Опора ротора газотурбинного двигателя

Изобретение относится к авиационному двигателестроению, а именно к опорам роторов газотурбинных двигателей. Опора ротора газотурбинного двигателя, включающая подшипник, установленный на валу ротора и в корпусе опоры, масляную полость опоры и воздушную предмасляную полость с масляным и воздушным уплотнениями, масляную струйную форсунку, в корпусе которой выполнены отверстие подвода масла и сопло подачи масла к подшипнику. В корпусе масляной струйной форсунки установлены направляющая втулка и поршень со штоком, торец которого выполнен с возможностью перекрытия сопла подачи масла к подшипнику. В полости между поршнем и направляющей втулкой установлена пружина. Полость сообщена с масляной полостью опоры отверстиями. Предлагаемая конструкция опоры позволяет повысить надежность работы подшипника на переходных и специальных режимах его работы и исключить попадания масла в воздушные полости двигателя. 2 ил.

 

Изобретение относится к авиационному двигателестроению, а именно к опорам роторов газотурбинных двигателей.

Опора ротора газотурбинного двигателя включает подшипник, установленный на валу ротора и в корпусе опоры, масляную полость опоры и воздушную предмасляную полость с масляным и воздушным уплотнениями, масляную струйную форсунку с отверстием подвода масла и соплом подачи масла к подшипнику.

Для уменьшения поверхности подвода тепла к масляной полости от горячих зон масляную полость опоры выполняют с минимально возможным объемом. На переходных режимах работы, в процессе запуска на режим малого газа (МГ), останова и при работе на специальных режимах: ложный запуск (ЛЗ) - раскрутка ротора до частоты ниже уровня режима МГ с подачей топлива без включения зажигания); холодная прокрутка (ХП) - раскрутка ротора до частоты ниже уровня режима МГ без подачи топлива, без включения зажигания; встречный запуск (ВЗ) - запуск при вращающемся роторе и авторотация (АР) - вращение ротора на неработающем двигателе от воздействия воздушного потока из-за рассогласования расходных характеристик нагнетающего и откачивающего насосов, приводящихся во вращение от ротора двигателя, в области пониженных частот вращения ротора возможно переполнение масляной полости и масло через зазоры в уплотнениях между масляной и воздушной полостями может попасть в газовоздушный тракт двигателя, в системы жизнеобеспечения экипажа и пассажиров воздушного судна, в окружающую среду. При этом уменьшение количества масла в маслобаке повышает вероятность возникновения масляного голодания, ведущего к разрушению подшипников опор двигателя.

Известна опора подшипника газотурбинного двигателя, масляная полость которого уплотнена от воздушных полостей двигателя с помощью контактного графитового уплотнения совместно с лабиринтным уплотнением (С.А. Вьюнов. Конструкция и проектирование авиационных газотурбинных двигателей. Москва, "Машиностроение", 1981, стр. 209, рис. 4.55).

Недостатком данной конструкции является ее низкая надежность при больших ресурсах работы из-за износа графитовых колец и попадания масла в воздушные полости двигателя.

Наиболее близкой заявляемому техническому решению является опора ротора газотурбинного двигателя, включающая в себя подшипник, установленный на валу ротора и в корпусе опоры, масляный жиклер в виде струйной форсунки, закрепленной на корпусе опоры, масляную полость и воздушную предмасляную полость с соответствующими уплотнениями, между которыми выполнена промежуточная воздушно-масляная полость, отделенная от масляной полости отсечным гребешком с наклонной в сторону масляной полости боковой поверхностью и с радиальным зазором δ относительно наружной цилиндрической поверхности лабиринтной втулки, причем на торцовой поверхности втулки выполнен обращенный в масляную полость кольцевой осевой выступ, а между цилиндрической поверхностью лабиринтной втулки и ее лабиринтом выполнены две канавки с прямоугольным в сечении кольцевым гребешком, промежуточная воздушно-масляная полость и масляная полость сообщаются между собой (патент РФ №2215886, F02C 7/06, опубликован 28.11.2001 г.)

