Способ получения силилоксиаминов

Изобретение относится к способу получения силилоксиаминов общей формулы (I), где R=CH2OAlk, R'=Н; R=R'=(СН2)4; R''=С2Н5, С3Н7. Предложен способ получения силилоксиаминов (I), включающий взаимодействие аминосиланов с эпоксидными соединениями в среде толуола в присутствии перхлората магния при использовании избытка аминосилана в количестве 10 мол. % при температуре 25-60°С в течение 20-40 минут. Технический результат – предложенный способ позволяет получать силилоксиамины (I) с высокими выходами при сокращении количеств используемых реагентов и времени получения конечного продукта. 1 табл., 9 пр.

(I)

 

Изобретение относится к способу получения силилоксиаминов общей формулы

где R=CH2OAlk, R'=Н; R=R'=(СН2)4; R''=С2Н5, С3Н7, являющихся промежуточными продуктами в синтезе:

- противораковых агентов [Ekhato, I.V. Asymmetric synthesis of (R)-(+)-[[(2-bromoethyl)amino]methyl]-2-nitro-1H-imidazole[1-14C]-ethanol monohydrobromide / I.V. Ekhato // J. Label. Compd. Radiopharm - 1998. - V. 41. - №6. - P. 523-533],;

- биологически важных имидазолиловых спиртов [Jalil, М. А straightforward one-pot synthesis of biologically important imidazolyl alcohols via catalytic epoxide ring-opening reactions / M. Jalil, S. Masum // Tetrahedron Lett. - 2012. - V. 53. - №24. - P. 3049-3051];

- антидепрессантов [Kuwabe, S. Palladium-catalyzed intramolecular C-O bond formation / S. Kuwabe, K. Torraca, S. Buchwald // Journal of the American Chemical Society. - 2001. - V. 123. - №9. - P. 12202-12206];

- и ряда других соединений.

Известен способ получения силилоксиаминов взаимодействием N-триметилсилилимидазола с эпоксидными соединениями в присутствии 5 мольных % бромида лития при 20-60°С в течение 4-6 часов [Jalil, М.А straightforward one-pot synthesis of biologically important imidazolyl alcohols via catalytic epoxide ring-opening reactions / M. Jalil, S. Masum // Tetrahedron Lett. - 2012. - V. 53 - №24. - P. 3049-3051]. Недостатком данного метода является длительность процесса, необходимость нагревания, а также образование побочных продуктов из-за присоединения бромид-иона к интермедиату.

Известен способ получения силилоксиаминов взаимодействием аминосиланов с эпоксидными соединениями в среде дихлорметана в присутствии хлорида алюминия при комнатной температуре в течение 2 часов [Regiospecific Conversion of Oxiranes, Oxetanes, and Lactones into Difunctional Nitrogen Compounds / A. Papini, A. Ricci, M. Taddei, G. Seconi // J. Chem. Soc. Perkin Trans. 1: Org. and Bio-Organic Chem. - 1984. - №10. - P. 2261-2266]. Однако недостатком данного метода являются сравнительно низкие выходы целевых продуктов (41-68%), а также образование побочных продуктов за счет нуклеофильной атаки хлорид-иона.

Известен способ получения силилоксиаминов взаимодействием аминосиланов с эпоксидными соединениями в среде тетрагидрофурана в присутствии триметилсиланолята натрия. Взаимодействие проводят при температуре 95°С в течение 1,5 часов [Synthesis of the enantiomers of the dual function 2-nitroimidazole radiation sensitizer RB 6145 / A. Sercel, V. Beylin, M. Marlatt et al. // 2006. - V. 43. - №6. - P. 1597-1604]. Недостатками данного метода являются невысокие выходы целевых продуктов (61%).

Наиболее близким аналогом к предлагаемому техническому решению является способ получения силилоксиаминов взаимодействием аминосиланов с эпоксидными соединениями в среде диэтилового эфира в присутствии перхлората лития, в качестве катализатора, в течение 1 часа при комнатной температуре и избытке аминосилана в количестве 200 мол. %, [Ipaktschi, J. LiClO4-katalysierte nucleophile Addition an α-chirale Aldehyde, Aldimine und Oxirane / J. Ipaktschi, A. Heydari // Chemische Berichte. - 1993. - V. 126. - №8. - P. 1905-1912]. Целевые продукты при этом получают с выходами 93-98%. Однако недостатком данного метода является необходимость использования избытка аминосилана в количестве 200 мол. %, что приводит к избыточному расходу реагентов.

