Способ геонавигации горизонтального ствола скважины в черносланцевых нефтеносных формациях

Изобретение относится к нефтяной геологии и используется для проводки горизонтальных стволов скважин в черносланцевых нефтяных формациях, в условиях тонкослоистого разреза и маломощной (первые метры) продуктивной его части. Техническим результатом является повышение точности размещения горизонтальных стволов в целевом горизонте. Технический результат достигается тем, что способ геонавигации горизонтального ствола скважины в черносланцевых нефтеностных формациях включает рентгено-флуоресцентное изучение шлама пород в процессе бурения, в качестве базовых данных для геонавигации используют результаты изучения шлама разбуренных пород, а вспомогательным методом является гамма-каротаж в процессе бурения, при этом шлам пород отбирают с частотой 2-8 метров под непосредственным контролем геолога и с точной привязкой по глубине проходки посредством расчета станции геолого-технологических исследований, каждую получаемую пробу шлама оперативно подготавливают к исследованиям, затем посредством ренттено-флуоресцентного анализатора изучают ее элементный состав, причем данные по составу породы корректируют на предмет искажения результата под влиянием бурового раствора за счет ввода соответствующих поправок по элементам, входящим в состав раствора, в бинокулярном микроскопе описываются петрографические характеристики породы, результаты исследования шлама представляют в процессе бурения в оперативном непрерывном режиме, состав породы сопоставляют с данными гамма-каротажа, численно и графически сравнивают с ранее изученным опорным разрезом, делают выводы о текущем положении бурового долота в разрезе и его пройденной траектории, в результате чего, при необходимости, корректируют направление бурения горизонтального ствола по отношению к целевому интервалу разреза.

 

Изобретение относится к нефтяной геологии и используется для проводки горизонтальных стволов скважин в черносланцевых нефтяных формациях, в условиях тонкослоистого разреза и маломощной (первые метры) продуктивной его части.

Известен способ проводки ствола скважины на основе геологических исследований, включающих получение наземными приборами информации с забоя скважины о местоположении бурового инструмента и управление траекторией проводки ствола по продуктивному пласту по данным геолого-технологических исследований, инклинометрии, гамма-каротажа, отобранной горной породы, выбуренной с забоя скважины, по которой 4 производится комплексное геолого-петрофизическое и литолого-фациальное исследование выбуренной породы. Результаты этих исследований сводят в таблицу литолого-петрофизических параметров и фациальных свойств, строят корреляционную схему литолого-фациального состояния разреза с привязкой по вертикальным глубинам с указанием наиболее перспективных на нефть и газ интервалов и производят корректировку траектории проводки горизонтального ствола скважины, обеспечивающей перемещение бурового инструмента по продуктивному пласту (RU 2313668 С1, 27.12.2007).

Комплексное геолого-петрофизическое исследование выбуренной породы включает проведение макроописания породы под бинокуляром, ее карбонатометрии, люминисцетно-битуминологического анализа, фотодокументирование выбуренной породы с привязкой по вертикальным глубинам в обычном свете и ультрафиолетовом излучении, термоваккуумной дегазации, изучение петрофизических параметров (пористости, минералогической и объемной плотности, определение содержания нефти и газа в горной породе с помощью аппаратуры дистилляции жидкости.

Недостатками этого способа являются:

1. Значительные времезатраты на проведение всех перечисленных исследований, невозможность оперативных выводов непосредственно в процессе бурения.

2. Большой перечень требуемой аппаратуры для проведения работ.

3. Неадаптированность описанного процесса исследований для тонкослоистых черносланцевых нефтеносных формаций по ряду причин, указанных далее. Повсеместная нефтенасыщенность черносланцевых формаций не позволяет производить корректный люминисцетно-битуминологический анализ, крайне низкие значения пористости в потенциально коллекторских породах делают петрофизические определения малоинформативными. Отсутствие методов, позволяющих осуществлять определение химического и минерального состава породы в условиях малоконтрастной петрографии пород черносланцевых формаций.

