Компрессорная установка



Владельцы патента RU 2702952:

Федеральное государственное автономное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" (RU)

Изобретение относится к области компрессорных машин и может быть использовано при добыче нефти и газа. Компрессорная установка содержит рабочую камеру, выполненную в виде газожидкостного сепаратора, реверсивный жидкостной насос и эжектор. Сопло эжектора гидравлически связано через обратный клапан с источником рабочей жидкости и реверсивным жидкостным насосом, который оснащен регулируемым электроприводом с частотным регулятором, вход камеры смешения эжектора связан через всасывающий газовый клапан с газопроводом низкого давления. Выход камеры смешения эжектора подключен посредством перепускного трубопровода к верхней части газожидкостного сепаратора, выход которого по газу подсоединен через нагнетательный газовый клапан к газопроводу высокого давления, а выход по жидкости подключен к реверсивному жидкостному насосу, связанному с источником рабочей жидкости. Газожидкостной сепаратор оснащен уровнемерной выносной камерой, гидравлически связывающей верхнюю и нижнюю части газожидкостного сепаратора. В уровнемерной выносной камере размещен поплавок. На ее внешней стенке установлены два датчика уровня на расстоянии друг от друга, соответствующем минимально и максимально допустимым нижнему и верхнему положениям уровня жидкости в газожидкостном сепараторе. Датчики связаны через блок управления с частотным регулятором электропривода. Исключается попадание газа в проточную часть жидкостного насоса и жидкости в газопровод высокого давления за счет синхронизации работы газожидкостного сепаратора и реверсивного жидкостного насоса с колебаниями уровня жидкости в газожидкостном сепараторе. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к области компрессорных машин и может быть использовано при добыче нефти и газа на суше или на море, в том числе для реализации газлифтного метода для удаления воды из газовых скважин.

Известна компрессорная установка, содержащая рабочую камеру, сообщающуюся с жидкостным насосом, эжектор, перепускное распределительное устройство, всасывающий газовый клапан, который отделяет полость рабочей камеры и газопровода высокого давления от газопровода низкого давления (RU 2154749, 2000 г.).

Недостатком известного устройства является относительно низкая надежность жидкостного насоса в период перекачки газожидкостной смеси, что влечет за собой и снижение надежности работы компрессорной установки в целом.

Из известных технических решений наиболее близким к предлагаемому по технической сущности и достигаемому результату является компрессорная установка, содержащая рабочую камеру, выполненную в виде газожидкостного сепаратора, реверсивный жидкостной насос и эжектор, при этом сопло эжектора гидравлически связано через обратный клапан с источником рабочей жидкости и реверсивным жидкостным насосом, который оснащен регулируемым электроприводом с частотным регулятором, вход камеры смешения эжектора связан через всасывающий газовый клапан с газопроводом низкого давления, а выход камеры смешения эжектора подключен посредством перепускного трубопровода к верхней части газожидкостного сепаратора, выход которого по газу подсоединен через нагнетательный газовый клапан к газопроводу высокого давления, а выход по жидкости подключен к реверсивному жидкостному насосу, связанному с источником рабочей жидкости (RU 2680021, 2019 г.).

Недостатками указанного устройства являются низкие надежность работы компрессорной установки и безопасность выполнения работ, что объясняется возможностью попадания газа в проточную часть жидкостного насоса при заполнении рабочей камеры газом с попаданием жидкости в газопровод высокого давления при вытеснении газа из рабочей камеры.

Технической проблемой, на решение которой направлено предлагаемое изобретение, является повышение надежности работы установки и уровня безопасности за счет исключения аварийных ситуаций в процессе ее эксплуатации.

Указанная проблема решается тем, что в компрессорной установке, содержащей рабочую камеру, выполненную в виде газожидкостного сепаратора, реверсивный жидкостной насос и эжектор, при этом сопло эжектора гидравлически связано через обратный клапан с источником рабочей жидкости и реверсивным жидкостным насосом, который оснащен регулируемым электроприводом с частотным регулятором, вход камеры смешения эжектора связан через всасывающий газовый клапан с газопроводом низкого давления, а выход камеры смешения эжектора подключен посредством перепускного трубопровода к верхней части газожидкостного сепаратора, выход которого по газу подсоединен через нагнетательный газовый клапан к газопроводу высокого давления, а выход по жидкости подключен к реверсивному жидкостному насосу, связанному с источником рабочей жидкости, согласно изобретению, газожидкостной сепаратор оснащен уровнемерной выносной камерой, гидравлически связывающей верхнюю и нижнюю части газожидкостного сепаратора, при этом в уровнемерной выносной камере размещен поплавок, а на ее внешней стенке установлены два датчика уровня на расстоянии друг от друга, соответствующем минимально и максимально допустимым нижнему и верхнему положениям уровня жидкости в газожидкостном сепараторе, при этом датчики связаны через блок управления с частотным регулятором электропривода.

