Автономный гибридный комплекс для борьбы с асфальто-смоло-парафиновыми отложениями в нефтяной скважине

Изобретение относится к нефтедобывающей промышленности и предназначено для ликвидации асфальто-смоло-парафиновых отложений (АСПО) на стенках насосно-компрессорных труб (НКТ) нефтяных скважин. Техническим результатом является ввод в работу комплекса фотоэлектрической системы в качестве дополнительного генератора электроэнергии и блока управления и защиты предназначенного для регулирования работы комплекса. Автономный гибридный электротехнический комплекс для борьбы с АСПО в нефтяной скважине состоит из фотоэлектрической системы (ФЭС) и ветроэлектрической установки (ВЭС), выход которой соединен с входом трехфазного диодного выпрямителя через силовой кабель переменного тока. Выходы ФЭС и трехфазного диодного выпрямителя подключаются к шине постоянного тока, к которой также крепится кабель постоянного тока, второй конец которого соединен с греющим кабелем через клеммную колодку. Также в составе комплекса предусмотрен блок управления и защиты, к входу которого подсоединен датчик температуры, расположенный непосредственно в НКТ. К выходам блока управления и защиты подсоединена система контакторов, установленных в цепях генерации ВЭС и ФЭС. 1 ил.

 

Изобретение относится к нефтедобывающей промышленности и предназначено для ликвидации асфальто-смоло-парафиновых отложений (АСПО) на стенках насосно-компрессорных труб (НКТ) нефтяных скважин.

Известна установка для ликвидации и предотвращения АСПО в нефтегазовых скважинах (патент РФ на изобретение №2338868 С2, опубл. 20.11.2008), которая содержит нагреватель, спускаемый в скважину, станцию управления нагревом кабеля, силовой вход которой соединен с трехфазной сетью, а силовой выход соединен с выводами нагревателя, станцию управления, которая содержит регулируемый источник тока, вход которого соединен с трехфазной сетью, а выход соединен с выводами нагревателя, датчик тока нагревателя, датчик напряжения нагревателя, блок контроля изоляции нагревателя, входы которого соединены с выводами нагревателя, контроллер.

Недостатком установки является прокладывание токоведущих жил нагревателя вдоль внутренних стенок НКТ, что уменьшает эффективность электропрогрева, увеличивая затраты электроэнергии.

Известна установка для ликвидации и предотвращения АСПО в нефтегазовых скважинах (патент РФ на изобретение №2475627 С1, опубл. 20.02.2013), которая содержит кабель питания, количеством проводников в котором составляет от 1 до 20, на который крепится N блоков от 1 до 1000 штук на расстоянии от 1 м до 5000 м друг о друга, блок управления на поверхности (БУ), конденсаторную батарею БУ, контроллер БУ, генератор импульсов БУ, блок приема и обработки данных от датчиков БУ, блок управления параметрами импульсов генератора импульсов БУ, блок приема-передачи данных на внешний процессор БУ, блок питания БУ, зарядное устройство конденсаторной батареи БУ, блок разрядный (БР), блок приема-передачи данных БР на поверхностный блок управления, блок питания БР, контроллер БР, блок эхолокации БР, зарядное устройство конденсаторной батареи БР, генератор импульсов БР, конденсаторную батарею БР, датчики акустические, датчики давления, датчики температуры

Недостатком устройства являются конструктивные особенности опускаемого в насосно-компрессорную трубу (НКТ) кабеля питания, а именно количество блоков, устанавливаемых на его проводники (до 1000 на каждый). Пространство внутри НКТ ограничено, а устанавливаемые на проводники кабеля питания блоки увеличивают габариты самого кабеля питания, что негативно сказывается на эффективности работы скважины.

Известно устройство для нагрева скважин (патент РФ на изобретение №2171363 С1, опубл. 27.07.2001 года), содержащее первый нагревательный элемент в виде кабеля, расположенного внутри НКТ и подключенного к положительному выводу источника питания, на конце которого выполнен неизолированный участок с токопроводящими грузами, обеспечивающими электрическое соединение одной или нескольких жил кабеля с НКТ, которая является вторым нагревательным элементом и подключена к отрицательному выводу источника питания.

Недостатком данного устройства является исполнение кабеля, располагаемого внутри НКТ, а именно неизолированный его участок, так как при эксплуатации по нему начинает протекать большой ток, что опасно при работе в среде горючих жидкостей и газов.

