Способ оперативной оценки результатов электронно-пучкового термического воздействия на объекты в вакуумной камере



Способ оперативной оценки результатов электронно-пучкового термического воздействия на объекты в вакуумной камере
Способ оперативной оценки результатов электронно-пучкового термического воздействия на объекты в вакуумной камере
G01N29/00 - Исследование или анализ материалов с помощью ультразвуковых, звуковых или инфразвуковых волн; визуализация внутреннего строения объектов путем пропускания через них ультразвуковых или звуковых волн через предметы (G01N 3/00-G01N 27/00 имеют преимущество; измерение или индикация ультразвуковых, звуковых или инфразвуковых волн вообще G01H; системы с использованием эффектов отражения или переизлучения акустических волн, например акустическое изображение G01S 15/00; получение записей с помощью способов и устройств, аналогичных используемым в фотографии, но с использованием ультразвуковых, звуковых или инфразвуковых волн G03B 42/06)

Владельцы патента RU 2702537:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") (RU)

Изобретение относится к в способу мониторинга структурных, фазовых и химических преобразований в приповерхностном слое обрабатываемых объектов в вакуумных камерах под воздействием электронно-пучковых импульсов и может быть использовано для повышения надежности и долговечности широкого ассортимента деталей машин. Технический результат заключается в повышении точности настройки аппаратуры, определяющей параметры импульсов электронного пучка воздействующего на объект. К обрабатываемому объекту присоединяют волновод, выводят его за пределы вакуумной камеры через вакуумный ввод и закрепляют на волноводе датчик колебаний. Осуществляют обработку информации с помощью компьютера. В качестве волновода используют гибкую проволоку, в качестве датчика колебаний используют акселерометр с частотной характеристикой, охватывающей частотный диапазон до 100 кГц. В процессе воздействия импульса электронного пучка регистрируют зависимости текущих эффективных значений сигналов, поступающих с акселерометра, от времени в двух частотных диапазонах до момента падения амплитуды сигналов до уровня фоновых шумов. В качестве частотных диапазонов выбирают октавную полосу с наибольшим эффективным значением амплитуды сигнала и соседнюю более высокочастотную октаву, определяют период времени «Т», в течение которого амплитуда сигнала превышала фоновое значение, вычисляют эффективное значение сигнала «А» на всем периоде «Т», оценивают энергию «U» сигнала по формуле: U=A2T (1) и по величине «U» судят о достаточности энергии электронно-лучевого импульса и о результатах произошедших фазовых превращений. 4 ил., 1 пр.

 

Изобретение относится к машиностроению, преимущественно к термической и химико-термической обработке металлов и сплавов в вакуумной камере импульсными электронными пучками, и может быть использовано для мониторинга результирующих показателей процесса обработки.

Попытки наладить мониторинг электронно-лучевых технологий начинались с контроля процесса электронно-лучевой сварки для улучшения фокусировки электронного луча (1. Авторское свидетельство №1468700, 1989 г.; 2. Патент РФ №2183153, 2002 г.; 3. Патент РФ №2519155, 2006 г.). Эти способы не обладают достаточным быстродействием и не предназначены для контроля импульсного воздействия на объект не фокусируемым пучком.

Из уровня техники известны способы мониторинга фазовых превращений, сопровождающих термическое воздействие, заключающиеся в том, что границы фазовых переходов определяют с помощью датчика акустической эмиссии, присоединяемого к обрабатываемому образцу (патент РФ №2433190, опубл. 10.11.2011; 2. Вьюненко Ю.Н., Черняева Е.В. Особенности акустической эмиссии при мартенситных превращениях в сплаве TiNi.//Вестник Тамбовского университета. Серия: естественные и технические науки. Т. 21, №31. 2016. С. 917-921).

