Железобетонная труба с внутренним стеклокомпозитным сердечником для напорных и безнапорных трубопроводов, прокладываемых методом микротоннелирования

Изобретение относится к производству труб для напорных и безнапорных трубопроводов, прокладываемых методом микротоннелирования, в частности к железобетонной трубе с внутренним стеклокомпозитным сердечником. Железобетонная труба состоит из стеклокомпозитной трубы и муфты, изготовленных методом непрерывной намотки на оправку армирующих наполнителей, пропитанных связующими с последующим отверждением. В состав стеклокомпозитной муфты и трубы входит матрица на основе полиэфирного связующего: от 25 до 35% массовой доли, непрерывные и рубленые стеклянные волокна: от 12 до 66% массовой доли, дисперсный наполнитель: от 0 до 54% массовой доли. Муфта снабжена уплотнительными кольцами и центральным стопорным кольцом, установленными в выточенные пазы. Стеклокомпозитная труба и муфта герметично соединены между собой эластичными уплотнительными кольцами. Внешняя поверхность стеклокомпозитной трубы обработана для увеличения адгезии и соединена с железобетонной оболочкой, которая выполнена методом высокочастотного виброформования. Оболочка содержит обечайку раструбную и уплотнительную манжету. На внешнюю поверхность стеклокомпозитной трубы может быть нанесен дисперсный минеральный наполнитель с полимерной матрицей, внешняя поверхность подвергнута абразивной обработке, на внешней поверхности наформовывают дополнительные выступы из армирующих наполнителей и полимерной матрицы. Технический результат - сокращение трудоемкости и упрощение процесса производства трубы с достижением повышенных эксплуатационных характеристик устройства. 3 з.п. ф-лы, 2 ил., 1 табл.

 

Заявленное изобретение используется при прокладке методом микротоннелирования напорных и безнапорных трубопроводов и относится к сооружениям водопроводов, трубопроводов бытовой канализации, ливнестоков, промышленных и других водостоков, трубопроводов для транспортировки химических жидкостей, в частности, к железобетонной трубе с внутренним стеклокомпозитным сердечником.

Технология микротоннелирования позволяет осуществлять прокладку подземных трубопроводных систем разного диаметра на глубине от 2 до 80 м и протяженностью до 1500 м без нарушения наземной инфраструктуры и ландшафта по маршруту прокладки, в том числе в условиях плотной городской застройки. Для микротоннелирования применяют стальные, железобетонные или стеклопластиковые трубы.

Аналогом заявленного изобретения является стеклопластикобетонная труба, которая содержит бетонный цилиндр, который имеет раструбную и втулочную части по концам, армированный одинарным или двойным стальным каркасом из ненапряженной арматуры. Раструбом трубы является стеклопластиковая обечайка толщиной 10-15 мм, наматываемая на бетонный отрезок раструбного конца трубы. Для намотки используют ленты из стекловолокнистых, базальтовых нитей или стеклоткани, а связующим может быть композиция на основе эпоксидных, полиэфирных или полиуретановых смол. Способ изготовления стеклопластикобетонной трубы характеризуется изготовлением железобетонной трубы вертикальным виброформованием. Раструб трубы изготавливают намоткой на бетонную поверхность раструбной части трубы стеклопластиковой ленты на навивочном станке, куда устанавливается железобетонная труба. Также навивается оболочка из стеклоленты на всю поверхность трубы, причем навивку ленты можно осуществлять как без натяжения, так и с определенным усилием в сочетании с повышением числа навиваемых слоев или без их повышения (патент на изобретение РФ №2457387, дата публикации: 27.05.2010 г.).

Другим аналогом, выбранным в качестве прототипа, является стеклопластикобетонная агрессивостойкая труба, состоящая из наружной армированный оболочки, соединенной цементным клеем с внутренним сердечником, состоящим из нескольких склеенных между собой камнелитных вкладышей длиной 1 м, отличающаяся тем, что бетонная наружная оболочка обмотана стеклопластиковой лентой в 2-3 слоя и армирована ненапряженным одинарным или двойным спиральным каркасом, в зависимости от диаметра и толщины стенки, определяемых прочностью трубы, а камнелитой сердечник, являющийся внутренней облицовкой трубы, состоит из 3-метровых вкладышей из базальта, диабаза, скрепленных между собой торцами через коррозионностойкие прокладки полимерным клеем, которым обмазывают трубу в зоне шва и обматывают прочной тонковолокнистой материей шириной 20-60 см, также способ изготовления стеклопластикобетонных агрессивостойких труб (патент на изобретение РФ №2451859, дата публикации: 27.05.2010 г.).

Недостатками является то, что аналог и прототип не могут быть применены в напорных трубопроводных системах, имеют трудоемкий и многостадийный процесс изготовления, и обладают низкими эксплуатационными характеристиками.

Гидравлическое сопротивление бетонной или камнелитной поверхности более чем на 20% выше, чем у стеклокомпозита, применение заявленного изобретения позволит увеличить пропускную способность трубопровода. Стеклокомпозитный сердечник из-за высокой коррозионной и химической стойкости позволит увеличить срок эксплуатации трубопровода не менее чем до 50 лет.

Задачей заявленного изобретения является устранение недостатков аналога и прототипа, а техническим результатом - возможность применения в сетях напорных трубопроводов, а также сокращение трудоемкости и упрощение процесса производства трубы с достижением повышенных эксплуатационных характеристик устройства.