В силу указанных недостатков способа, его применение малоэффективно для черносланцевых нефтеносных формаций и неприменимо в условиях оперативного сопровождения бурения горизонтальных скважин в режиме непрерывного получения данных.

Задачей, на решение которой направлено данное предложение, является обеспечение оперативного геологического сопровождения бурения горизонтальных скважин непосредственно в процессе бурения по данным шлама разбуренных пород, изучаемых в непрерывном режиме, что позволяет основываться на прямых фактических геологических данных - на данных состава горной породы с призабойной зоны, а также снизить затраты на проведение дорогостоящего геофизического каротажа.

Техническим результатом предложения является повышение точности размещения горизонтальных стволов в целевом горизонте.

Технический результат достигается тем, что способ геонавигации горизонтального ствола скважины в черносланцевых нефтеностных формациях включает рентгено-флуоресцентное изучение шлама пород в процессе бурения, в качестве базовых данных для геонавигации используют результаты изучения шлама разбуренных пород, а вспомогательным методом является гамма-каротаж в процессе бурения, при этом шлам пород отбирают с частотой 2-8 метров под непосредственным контролем геолога и с точной привязкой по глубине проходки посредством расчета станции геолого-технологических исследований, каждую получаемую пробу шлама оперативно подготавливают к исследованиям, затем посредством рентгено-флуоресцентного анализатора изучают ее элементный состав, причем данные по составу породы корректируют на предмет искажения результата под влиянием бурового раствора за счет ввода соответствующих поправок по элементам, входящим в состав раствора, в бинокулярном микроскопе описываются петрографические характеристики породы, результаты исследования шлама представляют в процессе бурения в оперативном непрерывном режиме, состав породы сопоставляют с данными гамма-каротажа, численно и графически сравнивают с ранее изученным опорным разрезом, делают выводы о текущем положении бурового долота в разрезе и его пройденной траектории, в результате чего, при необходимости, корректируют направление бурения горизонтального ствола по отношению к целевому интервалу разреза.

Способ основывается на непрерывно поступающих результатах исследования шлама разбуренных пород, их сопоставлению с данными геофизического каротажа, сравнению с материалами ранее изученных геологических разрезов, на основании которого делаются выводы о текущем положении бурового долота в разрезе и его пройденной траектории. Исходя из планового профиля горизонтального бурения и местонахождения целевого пласта, производятся корректировки направления горизонтального бурения.

Работы выполняются на буровой площадке в процессе бурения силами специалиста по подготовке проб и специалиста-геолога, работающего с приборами. В зависимости от количества смен в условиях круглосуточной работы, всего задействовано 4 человека в две смены по 12 часов в сутки или 6 человек в 3 смены по 8 часов в сутки, без учета задействования специалистов по отбору проб шлама.

Отбор шлама производится с равным шагом с частотой отбора через равные промежутки 2, 3, 4, 5, 6, 7 или 8 м. Отбор производится под непосредственным контролем качества и привязки по глубине геологом, ответственным за выполнение задачи. Расчет глубин отбора шлама осуществляется станцией геолого-технологических исследований (ГТИ) на буровой площадке с учетом технических характеристик буровой компоновки, особенностей и объемов бурового раствора (стандартная процедура при бурении скважин). Каждая проба отобранного шлама оперативно подготавливается к исследованиям, а затем изучается посредством бинокулярного микроскопа и элементного анализа по методу рентгено-флуоресцентного анализа (общепринятое обозначение - XRF, РФА, РФлА, РФС). Для успешного и достоверного изучения состава пород в шламе, его необходимо подготовить к исследованиям.

Подготовка шлама к исследованиям включает следующее. Проба шлама массой около 150 грамм отмывается от бурового раствора на металлических ситах 0,25-1 мм (подбирается по факту опытным путем, исходя из преобладающей размерности частиц шлама). Задача - отмыть частицы породы от бурового раствора, состав которого будет искажать состав породы. В зависимости от состава бурового раствора, возможны два случая промывки.