Техническим результатом предлагаемого способа является сокращение количеств используемых реагентов, а также времени получения конечного продукта.

Для достижения технического результата предлагается проводить взаимодействие аминосиланов с эпоксидными соединениями в среде толуола в присутствии 5 мол. % перхлората магния при использовании избытка аминосилана в количестве 10 мол. % при температуре 25-60°С в течение 20-40 минут по схеме:

где R=CH2OAlk, R'=Н; R=R'=(СН2)4; R''=С2Н5, С3Н7.

Общими признаками предлагаемого способа и прототипа являются:

- использование аминосиланов и эпоксидов в качестве исходных соединений в среде растворителя;

- использование катализатора

- использование избытка аминосилана

Отличительными признаками являются:

- использование в качестве растворителя толуола;

- использование перхлората магния в качестве катализатора;

- использование избытка аминосилана в количестве 10 мол. %

- проведение взаимодействия при температуре 25-60°С в течение 20-40 мин.

Пример 1. Получение {3-(бутокси)-2-[(триметилсилил)окси]пропил}дипропиламина.

В вайл помещают 5,2 мг (0,05 ммоль) перхлората магния, 143 мкл (1 ммоль) глицидилового эфира бутанола-1, 251 мкл (1,1 ммоль) триметилсилилдипропиламина и 100 мкл толуола. Перемешивают при 25°С в течение 30 минут и очищают методом колоночной хроматографии. Получают 266,6 мг {3-(бутокси)-2-[(триметилсилил)окси]пропил}дипропиламина, выход 88%.

ЯМР 1Н δ 0.11 (s, 9Н, 3СН3), 0.84 (t, 6 Н, 2СН3, 3J=7.4 Гц), 0.89 (t, 3Н, СН3, 3J=7.3 Гц), 1.32-1.57 (m, 8 Н, 4СН2), 2.30-2.48 (m, 6 Н, 3СН2), 3.27-3.31 (d-d, Н, СН2, 2J=9.8 Гц, 3J=6.4 Гц), 3.40 (t, 2Н, СН2, 3J=6.6 Гц), 3.47-3.51 (d-d, Н, СН2, 2J=10.1 Гц, 3J=3.7 Гц), 3.81 (s, 1Н, СН);

ЯМР 13С δ 0.7, 12.0, 14.0, 19.4, 20.4, 31.9, 57.3, 58.3, 71.3, 71.5, 74.2;

ЯМР 29Si δ 17.1.

Пример 2. Получение {3-(2-этилгексилокси)-2-[(триметилсилил)окси]пропил}дипропиламина.

В вайл помещают 5,2 мг (0,05 ммоль) перхлората магния, 209 мкл (1 ммоль) глицидилового эфира 2-этил-1-гексанола, 251 мкл (1,1 ммоль) триметилсилилдипропиламина и 100 мкл толуола. Перемешивают при 25°С в течение 30 минут и очищают методом колоночной хроматографии. Получают 335,7 мг {3-(2-этилгексокси)-2-[(триметилсилил)окси]пропил}дипропиламина, выход 93%.

ЯМР 1Н δ 0.12 (s, 9Н, 3СН3), 0.83-0.89 (m, 12Н, 4СН3), 1.26-1.50 (m, 13 Н, 6СН2, СН), 2.34-2.52 (m, 4Н, 2СН2), 3.27-3.30 (m, 3Н, СН2, СН), 3.44-3.47 (d-d, Н, СН2, 2J=10.4 Гц, 3J=3.4 Гц) 3.81 (s, 1Н, СН);

ЯМР 13С δ 0.7, 11.4, 12.2, 14.4, 20.6, 23.4, 24.2, 29.4, 30.9, 40.0, 57.5, 58.7, 71.3,74.6, 74.7;

ЯМР 29Si δ 17.1.

Пример 3. Получение {3-(бутокси)-2-[(триметилсилил)окси]пропил}диэтиламина.

В вайл помещают 5,2 мг (0,05 ммоль) перхлората магния, 143 мкл (1 ммоль) глицидилового эфира бутанола-1, 189 мкл (1,1 ммоль) триметилсилилдиэтиламина и 100 мкл толуола. Перемешивают при 25°С в течение 40 минут и очищают методом колоночной хроматографии. Получают 259,0 мг {3-(бутокси)-2-[(триметилсилил)окси]пропил}диэтиламина, выход 94%.