Возможен вариант реализации изобретения, когда к поплавку прикреплен постоянный магнит, уровнемерная выносная камера выполнена из немагнитного материала, а датчики уровня, размещенные на внешней стенке уровнемерной выносной камеры, выполнены в виде герконов.

Достигаемый технический результат заключается в исключении попадания газа в проточную часть жидкостного насоса и жидкости в газопровод высокого давления за счет синхронизации работы газожидкостного сепаратора и реверсивного жидкостного насоса с колебаниями уровня жидкости в газожидкостном сепараторе.

Сущность изобретения поясняется чертежом, на котором представлена схема заявляемой компрессорной установки.

Компрессорная установка содержит рабочую камеру 1 и эжектор с камерой смешения 2, подключенные к жидкостному насосу 3, перепускной трубопровод 4, всасывающий газовый клапан 5 и нагнетательный газовый клапан 6, которые отделяют полость рабочей камеры 1 от газопровода низкого давления 7 и газопровода высокого давления 8, соответственно. Жидкостной насос 3 выполнен в виде реверсивного насоса. Рабочая камера 1 выполнена в виде газожидкостного сепаратора. Камера смешения 2 эжектора сообщается с реверсивным жидкостным насосом 3 через сопло 9 эжектора. Вход в сопло 9 эжектора гидравлически связан с источником рабочей жидкости 10. Вход в камеру смешения 2 эжектора связан через всасывающий газовый клапан 5 с газопроводом низкого давления 7. Перепускной трубопровод 4 связывает выход камеры смешения 2 эжектора с верхней частью газожидкостного сепаратора 1. В верхней части газожидкостного сепаратора 1 размещен нагнетательный газовый клапан 6, отделяющий газожидкостной сепаратор 1 от газопровода высокого давления 8.

Реверсивный жидкостной насос 3 оснащен регулируемым электроприводом 11 с частотным регулятором 12.

Между соплом 9 эжектора и реверсивным жидкостным насосом 3 установлен обратный клапан 13, пропускающий поток в направлении от реверсивного жидкостного насоса 3 к соплу 9 эжектора, при этом реверсивный жидкостной насос 3 постоянно сообщается с источником рабочей жидкости 10. В качестве источника рабочей жидкости 10 может быть использован трубопровод, через который постоянно циркулирует рабочая жидкость, как показано на чертеже. Верхняя часть газожидкостного сепаратора 1 заполнена газом, нижняя часть газожидкостного сепаратора 1 заполнена рабочей жидкостью, на чертеже показана граница раздела 14 между газообразной фазой и жидкой фазой.

Газожидкостной сепаратор 1 оснащен уровнемерной выносной камерой 15, гидравлически связывающей верхнюю и нижнюю части газожидкостного сепаратора 1, в которой размещен поплавок 16, а на внешней стенке установлены два датчика уровня 18 и 19 на расстоянии друг от друга, соответствующем минимально и максимально допустимым нижнему и верхнему положениям уровня жидкости в газожидкостном сепараторе 1. Датчики уровня 18 и 19 связаны посредством информационных линий связи 20 и 21 соответственно с блоком управления 22, который связан с помощью управляемой линии связи 23 с частотным регулятором электропривода 12.

Возможен вариант исполнения компрессорной установки, когда к поплавку 16 прикреплен постоянный магнит 17, уровнемерная выносная камера 15 выполнена из немагнитного материала, а датчики уровня 18 и 19, размещенные на внешней стенке уровнемерной выносной камеры 15, выполнены в виде герконов.

Местоположение для каждого датчика уровня выбирают из условия обеспечения синхронной работы газожидкостного сепаратора и реверсивного жидкостного насоса с колебаниями уровня жидкости в газожидкостном сепараторе, что должно исключить проявления гидроударов при верхнем положении уровня жидкости в рабочей камере и прорывов газа в реверсивный жидкостной насос при нижнем положении уровня жидкости в рабочей камере.