Однако данное техническое решение неэффективно при работе на переходных режимах работы двигателя - режимах запуска, останова и специальных режимах, так как из-за рассогласования расходных характеристик нагнетающего и откачивающего насосов в области пониженных частот вращения роторов происходит переполнение маслом масляной полости опоры, отсечной гребешок и осевой выступ на торце втулки не справляется со своей функцией по сбросу масляных капель в масляную емкость и масло попадает в воздушную полость и далее в газовоздушный тракт двигателя.

Предлагаемое изобретение направлено на повышение надежности работы подшипника на переходных и специальных режимах его работы и исключение попадания масла в воздушные полости двигателя.

Поставленная задача решается тем, что в опоре ротора газотурбинного двигателя, включающей подшипник, установленный на валу ротора и в корпусе опоры, масляную полость опоры и воздушную предмасляную полость с масляным и воздушным уплотнениями, масляную струйную форсунку, в корпусе которой выполнены отверстие подвода масла и сопло подачи масла к подшипнику, в корпусе масляной струйной форсунки установлены направляющая втулка, пружина и поршень со штоком, торец которого выполнен с возможностью перекрытия сопла подачи масла к подшипнику, причем пружина установлена в полости между втулкой и поршнем, которая сообщена с масляной полостью опоры.

Такое выполнение опоры позволяет обеспечить открытие сопла и подачу масла к подшипнику опоры при давлении масла в отверстии подвода масла в корпусе струйной форсунки, достаточном для преодоления усилия предварительной затяжки пружины.

На неработающем двигателе под действием усилия предварительной затяжки пружины торец штока перекрывает сопло для подачи масла к подшипнику и подача масла не производится.

При раскрутке ротора двигателя повышается давление масла в маслоподводящем канале струйной форсунки. Под действием перепада давления в отверстии подвода масла и в масляной полости опоры поршень со штоком, преодолевая усилие пружины, перемещается и открывает сопло для подачи масла к подшипнику.

Поскольку частота вращения ротора на режимах ХП, ЛЗ и АР существенно ниже частоты вращения ротора на режиме МГ, усилие предварительной затяжки пружины выбирают исходя из уровня давления масла при частоте вращения ротора на режиме МГ. Таким образом, на режимах ЛЗ, ХП и АР полностью исключена подача масла к подшипникам опор ротора, так как сопло форсунки перекрыто торцом штока, а на режиме запуска давление масла преодолевает усилие пружины и непосредственно перед выходом на частоту вращения ротора, соответствующую режиму МГ, включается подача масла, на режиме останова - отключается при начале снижения частоты вращения ротора. В результате повышается надежность откачки масла из опор ротора газотурбинного двигателя и снижается вероятность переполнения маслом полости опоры на переходных режимах работы двигателя, режимах запуска и останова, попадания масла из полости опоры в газовоздушный тракт двигателя, в системы жизнеобеспечения экипажа и пассажиров воздушного судна, в окружающую среду.

На фиг. 1 показан продольный разрез опоры ротора газотурбинного двигателя; на фиг. 2 показан элемент А на фиг. 1 в увеличенном виде.

Опора ротора газотурбинного двигателя содержит подшипник 1, установленный на валу ротора 2 и в корпусе опоры 3 Масляное 4 и воздушное 5 уплотнения ограничивают масляную 6 и воздушную предмасляную полость 7 соответственно. В корпусе опоры 3 выполнен масляный канал 8. Струйная форсунка 9 закреплена на корпусе опоры 3. Корпус 10 струйной форсунки 9 имеет отверстие 11 подвода масла из масляного канала 8, а также сопло 12 подачи масла к подшипнику 1. В корпусе 10 струйной форсунки 9 установлены направляющая втулка 13 и поршень 14 со штоком 15. Торец 16 штока 15 выполнен с возможностью перекрытия сопла 12 подачи масла к подшипнику 1, при этом в полости 17 между поршнем 14 и направляющей втулкой 13, установлена пружина 18, прижимающая за счет усилия предварительной затяжки торец 16 штока 15 к соплу 12 подачи масла к подшипнику 1.