ЯМР 1Н δ 0.11 (s, 9Н, 3СН3), 0.89 (t, 3Н, СН3, 3J=7.3 Гц), 0.97 (t, 6Н, 2СН3, 3J=7.1 Гц), 1.32-1.37 (m, 2Н, СН2), 1.50-1.55 (m, 2Н, СН2), 2.31-2.55 (m, 6Н, СН2), 3.27-3.31 (d-d, Н, СН2, 2J=9.9 Гц, 3J=6.2 Гц), 3.40 (t, 2Н, СН2, 3J-6.6 Гц), 3.45-3.49 (d-d, Н, СН2, 2J=9.8 Гц, 3J=3.9 Гц), 3.80-3.83 (m, 1Н, СН);

ЯМР 13С δ 0.4, 11.9, 13.9, 19.3, 31.8, 48.0, 56.9, 71.0, 71.2, 74.1;

ЯМР 29Si δ 17.1.

Пример 4. Получение {3-(2-этилгексилокси)-2-[(триметилсилил)окси]пропил}диэтиламина.

В вайл помещают 5,2 мг (0,05 ммоль) перхлората магния, 209 мкл (1 ммоль) глицидилового эфира 2-этил-1-гексанола, 189 мкл (1,1 ммоль) триметилсилилдиэтиламина и 100 мкл толуола. Перемешивают при 25°С в течение 30 минут и очищают методом колоночной хроматографии. Получают 325,8 мг {3-(2-этилгексилокси)-2-[(триметилсилил)окси]пропил}диэтиламина, выход 98%.

ЯМР 1Н δ 0.12 (s, 9Н, 3СН3), 0.83-0.89 (m, 6Н, 2СН3), 0.98 (t, 6Н, 2СН3, 3J=6.9 Гц), 1.24-1.50 (m, 9Н, 4СН2, СН), 2.32-2.57 (m, 6Н, 3СН2), 3.26-3.30 (m, 3Н, СН2, СН), 3.41-3.45 (d-d, Н, СН2, 2J=11.0 Гц, 3J=4.1 Гц), 3.82-3.84 (m, 1Н, СН);

ЯМР 13С δ 0.7, 11.4, 12.2, 14.4, 23.4, 24.1, 29.4, 30.9, 40.0, 48.3, 57.3, 71.3, 74.6, 74.7;

ЯМР 29Si δ 17.1

Пример 5. Получение диэтил{2-[(триметилсилил)окси]циклогексил}амина.

В вайл помещают 5,2 мг (0,05 ммоль) перхлората магния, 101 мкл (1 ммоль) циклогексеноксида, 189 мкл (1,1 ммоль) триметилсилилдиэтиламина и 100 мкл толуола. Перемешивают при 60°С в течение 30 минут и очищают методом колоночной хроматографии. Получают 224,7 мг диэтил{2-[(триметилсилил)окси]циклогексил}амина, выход 92%.

ЯМР 1Н δ 0.10 (s, 9Н, 3СН3), 1.01 (t, 6Н, 2СН3, 3J=7.1 Гц), 1.11-1.31 (m, 4Н, 2СН2), 1.59-1.73 (m, 3Н, 2СН2), 1.86-1.89 (m, 1Н, СН2), 2.40-2.46 (m, 1Н, СН), 2.52-2.68 (m, 4Н, 2СН2), 3.54-3.50 (m, 1H, СН);

ЯМР 13С δ 1.1, 15.2, 25.0, 25.9, 28.9, 36.6, 44.8, 65.5, 72.9;

ЯМР 29Si δ 14.4.

Пример 6. Получение {3-(бутокси)-2-[(триметилсилил)окси]пропил}дипропиламина.

В вайл помещают 5,2 мг (0,05 ммоль) перхлората магния, 143 мкл (1 ммоль) глицидилового эфира бутанола-1, 251 мкл (1,1 ммоль) триметилсилилдипропиламина и 100 мкл толуола. Перемешивают при 25°С в течение 20 минут. Выход по ГХМС составляет 93%.

Пример 7. Получение {3-(бутокси)-2-[(триметилсилил)окси]пропил}дипропиламина.

В вайл помещают 2,2 мг (0,01 ммоль) перхлората магния, 143 мкл (1 ммоль) глицидилового эфира бутанола-1, 251 мкл (1,1 ммоль) триметилсилилдипропиламина и 100 мкл толуола. Перемешивают при 25°С в течение 130 минут. Выход по ГХМС составляет 53%.

Пример 8. Получение {3-(бутокси)-2-[(триметилсилил)окси]пропил}дипропиламина.

