фенил-C1-7-алкила, где фенил замещен 1-2 группами, выбранными из галогена, C1-7-алкоксигруппы, карбоксила, фенил-C2-7-алкинила, где фенил замещен 2 группами, выбранными из галогена, карбоксила или C1-7-алкоксикарбонила, и пирролидинилкарбонил-C1-7-алкила, где пирролидинил замещен карбоксилом, и остальные R7, R8, R9, R10 и R11 представляют собой водород; где термин ″гетероарил″ обозначает ароматическое 5-членное кольцо, включающее один или два атома, выбранных из азота или кислорода, термин ″гетероциклил″ обозначает насыщенное 4-членное кольцо, которое может включать один атом, выбранный из азота или кислорода.

Изобретение относится к новому типу димерных четвертичных солей пиридиния общей формулы: где R является линейной или разветвленной алкильной или алкениленовой или алкиновой группой, содержащей от 8 до 18 атомов углерода; n является 0 либо 1; X является атомом галогена: хлором, бромом или йодом, обладающим биоцидным действием, а также к способу их получения.

Изобретение относится к соединениям формулы (I), в которой: Х и Y обозначают независимо один от другого атом азота или звено -CR4-, в котором R4 обозначает атом водорода; А обозначает арильную или гетероарильную группу, причем указанные арильная и гетероарильная группы необязательно замещены одной или несколькими группами, выбранными из атома галогена, гидроксильной группы, (С1-С4)алкильной группы, (С3-С5)циклоалкильной группы, (С1-С4)алкоксигруппы, необязательно замещенной (С1-С4)алкоксигруппой, галогеналкильной группой, галогеналкоксигруппой; W обозначает атом галогена; Z обозначает (С1-С4)алкиленовую группу, необязательно замещенную одной или несколькими группами, выбранными из атома галогена и (С1-С4)алкильной группы; В обозначает группу -NR4R5, где R4 и R5 обозначают независимо один от другого (С1-С4)алкильную группу; R1 и R2 обозначают: либо R1 обозначает атом водорода и R2 обозначает (С1-С4)алкильную группу, либо R1 и R2 образуют вместе с атомом углерода, с которым они соединены, моно- или полициклическую систему, выбранную из: (С3-С8)циклоалкильной группы, бициклической мостиковой группы или тетрациклической мостиковой группы, причем указанная система может быть замещена одной или несколькими гидроксильными группами; R3 обозначает либо группу C(O)R5, в которой R5 обозначает (С1-С4)алкоксигруппу, необязательно замещенную (С1-С4)алкоксигруппой, или группу NR6R7, в которой R6 и R7 независимо один от другого обозначают атом водорода, (С1-С4)алкильную группу, (С3-С5)циклоалкильную группу, (С1-С4)алкилсульфонильную группу, галогеналкильную группу, либо группу -CH2XRS, в которой: - Х обозначает атом кислорода и R8 обозначает атом водорода или (С1-С4)алкильную группу, либо нитрильную группу (CN); р обозначает целое число, равное 0 или 1; причем арильная группа представляет собой ароматическую моноциклическую группу, содержащую 5 или 6 атомов углерода, причем этот цикл может быть слит с частично насыщенной гетероциклической группой, содержащей 5 или 6 атомов, включая один или два гетероатома, таких как атом кислорода; причем гетероарильная группа представляет собой ароматическую циклическую группу, содержащую 5 или 6 атомов, включая один или два гетероатома, таких как атом азота; в форме основания или аддитивной соли с кислотой или основанием, а также к их энантиомерам и диастереоизомерам, в том числе к их рацемическим смесям.

Изобретение относится к области медицины и органической химии и касается нового биологически активного химического соединения, конкретно 4[(4'-никотиноиламино)бутироиламино]бутановой кислоты формулы (I) проявляющей ноотропную активность.