В корпусе 10 струйной форсунки 9 выполнены отверстия 19, с помощью которых полость 17 сообщена с масляной полостью опоры 6.

Предварительно расчетно-экспериментальным путем на базе анализа расходных характеристик нагнетающего и откачивающего насосов, исследования температурного состояния деталей опоры и измерения тепловых потоков определяют усилие предварительной затяжки пружины 18, которое выбирают исходя из давления масла при частоте вращения ротора на режиме МГ.

Опора ротора газотурбинного двигателя работает следующим образом.

На неработающем двигателе под действием пружины 18 шток 15 контактирует своим торцем 16 с сопряженной поверхностью сопла 12 и перекрывает его. Подача масла для смазки подшипника 1 не производится, в масляной полости 6 опоры находится минимальный неоткачиваемый объем масла.

При запуске двигателя происходит раскрутка вала ротора 2 и соответственно, приводов нагнетающего и откачивающего насосов (не показаны). В отверстие 11 корпуса 10 струйной форсунки 9 из масляного канала 8 в корпусе опоры 3 от нагнетающего насоса (не показан) начинает поступать масло, а так как под действием пружины 18 шток 15 перекрывает своим торцем 16 сопло 12, подача масла для смазки подшипника 1, установленного в корпус опоры 3, не производится

Воздух из газовоздушного тракта двигателя через воздушное уплотнение 5 поступает в воздушную предмасляную полость 7 и через масляное уплотнение 4 - в масляную полость 6 опоры ротора. Откачивающим насосом осуществляется откачка воздушно-масляной смеси из масляной полости 6. По мере роста частоты вращения вала ротора 2 повышается давление масла, поступающего по масляному каналу 8 в струйную форсунку 9, и увеличивается перепад давления относительно полости 17, в которой расположена пружина 18, сообщенной с масляной полостью 6 опоры отверстиями 19 в корпусе форсунки 10. При достижении на поршне 14 перепада давления, достаточного для преодоления усилия пружины 18, происходит перемещение поршня 14 со штоком 15 относительно направляющей втулки 13, с вытеснением воздуха из полости 17 по отверстиям 19 в масляную полость 6, открывается вход в сопло 12, и начинается подача масла для смазки подшипника 1, установленного на валу ротора 2 и в корпусе опоры 3. Откачивающим насосом (не показан) осуществляется откачка масло-воздушной смеси из масляной полости 6 опоры.

При останове двигателя снижается частота вращения вала ротора 2 и соответственно, приводов нагнетающего и откачивающего насосов (не показаны). Давление масла в отверстии 11 корпуса 10 струйной форсунки 9, поступающее из масляного канала 8 в корпусе опоры 3, начинает снижаться. При достижении на поршне 14 перепада давления, недостаточного для преодоления усилия пружины 18, происходит перемещение поршня 14 со штоком 15 относительно направляющей втулки 13, закрытие торцем 16 штока 15 входа в сопло 12, и прекращается подача масла для смазки подшипника 1 установленного на валу ротора 2 и в корпусе опоры 3. Откачивающим насосом (не показан) осуществляется откачка масло-воздушной смеси из масляной полости 6 опоры до полного останова вала ротора 2.

Таким образом, предлагаемая конструкция опоры ротора позволяет повысить надежность откачки масла из опор ротора газотурбинного двигателя и снизить вероятность переполнения маслом полости опоры на переходных режимах работы двигателя, режимах запуска и останова, попадания масла из полости опоры в газовоздушный тракт двигателя, в системы жизнеобеспечения экипажа и пассажиров воздушного судна, в окружающую среду.