Случай 1: буровой раствор на углеводородной основе, либо другой, в составе которого в качестве компонента присутствуют углеводороды в содержании более 5-10%.

Отмывка проб шлама производится в металлическом сите в 3-х литровом объеме дизельного топлива, в полимерной либо металлической емкости, устойчивой к органическим растворителям. Промывка происходит круговыми движениями в течение 2-3 минут, пока с частиц шлама не уйдет глинисто-маслянистая составляющая. После этого, промывка продолжается в 2-х литрах неэтилированного бензина АИ-92 в другой аналогичной емкости до тех пор, пока с частиц шлама не перестанет уходить грязь, ориентировочно это длится около 1 минуты. По окончанию промывки, шлам в том же сите высушивается направленной струей горячего воздуха, с температурой 300-400°С, производимой техническим феном с возможностью регулировки температуры и мощности нагнетания воздушной струи. При сушке шлам перемешивается металлической ложкой, при этом он не должен вылетать из сита во избежание потери массы пробы. На сушку пробы шлама уходит от 5 до 10 минут, в зависимости от внешних условий. Работы производятся под вытяжкой, в спецодежде.

Случай 2: буровой раствор на водной основе (без, либо с незначительным участием углеводородов).

Техническое оснащение аналогично случаю 1, за исключением промывочных жидкостей: применяется пресная вода с добавлением до 5% бытового моющего средства (не должно образовываться пены) в первой емкости и в чистой пресной воде - во второй емкости.

Дальнейшая подготовка к исследованиям включает истирание 30-40 грамм пробы в фарфоровой, либо железной ступке, также возможно применение механических истирателей. Данная часть пробоподготовки необходима для работы с портативным рентгено-флуоресцентным анализатором. Истирание продолжается до появления однородной зернистой фракции. За счет столь малой навески истирание происходит достаточно быстро - до 5 минут в зависимости от твердости породы и исходной размерности частиц шлама.

Оставшаяся часть пробы (около 50-80 грамм) параллельно с этим (другим специалистом) изучается в бинокулярном микроскопе, где определяются минеральный состав породы и описывается морфология частиц шлама.

Подготовленная порошкообразная проба утрамбовывается в пластиковой форме в виде таблетки толщиной 8-15 мм, помещается на измерительное окно портативного рентгено-флуоресцентного анализатора. Для работы по методу XRF используются именно портативные мобильные модификации анализаторов, пригодные для экспресс работы. Рекомендуется использовать приборы серии X-Met 7500 и 8000 компании Oxford Instruments Analytical, либо другие, аналогичные по техническим характеристикам. Главный критерий подходящего портативного прибора - возможность работы с легкими химическими элементами (Mg, Si, Аl, K, Р, S). При работе используются стандартные калибровки прибора, ориентированные на распознавание именно легких элементов. Режим работы прибора выстраивается таким образом, чтобы измерение химического состава длилось около 1 минуты.

Посредством анализатора получается химический (элементный и оксидный) состав породы, в составе которого определяющими для нефтеносных сланцевых формаций являются: Si (SiO2), Са (CaO), Mg (MgO), Al (Аl2O3), K (K2O), Ti (ТiO2), S, Fe, P (P2O5), Sr, Ba, Zr, Mo, Ni, Cu, Zn, V.

Параллельно с этим определяется состав бурового раствора на том же портативном приборе, при тех же настройках. Данные по составу бурового раствора используются для ввода поправок при анализе химического состава изучаемой в шламе породы, поскольку буровой раствор, пропитавший породу, может дать искажение при определении состава породы. В буровом растворе определяются элементы, высокие концентрации которых нетипичны для черносланцевых нефтяных формаций, такие как Ва (в породах его менее 0,5%), Сl (возможна примесь до 0,06%), О (примесь до 0,05%). Появление этих элементов в значительных количествах (значительное превышение над указанными содержаниями) в анализируемой пробе шлама говорит о недостаточной отмывки пробы от бурового раствора и необходимости либо увеличить качество и время промывки, либо внести расчетные поправки в получаемый химический состав породы. Поправка рассчитывается исходя из систематически превышающих концентраций определенных элементов, замеченных в больших количествах в буровом растворе и стабильно присутствующих в получаемых составах проб. Такие поправки могут быть получены по ряду наиболее важных элементов, необходимых для диагностики стратиграфической приуроченности пробы и используются как понижающий коэффициент или константа.