Основным недостатком приведенного аналога является то, что датчик акустической эмиссии устанавливается в непосредственной близости от обрабатываемого образца. Такой способ затруднительно использовать в вакуумной камере при подаче высокоэнергетических электронных импульсов, поскольку рядом с электронной пушкой возникают мощные электромагнитные помехи, выводящие из строя и сам датчик, и расположенную рядом аппаратуру. Кроме этого, провода, подсоединяемые к датчику, подвергаются термическому воздействию, загрязняют среду и создают трудности для организации их вакуумного ввода и надежного функционирования устройств, установленных в вакуумной камере.

Наиболее близким к предлагаемому способу по количеству общих существенных признаков и достигаемому техническому результату - прототипом - является способ мониторинга фазовых превращений в облучаемом объекте при изменении его температуры, заключающийся в том, что к обрабатываемой заготовке присоединяют волновод, выходящий за пределы зоны обработки, на котором закрепляют датчик виброакустических (ВА) колебаний, информация с которого обрабатывается с помощью компьютера (Воронцов В.Б., Журавлев Д.В. Связь структуры сигналов акустической эмиссии при кристаллизации А1 с механизмом формирования твердой фазы из расплава.//Вестник Новгородского государственного университета, №67. 2012. С. 8-13).

Основным недостатком известного технического решения является то, что оно не предназначено для работы в вакуумной камере в условиях мощных электромагнитных помех. Волновод, выполненный в виде полого цилиндрического стержня с прямолинейной осью, предназначен для установки внутри его термопары в рабочей зоне и вывода необходимой проводки к регистрирующей аппаратуре, а также для безопасного контакта датчика акустической эмиссии с зоной высоких температур. С помощью описанного волновода нельзя вывести датчик акустической эмиссии из зоны электромагнитных помех на достаточное расстояние. Это связано с невозможностью его изгиба, большим диаметром и быстрым затуханием высокочастотных колебаний (акустическая эмиссия предполагает регистрацию колебаний в частотном диапазоне от 50 до 1000 кГц) с ростом расстояния до источника вибраций. Эксперименты показали, что для надежной регистрации колебаний при работе электронной пушки необходимо регистрирующую аппаратуру относить на 2 и более метров от зоны обработки.

Технической проблемой, на решение которой направленно заявленное изобретение, является уменьшение влияния электромагнитных помех, упрощение процедуры регистрации сигналов вибраций при облучении деталей в вакуумной камере с помощью электронной пушки, упрощение процедуры сравнения объемов происходящих в детали превращений с эталонным значением по параметрам сигналов вибраций.

Технический результат заключается в повышении точности настройки аппаратуры, определяющей параметры импульсов электронного пучка воздействующего на объект, и обеспечении производительности электронно-пучковой обработки.

Поставленный технический результат достигается тем, что в способе мониторинга структурных, фазовых и химических преобразований в приповерхностном слое обрабатываемых объектов в вакуумных камерах под воздействием электронно-пучковых импульсов, заключающемся в присоединении к обрабатываемому объекту волновода, выходящего за пределы вакуумной камеры через вакуумный ввод, закреплении на волноводе датчика колебаний и обработке информации с последнего с помощью компьютера, в качестве волновода используют гибкую проволоку, в качестве датчика колебаний используют акселерометр с частотной характеристикой, охватывающей частотный диапазон до 100 кГц, в процессе воздействия импульса электронного пучка регистрируют зависимости текущих эффективных значений сигналов, поступающих с акселерометра, от времени в двух частотных диапазонах до момента падения амплитуды сигналов до уровня фоновых шумов, в качестве частотных диапазонов выбирают октавную полосу с наибольшим эффективным значением амплитуды сигнала, и соседнюю более высокочастотную октаву, определяют период времени «Т», в течение которого амплитуда сигнала превышала фоновое значение, вычисляют эффективное значение сигнала «А» на всем периоде «Т», оценивают энергию «U» сигнала по формуле: U=A2Т (1), и по величине «U» судят о достаточности энергии электронно-лучевого импульса и о результатах произошедших фазовых превращений.