Опора ротора газотурбинного двигателя, включающая подшипник, установленный на валу ротора и в корпусе опоры, масляную полость опоры и воздушную предмасляную полость с масляным и воздушным уплотнениями, масляную струйную форсунку, в корпусе которой выполнены отверстие подвода масла и сопло подачи масла к подшипнику, отличающаяся тем, что в корпусе масляной струйной форсунки установлены направляющая втулка, пружина и поршень со штоком, торец которого выполнен с возможностью перекрытия сопла подачи масла к подшипнику, причем пружина установлена в полости между втулкой и поршнем, которая сообщена с масляной полостью опоры.



 

Похожие патенты:

Изобретение относится к области газотурбинного двигателестроения, а именно к системам наддува опор газотурбинных двигателей. Газотурбинный двигатель, содержащий компрессор низкого давления с опорами, компрессор высокого давления с опорой, турбину высокого давления и турбину низкого давления с опорами и дисками, образующими между собой междисковую полость турбин, источник высокого давления, источник низкого давления, клапан переключения наддува, единую централизованную систему наддува опор, каждая из которых включает полость наддува и предмасляную полость.

Изобретение относится к газотурбинным двигателям, а именно к системам наддува опор. Известный двухконтурный газотурбинный двигатель, содержащий систему наддува опор, включающую полости наддува опор и предмасляные полости компрессора низкого давления и компрессора высокого давления, полость наддува опор и предмасляные полости турбины, клапан суфлирования компрессора, клапан суфлирования турбины, питающий воздуховод, выполненный единым для всей системы наддува опор двигателя, сообщенный с клапаном переключения и, по меньшей мере, с двумя входами, разнесенными вдоль газовоздушного тракта, один из входов которого сообщен с одной из ступеней компрессора высокого давления, а другой установлен в газовоздушном тракте за компрессором низкого давления, полости наддува опор компрессора низкого давления и компрессора высокого давления и полость наддува опор турбины воздуховодами сообщены друг с другом и через подвижные уплотнения с газовоздушным трактом двигателя, воздуховод, сообщающий полость наддува компрессора высокого давления и полость наддува турбины, расположен в межвальной зоне, образованной валами высокого и низкого давления, предмасляные полости сообщены с одноименными полостями наддува и полостями маслосистемы через подвижные уплотнения, предмасляные полости компрессоров низкого и высокого давления сообщены воздуховодами с клапаном суфлирования компрессора, а предмасляные полости турбины сообщены воздуховодами с клапаном суфлирования турбины, по предложению, в межвальной зоне полость наддува турбины объединена с предмасляной полостью турбины, клапан суфлирования компрессора и клапан суфлирования турбины своими выходами сообщены с областью низкого давления, при этом отношение газодинамической площади проходного сечения клапана суфлирования компрессора μКFК к газодинамической площади проходного сечения клапана суфлирования турбины μTFT равно 0,4…0,7, где μК - коэффициент расхода клапана суфлирования компрессора; FК - геометрическая площадь проходного сечения клапана суфлирования компрессора; μT - коэффициент расхода клапана суфлирования турбины; FT - геометрическая площадь проходного сечения клапана суфлирования турбины.

Изобретение относится к области эксплуатации газотурбинных двигателей, в частности к двигателям, применяемым в качестве привода газоперекачивающих агрегатов и энергоустановок, и может быть использовано при разработке энергоустановок с охлаждением масла в замкнутой циркуляционной системе и для модернизации нагревательных систем для поддержания рабочей температуры масла в маслобаках газотурбинных двигателей.

Турбомашина содержит два вращающихся вала и один агрегат для смазки, содержащий насос с корпусом, внутри которого установлен ротор, приводимый в движение посредством одного из упомянутых валов.

Изобретение относится к области авиадвигателестроения и энергетического машиностроения, преимущественно к системам смазки и охлаждения подшипниковых опор газотурбинных двигателей, и может быть использовано для увеличения эффективности смазки и охлаждения подшипников, например, высокотемпературных авиационных газотурбинных двигателей, где применение охлаждения масловоздушной смесью не представляется возможным, вследствие специфичных условий работы, таких как работа в агрессивной газовой среде или применение в спецтехнике, где не допускается попадание масла в проточную полость.