При этом необходим постоянный мониторинг изменений состава бурового раствора, производимый минимум 1 раз в сутки.

Для особенностей состава черносланцевых нефтеносных формаций по материалам XRF выведены индикаторные признаки определенных групп минералов, геохимической и палеоэкологической обстановок разреза, по которым при сравнении с ранее изученными близлежащими разрезами делаются выводы о стратиграфической принадлежности изучаемой пробы. По данным XRF используются критерии, позволяющие оценивать глинистость, карбонатосодержание, терригенную примесь, аноксийные (бескислородные) условия, уровни с повышенной биопродуктивностью:

Ca/Si, (Ca+Mg)/Si, (Ca+Mg)/Al, Mg/Ca, Sr/Ca - параметры карбонатности разреза; Al/Si, K/Si - параметры глинистости;

(Al+K+Ti)/Si, (Al+K+Ti)/(Si+Ca+Mg) - соотношение терригенного и биогенного вещества;

(Si+Ca+Mg)/S, Si/Al - параметры радиоляритовой составляющей в исходной и преобразованной породе;

S/Ti, P/Ti, (Ti+Rb+Zr)/P - соотношение биогенного и терригенного материала, индикатор терригенного привноса;

Fe/S - индикатор сульфидности («пиритостости») породы;

Mo*Fe, Мо/Аl, Mo/Mn - индикаторы морской биопродуктивности и аноксии (кислородного режима) в палеообстановке.

Комбинация вышеуказанных параметров позволяет выделить и проследить вертикальную зональность в черносланцевых нефтеносных формациях. Геонавигация по данным шлама строится на основании сопоставлении состава шлама с ранее выявленными геологическими признаками литостратиграфического строения разреза и выделенным пачкам, отличающихся по глинистости, кремнистости, карбонатосодержанию, сульфидности, сформированных в разных палеоэкологических и геохимических обстановках. Таким образом, для успешной геонавигации по данным шлама должны быть предварительно полученные достаточные геологические данные о строении целевого разреза.

Для описания шлама под бинокулярным микроскопом применяется Биомед МС-2 либо аналогичный ему. В петрографическом описании указывается размерность и морфология частиц, их цвет, определяются минеральные включения, указываются остатки фоссилий. Эти данные используются для общего геологического сопоставления изученной пробы шлама с опорным ранее изученным геологическим разрезом (разрезами).

Каждая проба шлама изучается максимально оперативно по времени - до выхода следующей пробы шлама. Таким образом, результаты исследования шлама появляются в процессе бурения в непрерывном режиме реального времени, что позволяет вовремя производить корректировки направления бурения горизонтального ствола. Скорость выхода шлама на поверхность в процессе бурения составляет, в среднем, до 1 часа, скорость обработки пробы шлама составляет 15-20 минут от момента выхода пробы на поверхность, до получения данных о ее составе. Таким образом, скорость получения данных по составу шлама сопоставима со скоростью прихода замеров гамма-метода, получаемых также в процессе бурения.

Геонавигация по данным шлама в черносланцевых нефтяных формациях требует проведение предварительных подготовительных работ по сбору и анализу имеющихся данных по раннее пробуренным скважинам в данном районе.

Оптимальным и качественным решением поставленной задачи по геонавигации по шламу будет предварительное изучение керна близ расположенных скважин портативным XRF анализатором, для получения граничных пределов значений по вышеописанным химическим элементам и их соотношениям. На выбранном опорном разрезе по совокупности геохимических признаков выделяются пачки пород так, чтобы интервалы развития этих пачек соответствовали уникальным параметрам по содержаниям главных и второстепенных породообразующих элементов.