Сущность заявленного изобретения поясняется следующим:

на фиг. 1 - схема установки аппаратуры для записи и анализа виброакустических (ВА) сигналов с акселерометра, возникающих после подачи электронного импульса;

на фиг. 2 - пример ВА сигнала, возникшего после подачи электронного импульса;

на фиг. 3 - пример изменения эффективной амплитуды (время осреднения 1 мс) в частотном диапазоне 11-22 кГц с указанием периода времени «Т», когда ВА сигнал превышал фоновое значение, и эффективной амплитуды «А» для всего периода «Т» при облучении алюминиевой пластины;

на фиг. 4 - пример изменения показателя U (формула 1) в частотном диапазоне 11-22 кГц при подаче электронного импульса с разным зарядным напряжением на алюминиевую пластину.

В соответствии с изобретением на фиг.1 показана схема, реализующая аппаратную часть предлагаемого способа, где с обрабатываемым образцом 1 контактирует волновод 2, выполненный из гибкой проволоки, противоположный конец которого присоединен к принимающей пластине 3, на которой установлен датчик 4 колебаний, выполненный в виде акселерометра, выход которого подключен к предусилителю 5, подключаемому к аналоговому усилителю 6, на выходе которого установлен аналого-цифровой преобразователь (АЦП) 7, данные которого с помощью компьютера 8 сохраняются для последующей обработки и для вывода изображения на монитор компьютера 8.

На фиг. 2 показан пример ВА сигнала, возникшего в результате подачи электронного импульса на обрабатываемый образец 1. На примере показан короткий импульс 9, возникший в результате электромагнитной помехи в момент подачи электронного импульса, и временной участок в 1,2 мс, соответствующий запаздыванию ВА сигнала по отношению к электронному импульсу. На протяжении последующих 36 мс происходит выброс основной энергии ВА сигнала.

На Фиг. 3 показан пример графика изменения эффективной амплитуды (время осреднения 1 мс) в частотном диапазоне 11-22 кГц с указанием периода времени «Т», когда ВА сигнал превышал фоновое значение, и эффективной амплитуды «А» для всего периода «Т» при облучении алюминиевой пластины. По этим данным можно с помощью формулы (1) подсчитать величину U, пропорциональную энергии ВА сигнала на периоде «Т».

На фиг. 4 представлен пример в виде графика зависимости энергетического параметра «U», подсчитанного по формуле (1), от зарядного напряжения электронной пушки при облучении алюминиевых пластин. Точками показаны значения показателя «U» в каждом отдельном эксперименте. Несмотря на заметный разброс, проявляется тенденция к росту параметра «U» с увеличением зарядного напряжения. Чем больше энергии поступает на поверхность пластины, тем больший объем алюминия переходит в жидкую фазу, которая при дальнейшем охлаждении возвращается в твердое состояние. Движение фазовых границ в процессе смены агрегатных состояний сопровождается ВА сигналами.

Способ оперативной оценки результатов электронно-пучкового термического воздействия на объекты в вакуумной камере (на фиг. не показана) осуществляется следующим образом: к обрабатываемому объекту 1 присоединяют волновод 2, выходящий за пределы вакуумной камеры через вакуумный ввод, на волноводе закрепляют датчик 4 колебаний, информация с которого обрабатывается с помощью компьютера 8. В качестве волновода 2 используют гибкую проволоку, в качестве датчика 4 колебаний используют акселерометр с частотной характеристикой, охватывающей частотный диапазон до 100 кГц, в процессе выполнения технологической операции регистрируют зависимости текущих эффективных значений сигналов, поступающих с акселерометра, от времени в двух частотных диапазонах с момента подачи электронно-лучевого импульса до момента падения амплитуды сигналов до уровня фоновых шумов, в качестве частотных диапазонов выбирают октавную полосу, где присутствуют наибольшие эффективные значения амплитуды сигнала, и соседнюю более высокую октаву, определяют период времени «Т», в течение которого амплитуда сигнала превышала фоновое значение, вычисляют эффективное значение сигнала «А» на всем периоде «Т», оценивают энергию «и» сигнала по формуле: U=A2Т, и по величине «U» судят о достаточности энергии электронно-лучевого импульса и о результатах произошедших фазовых превращений.