В вайл помещают 21,9 мг (0,1 ммоль) перхлората магния, 143 мкл (1 ммоль) глицидилового эфира бутанола-1, 251 мкл (1,1 ммоль) триметилсилилдипропиламина и 100 мкл толуола. Перемешивают при 25°С в течение 30 минут и очищают методом колоночной хроматографии. Получают 268,4 мг {3-(бутокси)-2-[(триметилсилил)окси]пропил}дипропиламина, выход 88%.

Пример 9. Получение {3-(бутокси)-2-[(триметилсилил)окси]пропил}диэтиламина.

В вайл помещают 5,2 мг (0,05 ммоль) перхлората магния, 143 мкл (1 ммоль) глицидилового эфира бутанола-1, 206 мкл (1,2 ммоль) триметилсилилдиэтиламина и 100 мкл толуола. Перемешивают при 25°С в течение 40 минут и очищают методом колоночной хроматографии. Получают 261,6 мг {3-(бутокси)-2-[(триметилсилил)окси]пропил}диэтиламина, выход 95%.

ЯМР 1Н δ 0.11 (s, 9Н, 3СН3), 0.89 (t, 3Н, СН3, J=7.3 Гц), 0.97 (t, 6Н, 2СН3, 3J=7.1 Гц), 1.32-1.37 (m, 2Н, СН2), 1.50-1.55 (m, 2Н, СН2), 2.31-2.55 (m, 6Н, СН2), 3.27-3.31 (d-d, Н, СН2, 2J=9.9 Гц, 3J=6.2 Гц), 3.40 (t, 2Н, СН2, 3J-6.6 Гц), 3.45-3.49 (d-d, Н, СН2, 2J=9.8 Гц, 3J=3.9 Гц), 3.80-3.83 (m, 1Н, СН);

ЯМР 13С δ 0.4, 11.9, 13.9, 19.3,31.8,48.0, 56.9,71.0,71.2, 74.1;

ЯМР 29Si δ 17.1.

Как видно из приведенных примеров конкретного выполнения, при уменьшении количества катализатора реакция протекает значительно медленнее (пример 7), в то время как увеличение его количества не приводит к возрастанию выхода целевого продукта и уменьшению времени протекания реакции (пример 8). Увеличение избытка аминосилана до 20 мол. % не приводит к существенному увеличению выхода продукта (пример 9). Примеры 1-5 иллюстрируют возможность достижения технического результата для различных эпоксидов и диалкиламиносиланов, при взаимодействии от 20 до 40 минут и температуре 25-60°С.

Итак, время протекания реакции уменьшается в 1,5-3 раза, расход аминосилана значительно меньше.

На основании изложенного делаем вывод, что предлагаемое техническое решение является новым, обладает изобретательским уровнем и промышленно применимо, т.е. соответствует условиям патентоспособности, предъявляемым к изобретения.

Способ получения силилоксиаминов общей формулы

где R=CH2OAlk, R'=Н; R=R'=(СН2)4; R''=С2Н5, С3Н7,

включающий взаимодействие эпоксидных соединений с избытком аминосилана в среде органического растворителя в присутствии катализатора, отличающийся тем, что в качестве катализатора используют перхлорат магния, взаимодействие проводят в среде толуола при температуре 25-60°С в течение 20-40 мин, применяя избыток аминосилана в количестве 10 мол. %.



 

Похожие патенты:

Изобретение относится к хиральному реагенту формулы (I') для получения производного нуклеозид 3'-фосфорамидита формул (Va') или (Vb'), которые могут использоваться в химической промышленности для синтеза олигонуклеотидов: где G1 представляет собой H или группу формулы (II), G2 представляет собой группу формул (III) или (V), или G1 и G2 вместе образуют группу формулы (IV), ,,,,где G21 - G23 представляют собой H или нитрогруппу, G31 - G33 представляют собой С1-4 алкил или С6-14 арил, G41 - G46 представляют собой Н, G51 - G53 представляют собой H или С1-3 алкил.

Изобретение относится к каталитической композиции, подходящей для полимеризации смесей полиеновых и α-олефиновых звеньев. Указанная композиция содержит комплекс, определяемый общей формулой где M представляет собой атом металла группы III; L представляет собой нейтральное основание Льюиса; z представляет собой целое число от 0 до 3 включительно; m равно 1 или 2 при условии, что, когда m равно 2, силильные группы находятся в положениях 1 и 3 инденильного лиганда; n равно 1 или 2; каждый R1 независимо представляет собой C1–C20 алкильную группу или группу –(CH2)R3, где R3 представляет собой фенильную группу; и R2 представляет собой моноанионный лиганд X-типа, где, когда z не равно нулю, группа L и группа R2 могут присоединяться так, чтобы вместе с атомом M, с которым связана каждая из них, образовывать циклический фрагмент.