Известно электронагревательное устройство тепловой обработки призабойной зоны скважины (атент РФ на изобретение №2169830 С1, опубл. 27.06.2001), включающее корпус нагревателя, диски-электроды, установленные на токопроводе, размещенном по оси корпуса и силовой кабель питания. Диски-электроды выполнены с перфорацией и собраны в чередующиеся пары, где верхние диски-электроды соединены с корпусом, а нижние закреплены на токопроводе, причем в междисковых интервалах токопровода и корпуса размещены термостойкие изоляторы, а корпус нагревателя заполнен токопроводящей жидкостью до уровня самого верхнего электрода.

Недостатком данного устройства является использование дисков-электродов, которые увеличивают гидравлическое сопротивление, что приводит к низкой интенсивности конвенции. Также к недостаткам установки можно отнести отсутствие в ее составе устройств для сепарации пара, что приводит к снижению эффективности использования установки для тепловой обработки скважины.

Известна установка для депарафинизации нефтегазовых скважин (патент РФ на изобретение №2166615, опубл. 10.05.2001), которая содержит нагревательный кабель, один конец которого заведен в соединительную электрическую коробку взрывобезопасного исполнения, к которой с другой стороны подведен силовой кабель, причем второй конец силового кабеля введен в систему нагрева кабеля, выполненную в виде автоматизированного регулятора нагрева, установленного и закрепленного на опоре, к которой подведена силовая линия напряжением 380 В.

Недостатком установки является отсутствие датчиков температуры внутри НКТ. Предложенная система слежения за температурной средой реагирует только на температуру самого нагревательного кабеля и его время работы. Представленная система не реагирует на возможный перегрев водонефтяной смеси внутри НКТ, что приводит к большим затратам электроэнергии, так как в данных условиях питание будет практически непрерывно подается на греющий кабель.

Известен автономный комплекс электропрогрева нефтяной скважины с питанием от ветрогенератора (Вельский, А.А. Интенсификация добычи нефти. Концепция теплового метода с прменением автономных ветроэлектрических установок / А.А. Бельский, В.И. Климко // Neftegaz. RU. - 2016. - №1-2. - с. 38-41.), принятый за прототип, состоящий из ветроэлектрической установки, силового кабеля переменного тока, трехфазного диодного выпрямителя, силового кабеля постоянного тока, греющего кабеля, датчика температуры, измеряющего температуру нефти.

Недостатком автономного комплекса электропрогрева нефтяной скважины с питанием от ветрогенератора является использование ветроэлектрической установки в качестве единственного источника питания в автономной системе электроснабжения, что приводит к непрогнозируемому графику выработки энергии, влечет неравномерность теплового воздействия на нефтяную скважину и ограничивает потенциально возможную территорию для применения комплекса.

Техническим результатом является ввод в работу комплекса фотоэлектрической системы в качестве дополнительного генератора электроэнергии и блока управления и защиты, предназначенного для регулирования работы комплекса, что приводит к сглаживанию графика выработки энергии, расширению потенциально возможных территорий использования, а также повышению надежности и автономности комплекса электропрогрева нефтяных скважин.

Технический результат достигается тем, что дополнительно установлена фотоэлектрическая система, подключенная к шине постоянного тока, к которой крепится силовой кабель постоянного тока, второй конец которого соединен с греющим кабелем, а также установлен блок управления и защиты, вход которого соединен с датчиком температуры, а выход которого соединен с системой контактов ветроэлектрической и фотоэлектрической установок.

Автономный гибридный электротехнический комплекс для борьбы с асфальто-смоло-парафиновыми отложениями в нефтяной скважине поясняется следующей фигурой:

фиг. 1 - конструктивная схема автономного гибридного электротехнического комплекса для борьбы с асфальто-смоло-парафиновыми отложениями, где:

1 - ветроэлектрическая установка (ВЭС);

2 - силовой кабель переменного тока;

3 - трехфазный диодный выпрямитель;

4 - шина постоянного тока;

5 - фотоэлектрическая система (ФЭС);

6 - силовой кабель постоянного тока;

7 - клеммная колодка;

8 - греющий кабель;

9 - датчик температуры;

10 - система контакторов;

11 - блок управления и защиты;

12 - насосно-компрессорная труба (НКТ).