Длина волновода должна быть достаточной, чтобы обеспечить приемлемый уровень электромагнитных помех. При необходимости регистрирующая аппаратура может размещаться за защитным экраном, уменьшающим электромагнитное воздействие на аппаратуру. В качестве волновода может использоваться, например, медная проволока диаметром 2-3 мм, которую легко уплотнить при выводе из вакуумной камеры и завести за защитный экран, где устанавливают регистрирующую аппаратуру.

Практика показала, что с увеличением длины волновода быстрее затухают относительно высокочастотные колебания. Это связано с тем, что логарифмический декремент колебаний, который отображает темп затухания свободных колебаний на одном периоде, для большинства конструкционных материалов практически не зависит от частоты этих колебаний. Но при одинаковой скорости распространения продольных волн за время движения колебательной энергии от источника до противоположного конца волновода высокочастотные составляющие совершат во столько раз больше циклов колебаний, во сколько раз их частота выше. Если на интервале 1,2 мс составляющая колебаний на частоте 500 кГц совершит 600 циклов колебаний, то составляющая на 50 кГц совершит только 60 циклов. Если доля потерь на каждом цикле одинакова, то очевидно, что на более низкой частоте энергии сохранится больше. Например, при одинаковой начальной амплитуде колебаний на 500 кГц и на 50 кГц и при одинаковом отношении q=ai+1/ai (отношение амплитуд в конце единичного цикла к амплитуде в начале цикла) отношение амплитуд на противоположном конце волновода будет q540. Это означает, что при q=0,9 на приемной пластине амплитуда высокочастотной составляющей (500 кГц) будет относиться к амплитуде низкочастотной составляющей (50 кГц), как 10-25. Практика тоже показала, что на большом удалении от источника возмущений в спектре колебаний пропадают или ослабляются высокочастотные составляющие. Эксперименты также показали, что, если при параллельной записи вибраций в диапазонах низких (от 4-х до 20 кГц) и высоких (до 1 МГц) частот потом построить их огибающие (вся запись разбивается на небольшие участки времени, для каждого участка определяется эффективное значение, совокупность эффективных значений формирует огибающую), то они оказываются в значительной степени подобными. Это означает, что когда вибрации возбуждаются совокупностями очень коротких импульсов, то они формируют импульсы и на высоких, и на низких частотах. Поскольку при длинном волноводе вибрации на высоких частотах не удается выделить на фоне помех, то контроль сравнительно низкочастотных составляющих вибраций может осуществляться акселерометром. Большинство выпускаемых промышленностью акселерометров имеют резонансную частоту не более 100 кГц (Акселерометры пьезоэлектрические фирмы Брюль и Къер. http://asm-tm.ru/wp-content/uploads/2014/08/8309.pdf). Их линейная характеристика, которую допускается использовать в метрологических целях, значительно уже. Для целей мониторинга можно использовать весь частотный диапазон, но тогда допустимо давать оценку не в единицах ускорения, а в приращениях по отношению к предыдущему замеру или эталонному значению. Эти соображения и данные экспериментов показали, что достаточно использовать акселерометр с частотной характеристикой до 100 кГц.

Пример:

Для случая отлаженного процесса электронно-лучевой обработки, когда не требуется подробный анализ реакции, происходящей в заготовке после ее облучения, можно воспользоваться простым критерием оценки объема преобразований в материале заготовки. В настоящем изобретении предложен критерий, оценивающий величину «U» по формуле (1), который пропорционален энергии ВА сигнала в выбранной октавной полосе на протяжении времени «Т», в течение которого амплитуда сигнала превышала фоновое значение. Количество этой энергии говорит об объеме преобразований в материале заготовки. На фиг. 4 представлен график зависимости энергетического параметра «U» для октавной полосы 22-44 кГц, подсчитанного по формуле (1), от зарядного напряжения электронной пушки при облучении алюминиевых пластин. Точками показаны значения показателя «U» в каждом отдельном эксперименте. В данном случае под действием подаваемой энергии в материале происходили процессы плавления, испарения, охлаждения и кристаллизации. Представленная осредненная зависимость на фиг. 4 после 17 кВ близка к линейной. Однако при облучении, например, тонких пленок количество вещества, способного к преобразованиям, может быть ограничено. В этом случае зависимость, подобная фиг. 4, будет иметь уровень насыщения, по которому можно определять значение рационального зарядного напряжения. При работе электронной пушки в режиме подачи импульсов в виде пучка потоков с нескольких электродов возможен существенный разброс получаемых результатов. С помощью предложенного способа можно оперативно оценивать интегральный результат и принимать решение о повторении импульсного воздействия на объект.

Применение дополнительной более высокой октавы обосновывается тем, что энергетические показатели ВА сигнала в более высокочастотной октаве тем выше, чем больше в наблюдаемых в объекте процессах относительно коротких импульсов. Такие импульсы обычно преобладают в начальные мгновения после электронного воздействия. Их нехватка ведет к вялому течению дальнейших преобразований. Например, при облучении алюминиевых пластин при зарядном напряжении 22 и 16 кВ, соотношение между показателями «U» для октавы 22-44 кГц составило 10, а для октавы 11-22 кГц это соотношение было 17. Это говорит о том, что на стадии подачи рабочего импульса процессы плавления и испарения были малозаметны, что и привело к малым объемам прошедших превращений.

С учетом изложенного можно сделать вывод о том, что поставленная задача - уменьшение влияния электромагнитных помех, упрощение процедуры регистрации сигналов вибраций при облучении деталей в вакуумной камере с помощью электронной пушки, упрощение процедуры сравнения объемов происходящих в детали превращений с эталонным значением по параметрам сигналов вибраций - решена, а заявленный технический результат - повышение точности настройки аппаратуры, определяющей параметры импульсов электронного пучка, воздействующего на объект, и обеспечение производительности электронно-пучковой обработки - достигнут.

Анализ заявленного технического решения на соответствие условиям патентоспособности показал, что указанные в независимом пункте формулы признаки являются существенными и взаимосвязаны между собой с образованием устойчивой совокупности неизвестной на дату приоритета из уровня техники необходимых признаков, достаточной для получения требуемого синергетического (сверхсуммарного) технического результата.

Таким образом, вышеизложенные сведения свидетельствуют о выполнении при использовании заявленного технического решения следующей совокупности условий:

- объект, воплощающий заявленное техническое решение, при его осуществлении относится к электрофизическим методам обработки, в частности к электронно-лучевой обработке в вакуумных камерах;

- для заявленного объекта в том виде, как он охарактеризован в независимом пункте нижеизложенной формулы, подтверждена возможность его осуществления с помощью вышеописанных в заявке и/или известных из уровня техники на дату приоритета средств и методов;

- объект, воплощающий заявленное техническое решение, при его осуществлении способен обеспечить достижение усматриваемого заявителем технического результата.

Следовательно, заявленный объект соответствует критериям патентоспособности «новизна», «изобретательский уровень» и «промышленная применимость» по действующему законодательству.

Способ регистрации фазовых преобразований в приповерхностном слое объекта, обрабатываемого электронно-пучковыми импульсами в вакуумной камере, включающий присоединение к обрабатываемому объекту волновода, вывод его за пределы вакуумной камеры через вакуумный ввод, закрепление на волноводе датчика колебаний и обработку полученной информации посредством компьютера, отличающийся тем, что в качестве волновода используют гибкую проволоку, а в качестве датчика колебаний используют акселерометр с частотной характеристикой, охватывающей частотный диапазон до 100 кГц, при этом в процессе воздействия импульса электронного пучка регистрируют зависимости текущих значений сигналов, поступающих с акселерометра, от времени в двух частотных диапазонах до момента падения амплитуды сигналов до уровня фоновых шумов, причем в качестве частотных диапазонов выбирают октавную полосу с наибольшим эффективным значением амплитуды сигнала и соседнюю более высокочастотную октаву, при этом определяют период времени «Т», в течение которого амплитуда сигнала превышает фоновое значение, вычисляют эффективное значение сигнала «А» на всем периоде «Т» и оценивают энергию «U» сигнала по формуле U=A2T, по величине «U» которого судят о достаточности энергии электронно-лучевого импульса для фазовых превращений в приповерхностном слое объекта.