Изобретение относится к способу получения карбамидсодержащих меркаптосиланов. Предложен способ получения карбамидсодержащих меркаптосиланов общей формулы (I), где R1 представляет собой одинаковые или различные C1-C10 алкоксигруппы, а R представляет собой одинаковые или различные неразветвленные насыщенные алифатические двухвалентные углеводородные группы с C1-C30, заключающийся в том, что хлорсилан общей формулы (II) подвергают взаимодействию с NaSH в C2-C8спирте.

Изобретение относится к способу получения карбамидсодержащих силанов. Предложен способ получения карбамидсодержащих силанов общей формулы (I), где R1 имеют одинаковые или разные значения и представляют собой С1-С10алкоксигруппы или феноксигруппу, R имеют одинаковые или разные значения и представляют собой неразветвленную насыщенную алифатическую двухвалентную углеводородную группу с С1-С30, заключающийся в том, что диамин общей формулы (II) подвергают в воде взаимодействию с изоцианатсиланом общей формулы III.

Изобретение относится к карбамидсодержащим меркаптосиланам. Предложен карбамидсодержащий меркаптосилан формулы (I), где R1 имеют одинаковые или разные значения, выбранные из С1-С10алкоксигрупп, R2 представляет собой одновалентную углеводородную группу с С1-С20, а R имеют одинаковые или разные значения, выбранные из разветвленных или неразветвленных насыщенных алифатических двухвалентных углеводородных групп с С1-С30.

Изобретение относится к карбамидсодержащим силанам. Предложен карбамидсодержащий силан формулы (I), где R1 имеют одинаковые или разные значения и представляют собой С1-С10 алкоксигруппы, а R имеют одинаковые или разные значения и представляют собой неразветвленную насыщенную алифатическую двухвалентную углеводородную группу с С1-С30.

Изобретение относится к карбамидсодержащим силанам. Предложен карбамидсодержащий силан формулы I, где R1 имеют одинаковые или разные значения и представляют собой C1-С10алкоксигруппы, R имеют одинаковые или разные значения и представляют собой неразветвленную, насыщенную, алифатическую двухвалентную углеводородную группу с С1-С30, а х обозначает целое число 4.

Изобретение относится к новым функциональным материалам, обладающим люминесцентными свойствами. Предложены новые линейные олигоарилсиланы общей формулы (I), в которой Ar означает одинаковые или различные ариленовые или гетероариленовые радикалы, выбранные из ряда: замещенный или незамещенный тиенил-2,5-диил, замещенный или незамещенный фенил-1,4-диил, замещенный или незамещенный 1,3-оксазол-2,5-диил и замещенный или незамещенный 1,3,4-оксадиазол-2,5-диил; n означает целое число из ряда от 2 до 3.

Изобретение относится к новым винилсилановым соединениям, которые могут быть модификаторами при полимеризации сопряженных диеновых мономеров для получения эластомерных полимеров, используемых в производстве резиновых изделий.

Изобретение относится к инициатору полимеризации, представленному Формулой 1: Формула 1или его аддуктами с основаниями Льюиса. В Формуле 1 каждый M1 независимо выбран из лития, натрия и калия, каждый R1 независимо выбран из (C1-C18) алкила, каждый R12 представляет собой водород, каждый Y1 независимо выбран из атома азота и атома серы, R3, R4 и R5 каждый независимо выбран из (C1-C18) алкила, n и o каждый представляет собой целое число, выбранное из 0 и 1, и n+o=1 в случае, если Y1=N, и n=o=0 в случае, если Y1=S, m представляет собой целое число, выбранное из 1, 2 и 3, каждый E независимо выбран из -Y3(R9)(R10)t(R11)u, где Y3 выбран из атома азота и атома серы, R9, R10 и R11 каждый независимо выбран из (C1-C18) алкила, t и u каждый представляет собой целое число, выбранное из 0 и 1, и t+u=1 в случае, если Y3=N, и t=u=0 в случае, если Y3=S, s представляет собой целое число, выбранное из 0, 1 и 2, каждый F независимо выбран из Y2(R6)(R7)q(R8)r, где Y2 выбран из атома азота и атома серы, R6, R7 и R8 каждый независимо выбран из (C1-C18) алкила, q и r каждый представляет собой целое число, выбранное из 0 и 1; и q+r=1 в случае, если Y2=N, и q=r=0 в случае, если Y2=S, p представляет собой целое число, выбранное из 1, 2 и 3, K представляет собой >C-H.
Наверх