Изобретение относится к соединениям, выбранным из группы, состоящей из соединений пиперазина формулы I: где Х означает -СН2- или связь; n означает целое число 1; R1 означает алкил; циклоалкил; гидроксиэтил; бензо[1,3]диоксолил; фенил, который может быть монозамещен галоидом, алкилом, алкокси, -CF3 или алкилкарбонилом; или фенил, который ди- или тризамещен заместителями, независимо выбранными из алкила и галоида; пиридил, который может быть монозамещен галоидом, алкилом или -CF3; фуранил, который может быть монозамещен метилом, гидроксиметилом или бромом, или фуранил, который дизамещен алкилом; тиенил, который может быть монозамещен метилом или хлором; пиримидинил; изохинолинил; бензгидрил; имидазолил, необязательно монозамещенный алкилом; или тиазолил; или Х означает -С(=O)- и R1 означает водород; R2 означает индолил; имидазолил, необязательно монозамещенный алкилом; фенил, который может быть монозамещен галоидом, алкилом, гидрокси или циано, или фенил, который дизамещен галоидом; пиридил; бензотиенил; тиазолил или тиенил; R3 означает индолил, пиридил, который может быть монозамещен алкокси, алкоксиалкокси, NR31R32, морфолином, пиперидином, оксопиперидинилом, оксопирролидинилом, пиридилом или фенилом; или фенил, который монозамещен фенилом, пиридилом, алкилом, алкокси, диалкиламино, морфолином, N-бензил-N-алкиламино, (диалкиламино)алкокси, фенилалкокси или тетрагидроизохинолинилом; или R3 означает группу: где Z означает фенил или пиридил; R 31 означает 2-С1-С5алкоксиэтил, фенил, пиридил, фенилалкил, гидроксиалкилкарбонил, алкилкарбонил, циклоалкилкарбонил или фенилкарбонил; R32 означает водород или метил; R35 означает алкил, алкилкарбонил, фенил, пиридил или пиримидинил; и R4 означает фенил-СН=СН-, где фенил может быть моно-, ди- или тризамещен заместителями, независимо выбранными из галоида, алкила, алкокси и -CF3; или фенил-СН2-СН2, где фенил дизамещен -CF 3; и к их оптически чистым энантиомерам, смеси энантиомеров, такие как, например, рацематы, оптически чистые диастереомеры, смеси диастереомеров, диастереомерные рацематы, смеси диастеромерных рацематов и мезоформы, также как соли таких соединений.

Изобретение относится к соединениям, ингибирующим гормон-чувствительную липазу, представленным общей формулой (XXXXIVa-b) где R1ap и R 2ap независимо выбраны из C1-6алкила, арила, где каждый из C1-6алкила, арила может быть, но необязательно, замещен одним или несколькими заместителями, независимо выбранными из галогена, C1-6 алкила при условии, что если R1ap и R 2ap являются одинаковыми, то они не являются метилом или этилом; и где между заместителями R1ap и R2ap может, но необязательно, присутствовать ковалентная связь; и где R5ap, R 6ap и R7ap независимо выбраны из водорода и F; и R4ap выбран из водорода, сульфанила, галогена, амино, нитро, C1-6 алкила, гетероарила, С3-8гетероциклила, где каждый из сульфанила, амино, C1-6алкила, гетероарила, С3-8гетероциклила может быть, но необязательно, замещен одним или несколькими заместителями, независимо выбранными из гидрокси, оксо, галогена, C 1-6алкила, арила, гетероарила, где каждый из C 1-6алкила, арила, гетероарила, может быть, но необязательно, замещен одним или несколькими заместителями, независимо выбранными из оксо, галогена, амино, C1-6алкила, С 3-8гетероциклила, где каждый из амино, C 1-6алкила, С3-8гетероциклила может быть, но необязательно, замещен одним или несколькими заместителями, независимо выбранными из оксо, C1-6алкила, где C1-6алкил может быть, но необязательно, замещен одним или несколькими заместителями, независимо выбранными из оксо, при условии, что R4ap не является метилом; к фармацевтической композиции, а также к применению данных соединений в целях получения лекарственного средства для ингибирования липолитической активности гормон-чувствительной липазы.

Изобретение относится к новым активаторам изоиндолин-1-он-глюкокиназы формулы 1 гдеА означает незамещенный фенил или фенил, одно- или двузамещенный галогеном или однозамещенный группой (низш.)алкилсульфонил, нитро;R1 означает С3-C9 циклоалкил;R2 означает незамещенный или однозамещенный пяти- или шестичленный гетероароматический цикл, связанный через атом углерода в цикле с указанной аминогруппой, причем пяти- или шестичленный гетероароматический цикл содержит от 1 или 2 гетероатома, выбранных из ряда сера, кислород или азот, один из которых является атомом азота, соседним с атомом углерода, связанным с аминогруппой, причем цикл является моноциклическим или конденсированным с фенилом по двум атомам углерода в цикле, указанный однозамещенный гетероароматический цикл является однозамещенным по атому углерода в цикле, который не является соседним с указанным атомом углерода, связанным с аминогруппой, а заместитель выбран из галогена или группы (низш.)алкил;* означает ассиметричный атом углерода в конкретном соединении, или его фармацевтически приемлемые соли, или N-оксиды.

Изобретение относится к новым сериям тетрациклических соединений, обладающих двумя или тремя атомами азота, включенными в кольцо, которые обладают значительной антиаллергической и антиастматической активностями, содержит методики и композиции их использования, также как и технологии их получения.

Изобретение относится к новым аминовым производным, процессам их получения и инсектицидам, содержащим в качестве селективных соединений указанные производные. .

Настоящее изобретение относится к фармацевтической комбинации для активирования фермента рецептора G-белка 40 (GPR40), которая содержит новое производное 3-(4-(бензилокси)фенил)гекс-4-иновой кислоты и второй активный ингредиент, который выбран из группы, состоящей из лекарственных средств на основе ингибиторов дипептидилпептидазы-4 (DPPIV), на основе сульфонилмочевины, на основе тиазолидиндиона (TZD), на основе бигуанида и на основе ингибитора натрий/глюкоза котранспортера 2 (SGLT2).
Наверх