 

Похожие патенты:

Использование: для контроля конструкций из полимерных композиционных материалов (ПКМ). Сущность изобретения заключается в том, что осуществляют ввод ультразвуковых колебаний в материал одного из соединяемых листов, либо в материал листа в соединении «лист - заполнитель», регистрацию сигналов, отраженных от дефектов в листе, от дефектов в клеевом слое и от границ раздела «лист - клеевой слой», «клеевой слой - лист», «клеевой слой - заполнитель» с помощью ультразвукового дефектоскопа, снабженного прямым совмещенным пьезоэлектрическим широкополосным преобразователем и двухстробовой системой автоматической сигнализации дефектов (АСД), при этом наличие дефекта в листе определяется по величине амплитуды ультразвукового сигнала, отраженного от несплошности внутри листа, а наличие дефекта в клеевом слое определяется по величине амплитуды сигнала, отраженного от клеевого слоя в месте расположения дефекта клеевого слоя, относительно положения соответствующих стробов АСД, устанавливаемых при настройке дефектоскопа на образце, имеющем искусственные дефекты листа и клеевого слоя, причем обнаружение указанных дефектов производится при регистрации амплитуд ультразвуковых сигналов, отраженных от дефекта в листе и от дефекта клеевого слоя, которая осуществляется при одном акте сканирования поверхности одного из соединяемых листов, либо листа в соединении «лист - заполнитель», при этом положение, временная длительность и уровень по шкале амплитуд дефектоскопа первого из двух стробов АСД устанавливается при настройке на искусственном дефекте листа, а второго строба - на искусственном дефекте клеевого слоя, выполненных в образцах.

Группа изобретений относится к контейнерам для хранения и транспортировки радиоактивных материалов. Контейнер для ядерного материала содержит корпус, выполненный из металла, и крышку, выполненную из того же металла.

Использование: для ультразвукового неразрушающего контроля. Сущность изобретения заключается в том, что дефектоскоп, с несколькими независимыми каналами, с помощью ультразвуковой антенной решетки (АР) излучает и принимает ультразвуковые колебания, отцифровывает их и формирует изображение в виде сектора, при этом элементы АР делятся на группы с количеством элементов, равным количеству независимых каналов дефектоскопа, производится излучение и прием так, чтобы каждая группа элементов АР последовательно излучила и приняла эхосигналы, в соответствии с ранее рассчитанными задержками, затем эхосигналы, зарегистрированные в каждом из измерений, складываются когерентно, вычисляется огибающая и формируется итоговое изображение в виде сектора.

Изобретение относится к ультразвуковой толщинометрии, дополненной измерениями магнитным методом. Способ заключается в том, что измеряют время распространения сдвиговой ультразвуковой волны и процентное содержание магнитной фазы в деформированном материале изделия из стали аустенитного класса и, используя предварительно полученные данные о скорости распространения ультразвуковой волны, процентном содержании магнитной фазы в неповрежденном материале изделия и коэффициенты, полученные при испытании тестовых образцов изделия, рассчитывают толщину деформированного материала.