Автономный гибридный электротехнический комплекс для борьбы с АСПО в нефтяной скважине состоит из ветроэлектрической установки 1 с генератором на постоянных магнитах, выход которой соединен с входом трехфазного диодного выпрямителя 3 через силовой кабель переменного тока 2. Выходы трехфазного диодного выпрямителя 3 и фотоэлектрической системы (ФЭС) 5, а также кабель постоянного тока 6 соединены с шиной постоянного тока 4 с помощью зажимов кабелей на шину. Второй конец кабеля постоянного тока 6 через клеммную колодку 7 соединен с греющим кабелем 8, второй конец которого опущен в насосно-компрессорную трубу 12. К входу блока управления и защиты 11 подсоединен датчик температуры 9, расположенный непосредственно в НКТ 12. К выходам блока управления и защиты 11 подсоединена система контакторов 10, установленных в цепях генерации ВЭС 1 и ФЭС 5.

Комплекс работает следующим образом. При достаточных ветровых условиях ВЭС начинает вырабатывать переменный ток, который через трехфазный диодный выпрямитель 3 попадает на шину постоянного тока 4, куда также попадает выработанный ФЭС 5 постоянный ток. ФЭС используется для сглаживания неравномерности теплового воздействия на нефтяную скважину и увеличения продолжительности работы комплекса, тем самым повышая автономность работы комплекса. С шины постоянного тока 4 общая выработанная мощность посредствам силового кабеля постоянного тока 6 попадает на греющий кабель 8, которые соединены через клеммную колодку 7. ВЭС 1 и трехфазный диодный выпрямитель 3 связаны между собой силовым кабелем переменного тока 2. В случае превышения допускающей температуры в НКТ 12 датчик температуры 9 подает сигнал на блок управления и защиты 11, после чего с помощью системы контакторов 10 происходит вывод одного из генераторов из работы комплекса. Также при помощи системы контакторов 10 можно отключить один из источников питания в связи с невозможностью его работы в текущих погодных условиях или в связи с плановым ремонтом.

Автономный гибридный электротехнический комплекс для борьбы с асфальто-смоло-парафиновыми отложениями в нефтяной скважине, включающий ветроэлектрическую установку с генератором на постоянных магнитах, присоединенную силовым кабелем переменного тока к трехфазному диодному выпрямителю для передачи электроэнергии через силовой кабель постоянного тока на греющий кабель, датчик температуры, измеряющий температуру нефти, отличающийся тем, что дополнительно установлена фотоэлектрическая система, подключенная к шине постоянного тока, к которой крепится силовой кабель постоянного тока, второй конец которого соединен с греющим кабелем, а также установлен блок управления и защиты, вход которого соединен с датчиком температуры расположенным в насосно-компрессорной трубе, а выход которого соединен с системой контактов ветроэлектрической и фотоэлектрической установок.



 

Похожие патенты:
Изобретение относится к нефтедобывающей промышленности и может быть использовано при бурении, освоении, ремонте и эксплуатации скважины, разбуривании элементов технологического оборудования в скважине, в частности, оснасток горизонтальной и наклонной скважины.

Изобретение относится к области бурения, очистки, промывки, обработки, гидроразрыва, освоения и исследования нефтегазодобывающих скважин. Компоновка содержит одинарную колонну труб, гидравлический двигатель с герметизированным посредством уплотнителя шпинделем, выходным валом, наддолотным переводником и долотом, переводник гидравлического двигателя, два пакера - верхний и нижний, межпакерный порт для закачки технологической жидкости, струйный насос, питаемый активной средой поверхностным насосом и включающий соединенное с каналом подвода активной среды сопло, диффузор с выходом в надпакерную зону верхнего пакера и камеру смешения, соединенную с подпакерной зоной верхнего и нижнего пакера каналом подвода пассивной среды.

Изобретение относится к области строительства и эксплуатации скважин, в частности бурения, очистки, промывки, обработки, гидроразрыва, освоения и исследования. Устройство содержит колонну труб, гидравлический двигатель с герметизированным шпинделем, выходным валом, наддолотным переводником и долотом, два пакера, взаимодействующих с полостью повышенного давления, струйный насос, питаемый активной средой поверхностным насосом и включающий соединенное с каналом подвода активной среды сопло, диффузор с выходом в надпакерную зону верхнего пакера и камеру смешения, соединенную с подпакерной зоной верхнего и нижнего пакера каналом подвода пассивной среды.

Изобретение относится к нефтегазодобывающей отрасли, в частности к устройствам для очистки и промывки скважины. Устройство содержит переводник для соединения с колонной труб, выполненный с проходным отверстием.