Кольцевая маслосборная крышка агрегата газотурбинного двигателя, выполненная с возможностью расположения вокруг агрегата и с возможностью вращения вокруг оси, содержит сквозные отверстия для радиального прохождения масла за счет центробежного эффекта, а также средства отклонения масла.

Газотурбинный двигатель содержит компрессор низкого давления, первый подшипниковый узел, второй подшипниковый узел, ступицу компрессора низкого давления. Компрессор низкого давления установлен вдоль оси двигателя.

Объектом изобретения является модуль газотурбинного двигателя, содержащий агрегат, вращающийся вместе с кожухом, при этом упомянутый кожух содержит сквозные радиальные отверстия для прохождения масла, выходящего за счет центробежного эффекта, и средства направления в радиальном направлении наружу масла, выходящего из упомянутых отверстий, и картер, образующий, по меньшей мере, часть смазочной камеры для смазки упомянутого агрегата.

Передняя часть авиационного двухконтурного газотурбинного двигателя содержит вентилятор, окруженный картером вентилятора, редуктор, вращающий вентилятор, коробку приводов агрегатов, а также коробку отбора механической мощности.

Изобретение относится к области газотурбинной техники и может использоваться в конструкциях двухвальных газотурбинных двигателей авиационного и стационарного назначения.

Кольцевая маслосборная крышка агрегата газотурбинного двигателя, выполненная с возможностью расположения вокруг агрегата и с возможностью вращения вокруг оси, содержит сквозные отверстия для радиального прохождения масла за счет центробежного эффекта, а также средства отклонения масла.

Объектом изобретения является камера (Е) опорного подшипника газотурбинной установки, содержащей неподвижную стенку (9), вращающийся вал (5), первую и вторую уплотнительные прокладки (10, 20) между стенкой и валом и полость (Cam) между неподвижной стенкой (9) и элементом (19) статора, питаемую воздухом через отверстие (19а) вблизи упомянутого вала (5).

Система 10 регулирования давления, которая интегрирована с турбомашиной, например паровой турбиной 180 атомного реактора. Текучая среда, например смазочное масло, подаваемая основным насосом 190 для смазочного масла в паровую турбину 180 атомного реактора, продолжается через охлаждающее устройство 200 и фильтр 210 по основной питающей магистрали 310.

Турбокомпаундный блок включает вал турбины, рабочее колесо турбины, установленное на одном конце вала турбины, зубчатое колесо, установленное на противоположном конце вала турбины, а также корпус и узел подшипника качения.

Объектом изобретения является элемент газотурбинного двигателя, содержащий статор (2), ротор (1) и первое уплотнительное средство (9) между ротором (1) и статором (2), выполненное таким образом, чтобы быть активным, когда ротор находится в рабочем положении вокруг своей оси вращения (LL).

Изобретение относится к трансмиссии. Трансмиссия содержит трансмиссионный узел и систему распределения масла.

Предложено устройство (1) для уплотнения внутренней полости турбомашины, содержащее первую камеру (2), выполненную с возможностью соединения с проточным сообщением с полостью (ВД) высокого давления турбомашины (100) с обеспечением возможности протекания рабочей текучей среды из полости (ВД) высокого давления в первую камеру (2), вторую камеру (3), проточно сообщающуюся со смазочным контуром (106) с обеспечением возможности протекания смазки из смазочного контура (106) во вторую камеру (3).

Изобретение относится к энергетике. Устройство для отделения и удаления масла из рабочей жидкости предназначено для установки, работающей по органическому циклу Ренкина.

Кольцевая крышка смазочной камеры подшипника турбомашины содержит кольцевую стенку, которая в целом является круглой, образует раструб и на одном конце, предназначенном для установки в него передаточного вала, содержит просвет, а на другом конце содержит установочную поверхность крышки.

Кольцевая крышка смазочной камеры подшипника турбомашины содержит кольцевую стенку, которая в целом является круглой, образует раструб и на одном конце, предназначенном для установки в него передаточного вала, содержит просвет, а на другом конце содержит установочную поверхность крышки.
Наверх