Таким образом, обеспечивается исключение попадания газа в проточную часть жидкостного насоса и жидкости в газопровод высокого давления, повышается надежность работы установки и ее уровень безопасности, исключаются аварийные ситуации в процессе эксплуатации.

Компрессорная установка работает следующим образом.

Реверсивный жидкостной насос 3 работает в циклическом режиме с изменением направления потока на каждой половине цикла. Реверсивный жидкостной насос 3 подает рабочую жидкость из рабочей камеры 1 через обратный клапан 13 в сопло 9 эжектора, при этом частично рабочая жидкость поступает в трубопровод 10. За счет энергии струи жидкости на входе камеры смешения 2 эжектора понижается давление и в камеру смешения 2 поступает газ из газопровода низкого давления 7 через открытый всасывающий газовый клапан 5. На выходе камеры смешения 2 эжектора повышается давление в потоке смеси жидкости и газа за счет преобразования кинетической энергии жидкости в потенциальную энергию, что сопровождается повышением давления при понижении скорости течения газожидкостного потока. Через перепускной трубопровод 4 сжатый газ вместе с жидкостью поступает в рабочую камеру 1, где реализуется процесс сепарации с разделением газожидкостной смеси на жидкую и газовую фазу. Жидкость скапливается в нижней части рабочей камеры 1, а газ в верхней части, как в известных гравитационных сепараторах. Сжатый газ накапливается в верхней части рабочей камеры 1, что приводит к смещению границы раздела 14 в направлении сверху вниз. При этом жидкость из рабочей камеры 1 вытесняется реверсивным жидкостным насосом 3 в трубопровод 10.

Когда граница раздела 14 приблизится к минимально допустимому нижнему положению уровня жидкости в рабочей камере 1, в уровнемерной выносной камере 15 поплавок 16 опустится до соответствующего уровня, где расположен нижний датчик уровня 18. После этого происходит передача сигнала от датчика уровня 18 по информационной линии связи 20 на блок управления 22, а далее через управляющую линию связи 23 поступает сигнал на частотный регулятор 12 для отключения жидкостного насоса 3, либо изменения направления вращения электропривода 11. В последнем случае компрессорная установка продолжит работать, а жидкость из трубопровода 10 при этом начнет перекачиваться реверсивным жидкостным насосом 3 в направлении к рабочей камере 1. Это приведет к увеличению давления в рабочей камере 1, соответственно обратный клапан 13 закроется и закроется также всасывающий газовый клапан 5. Поток в камере смешения 2 эжектора останавливается. Таким образом, осуществляется отключение эжектора на время заполнения рабочей камеры жидкостью. В это время граница раздела 14 начнет смещаться в направлении снизу-вверх. При этом продолжится сжатие газа в рабочей камере 1, что сопровождается соответствующим ростом давления. При смещении границы раздела 14 вверх наступит момент, когда давление в рабочей камере 1 сравняется с давлением в газопроводе высокого давления 8. Такое выравнивание давления приведет к открытию нагнетательного газового клапана 6. При дальнейшем смещении границы раздела 14 вверх сжатый газ из рабочей камеры 1 вытесняется в газопровод высокого давления 8 через открытый нагнетательный газовый клапан 6. Окончание цикла вытеснения газа обуславливается перемещением поплавка 16 до верхнего датчика уровня 19, расположение которого соответствует максимально допустимому верхнему положению уровня жидкости в рабочей камере 1. После этого происходит передача сигнала от датчика уровня 19 по информационной линии связи 21 на блок управления 22 и далее через управляющую линию связи 23 на частотный регулятор 12. Электропривод 11 изменяет направление вращения ротора жидкостного насоса 3 и, соответственно, изменяется направление потока жидкости в газожидкостном сепараторе 1 на противоположное направление. Цикл повторяется.

Преимуществом заявляемого устройства является повышение надежности и уровня безопасности работы компрессорной установки, поскольку обеспечивается синхронная работа газожидкостного сепаратора и реверсивного жидкостного насоса при колебаниях уровня жидкости в газожидкостном сепараторе, при этом исключается смещение границы раздела 14 ниже минимально допустимого значения при срабатывании датчика уровня 18. Исключается попадание газа в реверсивный жидкостный насос 3. Также исключается попадание жидкости в газопровод высокого давления 8 при смещении границы раздела 14 в направлении снизу-вверх, при срабатывании датчика уровня 19 в максимально допустимом верхнем положении уровня жидкости. Помимо повышения безопасности работ при использовании заявляемого устройства обеспечивается более высокое качество сжимаемого газа по критерию влагосодержания в газе.