Изобретение относится к метрологии. Способ измерения частотной зависимости коэффициента отражения звука заключается в расположении излучателя, исследуемой поверхности и приемника в гидроакустическом бассейне, возбуждении излучателя линейно частотно-модулированным сигналом с заданными параметрами, регистрации мгновенных значений тока в цепи излучателя и выходного напряжения приемника, определении комплексной частотной зависимости передаточного импеданса, подавлении в полученной зависимости осцилляций, обусловленных влиянием отраженных сигналов, скользящим комплексным взвешенным усреднением с использованием взвешивающих функций, получении комплексной частотной зависимости передаточного импеданса пары излучатель-приемник и зависимости, в которой сохранена осцилляция, обусловленная первым по времени прихода отражением, и подавлены осцилляции от второго и более поздних по времени прихода отражений, определении частотной зависимости комплексного коэффициента отражения с учетом временных задержек облучающего сигнала и сигнала, отраженного исследуемой поверхностью, и коэффициента пропускания пространственного фильтра, реализуемого обработкой скользящим комплексным взвешенным усреднением.
Изобретение относится к области неразрушающего контроля с использованием контактной жидкости, которая применяется при низких температурах в железнодорожном транспорте.

Данное устройство имеет отношение к области ультразвукового контроля материалов из металла и предназначено для контроля рельсов, прутков, квадратной заготовки и труб.

Использование: для определения предельного состояния материала магистральных газопроводов в процессе эксплуатации. Сущность изобретения заключается в том, что предельное состояние конструкции определяют по отношению ударной вязкости материала конструкции к нормативной ударной вязкости или ударной вязкости, соответствующей хрупкому разрушению материала.

Предложен способ и измерительное устройство для определения параметров качества газа, в котором газ или газовая смесь протекает как через ультразвуковой расходомер (4), так и через микротермический датчик (7), и первый используют для определения скорости звука и течения, а с помощью второго определяют теплопроводность и теплоемкость газа или газовой смеси.

Использование: для возбуждения акустических колебаний в компактных, дискретных, влагонасыщенных и жидких средах. Сущность изобретения заключается в том, что осуществляют термоциклическую обработку акустических волноводов в теплообменниках с помощью нагретой и охлажденной жидкости, при этом жидкость может быть представлена в виде суспензии с материалом гранул твердого теплоносителя со средним размером менее 0,5 мм, который подбирают схожим или инертным по химическому составу с материалом акустического волновода, но близким к нему по плотности.

Изобретение относится к способу изготовления металлической подложки (3) с покрытием, металлическому изделию с покрытием, заготовке, полученной резкой металлического изделия, биполярной пластине и способу изготовления биполярной пластины.

Изобретение относится к установке для получения наноструктурированных покрытий из материалов с эффектом памяти формы на поверхности детали. Установка выполнена с возможностью достижения в вакуумной камере давления 2÷4 бар.

Изобретение относится к области формирования тонких пленок сложного состава в вакууме и может быть использовано в микроэлектронике. Испаритель твердых растворов, используемый для формирования тонких пленок в вакууме, содержит корпус в виде стакана и заслонку в виде крышки, внутренняя часть которой коаксиально размещена в полости корпуса и выполнена в виде конуса, и нагреватель, размещенный со стороны внешней поверхности корпуса.

Изобретение относится к технике для нанесения покрытий на детали машин, а именно к вакуумной ионно-плазменной обработке поверхностей, и может быть использовано для нанесения функциональных покрытий на моноколеса турбомашин.

Изобретение относится к устройству для вакуумной обработки армирующего волокна и способу вакуумной обработки армирующего волокна. Указанное устройство содержит камеру, выполненную с возможностью поддерживания в ней состояния пониженного давления, подающий ролик, расположенный с возможностью подвешивания армирующего волокна в упомянутой камере, устройство для нанесения покрытия, расположенное в упомянутой камере с возможностью пропускания через него армирующего волокна, подвешенного в упомянутой камере, захватное устройство, расположенное с возможностью захвата и удерживания на месте переднего конца армирующего волокна, проходящего через упомянутое устройство для нанесения покрытия и вертикально спадающего вниз, намоточный барабан для наматывания армирующего волокна, обработанного упомянутым устройством для нанесения покрытия, и упругий шнур, отводимый синхронно с вращением намоточного барабана из первого его положения, в котором упругий шнур окружает упомянутый передний конец армирующего волокна, удерживаемый на месте упомянутым захватным устройством, во второе его положение, в котором упругий шнур входит в контакт с армирующим волокном и подводит его к намоточному барабану.