Изобретение относится к нефтедобывающей промышленности и может быть применено для очистки скважинной жидкости от плавающего мусора, попавшего в скважину при различных технологических операциях, или шлама.

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к ингибированию нежелательных отложений на скважинном оборудовании. Способ заключается в первоначальном воздействии на поток скважинного флюида, движущийся к насосному агрегату, ультразвуковым излучением в диапазоне частот от 15 кГц до 50 кГц, которым форсируют образование зародышей кристаллов и кристаллообразование в объеме флюида.

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к устройствам для удаления металлических отходов из ствола скважины. Инструмент содержит магнитный элемент, средства генерирования вращения, блок удаления отходов и контейнер для отходов.

Группа изобретений относится к трубным изделиям, например компонентам бурильных колонны и ударной штанги, применяемых в работах на забое скважины. Технический результат – оптимизация очистки ствола, ускорение перемещения выбуренной породы и улучшение дисперсии выбуренной породы.

Изобретение относится к области нефтегазовой промышленности и может быть использовано для исследования и освоения пласта, а также для очистки призабойной части пласта и забоя скважины.

Изобретение относится к нефтедобывающей промышленности, а именно к конструкции стендов для моделирования процесса отложения солей и механических частиц на деталях погружных электроцентробежных насосов (ЭЦН) и может быть использовано для проведения сравнительных испытаний ЭЦН, предназначенных для работы в скважинах, осложненных высоким содержанием неорганических солей в пластовой жидкости Устройство содержит узел подвода углекислого газа, емкость для приготовления смеси, имитирующей скважинную жидкость, содержащую механические примеси, электродвигатель и многоступенчатый электроцентробежный насос.

Группа изобретений относится к устройству для создания нарушения в дифференциальном режиме распространения радиочастотного сигнала, передаваемого вдоль коаксиальной линии передачи.

Группа изобретений относится к системе, упрощающей добычу углеводородов, в частности углеводородов на месте залегания, посредством антенны, содержащей массив коаксиальных преобразователей типов волн.

Изобретение относится к устройствам и способам, применяемым для нагревания формаций. Технический результат заключается в уменьшении или исключении потенциальных проблем в ходе производства, компоновки и/или монтажа изолированных проводников.

Группа изобретений относится к нагревателю месторождения для индуктивного нагревания геологической формации, в частности месторождения нефтеносных песков, горючих сланцев, особо тяжелой нефти или тяжелой нефти.

Группа изобретений относится к области электронагрева индукционными токами и может быть использовано в устройствах для ликвидации и предотвращения формирования гидратопарафиновых и асфальтосмолистых образований в нефтегазовых скважинах и трубопроводах, а также для подогрева вязких продуктов.

Группа изобретений относится к способу и устройству для разработки залежей высоковязкой нефти с контурной и подошвенной водой, а также залежей нефти с высокой температурой застывания в нефтяной промышленности.

Группа изобретений относится к способу введения индукционной петли в геологическую формацию для нагрева нефтяного резервуара, а также к соответствующему индукционному устройству.

Группа изобретений касается системы нескольких электрических пар проводов для симметричного питания потребителя. Cистема нескольких электрических пар проводов для симметричного питания петли провода с емкостной компенсацией для индуктивного нагревания и покрывающей их экранной трубы, при этом прямые и обратные провода пар проводов расположены, соответственно чередуясь, будучи конциклически и равномерно распределены по периметру круга внутри экранной трубы, покрывающей эти несколько пар проводов.

Изобретение относится к нефтяной промышленности, а именно к устройствам для подачи на забой пара или другого вещества интенсификации притока. Вставное инжекторное устройство включает в себя корпус, который имеет внутренний нефтяной канал, выполненный с возможностью обеспечивать сквозной проход нефти.

Изобретение относится к области промысловой геофизики и может быть использовано для интенсификации добычи тяжелой высоковязкой нефти. Заявлен способ повышения нефтеотдачи пласта с высоковязкой нефтью, при котором погружают в скважину снаряд, содержащий спиральную линию, с помощью которой возбуждают в обсадной трубе скважины переменный азимутальный электрический ток с частотой ~10 кГц, осуществляя локальный нагрев участка обсадной трубы и коллектора скважины для уменьшения коэффициента вязкости нефти в области пласта, прилегающего к обсадной трубе.
Наверх