1. Компрессорная установка, содержащая рабочую камеру, выполненную в виде газожидкостного сепаратора, реверсивный жидкостной насос и эжектор, при этом сопло эжектора гидравлически связано через обратный клапан с источником рабочей жидкости и реверсивным жидкостным насосом, который оснащен регулируемым электроприводом с частотным регулятором, вход камеры смешения эжектора связан через всасывающий газовый клапан с газопроводом низкого давления, а выход камеры смешения эжектора подключен посредством перепускного трубопровода к верхней части газожидкостного сепаратора, выход которого по газу подсоединен через нагнетательный газовый клапан к газопроводу высокого давления, а выход по жидкости подключен к реверсивному жидкостному насосу, связанному с источником рабочей жидкости, отличающаяся тем, что газожидкостной сепаратор оснащен уровнемерной выносной камерой, гидравлически связывающей верхнюю и нижнюю части газожидкостного сепаратора, при этом в уровнемерной выносной камере размещен поплавок, а на ее внешней стенке установлены два датчика уровня на расстоянии друг от друга, соответствующем минимально и максимально допустимым нижнему и верхнему положениям уровня жидкости в газожидкостном сепараторе, при этом датчики связаны через блок управления с частотным регулятором электропривода.

2. Компрессорная установка по п. 1, отличающаяся тем, что к поплавку прикреплен постоянный магнит, уровнемерная выносная камера выполнена из немагнитного материала, а датчики уровня, размещенные на внешней стенке уровнемерной выносной камеры, выполнены в виде герконов.



 

Похожие патенты:

Изобретение относится к области насосостроения, касается электрогидравлических насосов и может найти применение в различных отраслях народного хозяйства для перекачки разного рода жидкостей.

Группа изобретений относится к области наддува двигателя внутреннего сгорания. Техническим результатом является повышение надежности и КПД.

Предложены способ и устройство для регулирования давления наддува в двигателе (39) внутреннего сгорания с нагнетателем (1) системы волнового наддува, при котором нагнетатель (1) системы волнового наддува имеет ячеистый ротор (8), проходящий за один оборот по меньшей мере два цикла компрессии, причем поток (4с) отходящих газов высокого давления разделяют на первый и второй частичные потоки (4d, 4е) отходящих газов высокого давления, причем в первом цикле компрессии к ячеистому ротору (8) подводят поток (2с) свежего воздуха, а также первый частичный поток (4d) отходящих газов высокого давления и отводят от ячеистого ротора (8) первый поток (3с) сжатого свежего воздуха и поток (5е) отходящих газов низкого давления, а во втором цикле компрессии к ячеистому ротору (8) подводят поток (2с) свежего воздуха, а также второй частичный поток (4е) отходящих газов высокого давления и отводят от ячеистого ротора (8) второй поток (3d) сжатого свежего воздуха и поток (5е) отходящих газов низкого давления, причем первый и второй потоки (3с, 3d) сжатого свежего воздуха сводят вместе в поток наддувочного воздуха (3е), и наддувочный воздух (3е) подводят к двигателю (39) внутреннего сгорания, причем второй частичный поток (4е) отходящих газов высокого давления подвергают регулированию, чтобы таким образом управлять давлением наддувочного воздуха (3е), причем до соединения первого и второго потоков (3с, 3d) сжатого свежего воздуха в поток наддувочного воздуха (3е) второй поток (3d) сжатого свежего воздуха проводят через обратный клапан (9).

Изобретение относится к области компрессорных машин и может быть использовано при добыче нефти и газа. Установка содержит рабочие камеры высокого и низкого давления, выполненные в виде частично заполненных жидкостью подземных вертикальных емкостей с устьевыми головками.

Изобретение относится к области компрессорных машин и может быть использовано при добыче нефти и газа на суше или на море, в том числе для реализации газлифтного метода для удаления воды из газовых скважин.