Данные по шламу в процессе бурения сопоставляются с гамма-каротажом для комплексного подкрепления полученных вьюодов, при этом оценивается обоюдная достоверность этих данных: интервалы повышенной глинистости, высокого соотношения Mo*Fe, Мо/Аl сходятся с повышенными значениями радиоактивности, интервалы развития карбонатных пород должны соотноситься с минимальными значениями кривой гамма-каротажа. По сопоставлению гамма-каротажа и элементного состава шлама делаются выводы и о правильности расчета глубин происхождения шлама, и о корректности гамма-записи, производимой в технически трудных условия горизонтального бурения.

Результаты, получаемые в процессе оперативного изучения шлама по каждой новой проанализированной пробе численно и графически сравниваются с ранее изученным опорным разрезом. При этом эти данные в комплексе сопоставляются с данными гамма-каротажа и петрографией шлама, делаются выводы о текущем стратиграфическом положении бурового долота в разрезе и его пройденной траектории.

Использование результатов XRF анализа шлама позволяет оценивать непосредственно породу с призабойной зоны. Материалы по исследованиям шлама позволяют экономить на применении дорогостоящих методов геофизического исследования скважин в процессе бурения, основываясь при этом на достоверном прямом геологическом признаке.

Способ применим к условиям тонкослоистого разреза, где требуется высокая детализация данных при динамично меняющихся свойствах по вертикали геологического разреза, специализирован на черносланцевых нефтеносных формациях, таких как баженовская свита Западно-Сибирской плиты и доманиковая формация Русской плиты.

Способ геонавигации горизонтального ствола скважины в черносланцевых нефтеностных формациях, характеризующийся тем, что включает рентгено-флуоресцентное изучение шлама пород в процессе бурения, в качестве базовых данных для геонавигации используют результаты изучения шлама разбуренных пород, а вспомогательным методом является гамма-каротаж в процессе бурения, при этом шлам пород отбирают с частотой 2-8 метров под непосредственным контролем геолога и с точной привязкой по глубине проходки посредством расчета станции геолого-технологических исследований, каждую получаемую пробу шлама оперативно подготавливают к исследованиям, затем посредством рентгено-флуоресцентного анализатора изучают ее элементный состав, причем данные по составу породы корректируют на предмет искажения результата под влиянием бурового раствора за счет ввода соответствующих поправок по элементам, входящим в состав раствора, в бинокулярном микроскопе описываются петрографические характеристики породы, результаты исследования шлама представляют в процессе бурения в оперативном непрерывном режиме, состав породы сопоставляют с данными гамма-каротажа, численно и графически сравнивают с ранее изученным опорным разрезом, делают выводы о текущем положении бурового долота в разрезе и его пройденной траектории, в результате чего, при необходимости, корректируют направление бурения горизонтального ствола по отношению к целевому интервалу разреза.



 

Похожие патенты:

Изобретение относится к нефтегазовой области, операциям гидроразрыва, в частности к средствам идентификации трещин. Техническим результатом является повышение точности определения геометрии трещины ГРП, определения ее длин на разных высотах.

Изобретение относится к исследованию коэффициента извлечения нефти в лабораторных условиях на основе данных, полученных при анализе образцов керна из месторождения, при использовании процесса парового дренажа.

Изобретение относится к лабораторной установке - индивидуальному капилляриметру в пластовых условиях для индивидуального изучения капиллярных свойств 18 образцов керна в пластовых условиях.

Изобретение относится к разработке месторождения полезных ископаемых. Техническим результатом является повышение продуктивности недавно разработанных месторождений полезных ископаемых, ускоренная адаптация планов разработки месторождений полезных ископаемых, надежное принятие решений, включающее возможности для устранения неопределенности.

Группа изобретений относится к нефтяной промышленности. Технический результат - увеличение охвата обрабатываемого пласта тепловым воздействием, сокращение сроков прогрева обрабатываемого пласта, снижение энергетических затрат на реализацию способа, увеличение коэффициента нефтеизвлечения.