Изобретение относится к устройству для формирования многокомпонентных и многослойных покрытий и может быть использовано в автомобилестроении, в медицине при создании защитных и биосовместимых слоев дентальных и ортопедических имплантатов, для изготовления тонкопленочных интегральных аккумуляторов и в химических реакторах.

Изобретение относится к машиностроению, в частности к устройствам для осаждения износостойких покрытий на изделиях в вакуумной камере. Устройство для осаждения покрытий на изделиях 3 содержит рабочую вакуумную камеру 1, мишени 4-7 планарных магнетронов на стенках камеры, источники питания 8-11 магнетронных разрядов, отрицательными полюсами соединенные с мишенями, дополнительный изолированный от камеры 1 и установленный внутри нее электрод 12 и источник постоянного тока 13, отрицательным полюсом соединенный с камерой 1, а положительным полюсом соединенный с электродом 12 и с положительными полюсами источников питания магнетронных разрядов.

Заслонка // 2651838
Изобретение относится к заслонке устройства для напыления пленок металла, которое содержит резистивный испаритель и два электронных испарителя. Заслонка содержит две створки (1) и (2) сегментной формы, закрепленные на рычагах (3) и (4 ) винтами (5) и сидящие на общей оси (6) для их синхронного поворота в разные стороны, и механизм сведения и разведения створок.

Изобретение относится к плазменно- дуговому устройству для формирования покрытий и может быть эффективно использовано при формировании защитных и биосовместимых слоев дентальных и ортопедических имплантатов, при изготовлении технологических слоев электролитических ячеек тонкопленочных интегральных аккумуляторов и в химических реакторах, которые работают в агрессивных средах и в условиях высоких температур.

Изобретение относится к электротехнике и нанотехнологиям, в частности к способу изготовления термоэлектрического элемента для термоэлектрических устройств, например термоэлектрической батареи, и может быть использовано в потребительской электронике, медицине, лабораторном оборудовании и других областях.

Изобретение относится к способу изготовления препятствующего оксидированию барьерного слоя на подложке детали и подложке с упомянутым барьерным слоем. Осуществляют физическое осаждение из газовой фазы (PVD) непроницаемого для кислорода препятствующего оксидированию барьерного слоя на непокрытой поверхности подложки детали.

Изобретение относится к в способу мониторинга структурных, фазовых и химических преобразований в приповерхностном слое обрабатываемых объектов в вакуумных камерах под воздействием электронно-пучковых импульсов и может быть использовано для повышения надежности и долговечности широкого ассортимента деталей машин. Технический результат заключается в повышении точности настройки аппаратуры, определяющей параметры импульсов электронного пучка воздействующего на объект. К обрабатываемому объекту присоединяют волновод, выводят его за пределы вакуумной камеры через вакуумный ввод и закрепляют на волноводе датчик колебаний. Осуществляют обработку информации с помощью компьютера. В качестве волновода используют гибкую проволоку, в качестве датчика колебаний используют акселерометр с частотной характеристикой, охватывающей частотный диапазон до 100 кГц. В процессе воздействия импульса электронного пучка регистрируют зависимости текущих эффективных значений сигналов, поступающих с акселерометра, от времени в двух частотных диапазонах до момента падения амплитуды сигналов до уровня фоновых шумов. В качестве частотных диапазонов выбирают октавную полосу с наибольшим эффективным значением амплитуды сигнала и соседнюю более высокочастотную октаву, определяют период времени «Т», в течение которого амплитуда сигнала превышала фоновое значение, вычисляют эффективное значение сигнала «А» на всем периоде «Т», оценивают энергию «U» сигнала по формуле: UA2T и по величине «U» судят о достаточности энергии электронно-лучевого импульса и о результатах произошедших фазовых превращений. 4 ил., 1 пр.

Наверх