Нагнетатель (1) системы волнового наддува для сжатия свежего воздуха (2а) для двигателя внутреннего сгорания, включающий в себя камеру (6) холодного газа, камеру (7) горячего газа, а также расположенную между ними камеру (11) ротора, причем внутри камеры (11) ротора расположен выполненный с возможностью вращения ячеистый ротор (8), камера (7) горячего газа включает в себя канал (4) отходящих газов высокого давления и канал (5) отходящих газов низкого давления, камера (6) холодного газа включает в себя канал (2) свежего воздуха и канал (3) наддувочного воздуха, канал (4) отходящих газов высокого давления, канал (5) отходящих газов низкого давления, канал (2) свежего воздуха и канал (3) наддувочного воздуха соединены с ячеистым ротором (8) по текучей среде, причем камера (6) холодного газа включает в себя подшипник (14) ячеистого ротора, причем ячеистый ротор (8) соединен с валом (12) ротора, причем вал (12) ротора опирается на подшипник (14) ячеистого ротора, причем ячеистый ротор (8) разделен в направлении прохождения вала (12) ротора и включает в себя по меньшей мере одну первую часть (8а) ячеистого ротора и одну вторую часть (8b) ячеистого ротора.

Группа изобретений относится к области насосостроения и может быть использована для подъема грунтовых вод в пустынях, охлаждаемых химических реакторах, в системах охлаждения космических аппаратов, системах кондиционирования, в системах капельного орошения, при разработке высокоточный капельных дозаторов.

Группа изобретений относится к устройству и способу удаления жидкости из эксплуатационной скважины. Устройство содержит резервуар (104, 105), имеющий зону (109) накопления жидкости, при этом указанный резервуар выполнен с возможностью соединения с трубой (102) удаления газа, расположенной в эксплуатационной скважине; изолятор (106), выполненный с возможностью ограничения потока текучей среды между стенкой (104) резервуара и стенкой (101) скважины из первого пространства (107), образованного между изолятором и забоем скважины, во второе пространство (108), образованное между изолятором и устьем скважины; первое отверстие (117а), выполненное в указанном резервуаре с возможностью обеспечения циркуляции смеси газ-жидкость из указанного первого пространства в третье пространство (110), образованное в трубе удаления газа; и второе отверстие (116а) в указанном резервуаре, выполненное с возможностью обеспечения циркуляции текучей среды из указанного второго пространства в зону накопления жидкости.

Группа изобретений относится к области нефтегазовой промышленности. Вращающийся изобарический обменник давления включает цилиндрический ротор с первой и второй противоположными торцевыми сторонами, имеющими осевые каналы с отверстиями, расположенными в торцевых сторонах.

Группа изобретений относится к нефтегазовой промышленности, в частности, к оборудованию и технологиям для осуществления гидравлического разрыва грунта. Система обмена давления, включает в себя ротационный изобарический обменник давления (IPX), выполненный с возможностью обмена давления между первым флюидом и вторым флюидом, а также двигательную систему, соединенную с IPX и выполненную с возможностью приводить в действие IPX.

Изобретение относится к области компрессорных машин и может быть использовано при добыче нефти и газа. Установка содержит рабочие камеры высокого и низкого давления, выполненные в виде частично заполненных жидкостью подземных вертикальных емкостей с устьевыми головками.

Изобретение относится к области компрессорных машин и может быть использовано при добыче нефти и газа на суше или на море, в том числе для реализации газлифтного метода для удаления воды из газовых скважин.

Группа изобретений относится к модульным насосным агрегатам и может применяться для перекачки больших объемов жидкости, используя при этом по крайней мере один насосный модуль.

Изобретение относится к области систем водоснабжения и водоотведения. Способ состоит в том, что осуществляют разделение насосной станции на конечное число Н элементов.

Изобретение относится к области водоснабжения. Насосная станция содержит насосное устройство (1), гидроаккумулятор (2), представляющий собой стальной бак с резиновой упругой мембраной, блок автоматики (5), содержащий устройство (6) управления и защиты насоса, и стабилизатор (7) давления воды, соединенные между собой трубопроводами (8).

Изобретение относится к устройствам для добычи высоковязкой нефти из буровых скважин. .

Изобретение относится к области насосостроения и, в частности, может быть использовано для нагнетания газожидкостной смеси при бурении и освоении нефтяных и газовых скважин и при закачке в пласт газов и газожидкостной смеси.

Изобретение относится к нефтедобывающей промышленности, а именно к бустерным насосно-компрессорным машинам, предназначенным для использования в процессе добычи углеводородов для нагнетания технологических жидкостей, газов и многофазных сред при вторичных методах увеличения нефтеотдачи пластов.

Изобретение относится к поршневым энергетическим машинам объемного действия и может быть использовано при создании компактных агрегатов, подающих потребителю одновременно или попеременно сжатый воздух и жидкость под давлением.
Наверх