Изобретение относится к исследованию фильтрационно-емкостных свойств горных пород и может быть использовано в научно-исследовательских целях для моделирования фильтрационных процессов и прогнозирования коэффициентов вытеснения нефти при проектировании систем разработки конкретного месторождения.

Изобретение относится к области геологии и касается способа выявления улучшенных коллекторских свойств высокоуглеродистых пород. Способ включает в себя отбор образцов керна из высокоуглеродистых пород, исследование образцов проб методом ИК-спектроскопии, получение ИК-спектров минеральной матрицы породы и сопоставление их с эталонными спектрами.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при разработке нефтяных и газовых залежей, при количественной интерпретации геофизических исследований скважин (ГИС), эксплуатации нефтяных месторождений.

Изобретение относится к способам и методам петрофизических и геохимических исследований коллекции керна нетрадиционного резервуара юрской высокоуглеродистой формации (ЮВУФ) и может быть использовано при определении линейных ресурсов нефти и газа, технически извлекаемых из ЮВУФ, с учетом их различной степени связанности с матрицей породы и заполнения сообщающихся и/или не сообщающихся пор.

Изобретение относится к области нефтегазовой промышленности и может быть использовано для исследования и освоения пласта, а также для очистки призабойной части пласта и забоя скважины.

Группа изобретений относится к добыче нефти в скважине, эксплуатируемой электроцентробежным погружным насосом, а именно к способам и устройствам для воздействия на насосное оборудование с целью разрушения солеотложений на его рабочих органах и запуска в работу очищенного от солеотложений электроцентробежного погружного насоса в скважине.

Изобретение относится к нефтедобыче, а именно к контролю разработки нефтяных месторождений промыслово-геофизическими методами (ПГИ). Изобретение может быть использовано для проведения долговременного мониторинга профиля притока и приемистости в мало- и среднедебитных горизонтальных нефтяных скважинах с множественным гидроразрывом пласта (МГРП) с целью последующего обоснования мероприятий по интенсификации и оптимизации выработки пласта.

Изобретение относится к горному делу и предназначено для определения пространственного положения взрывных шпуров. Тренажер глазомерного определения пространственного положения забуриваемых шпуров содержит имитатор буровой машины, включающий буровой молоток с буровой штангой.

Изобретение относится к бурению скважин, в частности к средствам передачи информации в скважине по гидравлическому каналу связи. Техническим результатом является повышение эффективности передачи информации за счет увеличения амплитуды импульсов давления.

Группа изобретений относится к нефтегазовой промышленности и используется для определения точности установки технических колонн труб в кондукторе при строительстве скважин на шельфе.

Изобретение относится к нефтедобыче, а именно к контролю разработки нефтяных месторождений промыслово-геофизическими методами исследований скважин (ПГИ), и может быть использовано для проведения и интерпретации промыслово-геофизических исследований эксплуатационных горизонтальных нефтяных скважин (ГС) с многостадийным гидроразрывом пласта (МГРП), для оценки профиля притока с целью последующего обоснования мероприятий по интенсификации и оптимизации выработки пласта.

Изобретение относится к области термометрии. Техническим результатом является упрощение технологии, повышение точности измерений температуры за счет подавления температурных колебаний, вызванных свободной тепловой конвекцией.

Изобретение относится к нефтедобывающей промышленности и может быть использовано при управлении скважиной на нефтяных месторождениях. Технической результат - повышение достоверности контроля обводненности продукции скважины.

Изобретение относится к бурению нефтяных и газовых скважин, а именно к наземным комплексам контроля параметров промывочной жидкости. Устройство содержит датчик влагомера и блок детектирования плотномера, взаимодействующий с источником гамма-излучения, заключенным в защитный экран, герметичный короб с электронным блоком обработки сигналов и компьютер.

Группа изобретений относится к горному делу и может быть применена для насосной системы в скважине. Система включает двигательный узел, насос, приводимый в движение двигательным узлом, а также один или более датчиков, сконфигурированных для измерения рабочего параметра в насосной системе и для выдачи сигнала, являющегося представлением измеренного параметра.
Наверх