Поставленный технический результат достигается за счет того, что железобетонная труба с внутренним стеклокомпозитным сердечником для напорных и безнапорных трубопроводов, прокладываемых методом микротоннелирования характеризуется тем, что состоит из стеклокомпозитной трубы и муфты, герметично соединенных между собой эластичными уплотнительными кольцами, изготовленных методом непрерывной намотки на оправку армирующих наполнителей пропитанных связующими на основе ненасыщенных полиэфирных смол с последующим отверждением, при этом в состав стеклокомпозитной муфты и трубы входит, матрица на основе полиэфирного связующего: от 25 до 35% массовой доли, непрерывные и рубленные стеклянные волокна: от 12 до 66% массовой доли, дисперсный наполнитель: от 0 до 54% массовой доли, при этом муфта снабжена уплотнительными кольцами и центральным стопорным кольцом, установленные в выточенные пазы, внешняя поверхность стеклокомпозитной трубы обработана для увеличения адгезии и соединена с железобетонной оболочкой, которая выполнена методом высокочастотного виброформования, содержащая обечайку раструбную и уплотнительную манжету.

При этом на внешнюю поверхность стеклокомпозитной трубы нанесен дисперсный минеральный наполнитель с полимерной матрицей.

При этом внешняя поверхность стеклокомпозитной трубы подвергнута абразивной обработке.

При этом на внешнюю поверхность стеклокомпозитной трубы наформовывают дополнительные выступы из армирующих наполнителей и полимерной матрицы.

Заявленное изобретение поясняется чертежом и фото.

На Фиг. 1 показан общий вид устройства в продольном разрезе А-А.

На фиг. 2 показан вид устройства сбоку в поперечном разрезе А-А.

Где:

1 - железобетонная оболочка;

2 - стеклокомпозитная труба;

3 - обечайка раструбная;

4 - муфта стеклокомпозитная;

5 - уплотнительная манжета;

6 - слой, содержащий минеральный наполнитель.

Железобетонная труба с внутренним стеклокомпозитным сердечником для напорных и безнапорных трубопроводов, прокладываемых методом микротоннелирования характеризуется тем, что состоит из стеклокомпозитной трубы и муфты, герметично соединенных между собой эластичными уплотнительными кольцами, изготовленных методом непрерывной намотки на оправку армирующих наполнителей пропитанных связующими на основе ненасыщенных полиэфирных смол с последующим отверждением. При этом в состав стеклокомпозитной муфты и трубы входит, матрица на основе полиэфирного связующего: от 25 до 35% массовой доли, непрерывные и рубленные стеклянные волокна: от 12 до 66% массовой доли, дисперсный наполнитель (кварцевый песок): от 0 до 54% массовой доли. При этом муфта снабжена уплотнительными кольцами и центральным стопорным кольцом, установленные в выточенные пазы. Внешняя поверхность стеклокомпозитной трубы для увеличения адгезии обработана и соединена с железобетонной оболочкой, которая выполнена методом высокочастотного виброформования, содержащая обечайку раструбную и уплотнительную манжету.

Заявленное устройство изготавливают в три стадии:

1 - изготовление стеклокомпозитной трубы (сердечника) и стеклокомпозитной муфты, их соединение и испытание на водонепроницаемость;

2 - обработка внешней поверхности стеклокомпозитного сердечника для увеличения адгезии с железобетонной оболочкой;

3 - изготовление железобетонной трубы с внутренним стеклокомпозитным сердечником.

Стеклокомпозитные трубы и муфты изготавливаются методом непрерывной намотки на оправку армирующих наполнителей (различных видов стекловолокна и кварцевого песка), пропитываемых связующими на основе ненасыщенных полиэфирных смол с последующим отверждением. Муфта снабжена двумя уплотнительными кольцами и центральным стопорным кольцом.

Затем внешнюю поверхность стеклокомпозитного сердечника обрабатывают, нанесением, например, шпателем, дисперсного минерального наполнителя, например, щебня с фракционным составом от 3 до 50 мм с полимерной матрицей.

Также внешняя поверхность может быть подвергнута абразивной обработке, например, шлифование или полирование.

Также на внешнюю поверхность стеклокомпозитной трубы наформовывают дополнительные выступы из армирующих наполнителей, например, стекломата или стеклоткани и полимерной матрицы.

Каждый приведенный пример обработки внешней поверхности стеклокомпозитного сердечника повышает адгезию бетона к стеклокомпозитному сердечнику, обеспечивает совместную работу бетонной оболочки со стеклокомпозитным сердечником, улучшает механические свойства изделия, препятствует расслаиванию при микрощитовом продавливании.

Железобетонную трубу изготавливают методом высокочастотного виброформования. Трубы изготавливаются из тяжелого и мелкозернистого бетона в соответствии с ГОСТ 26633-2015. Арматурные каркасы труб свариваются по ГОСТ 10922-12 и ГОСТ 14098-14. Стеклокомпозитный сердечник устанавливается в форму для изготовления непосредственно перед началом бетонирования, и он служит как несъемная опалубка. Предусмотрено несколько групп труб по прочности, отличающиеся массой арматуры: конструкции 1-й группы позволяют прокладывать трубопроводы при заглублении верха трубы до 6,0 м; конструкции 2-й группы до 10 м; 3-й группы до 15,0 м соответственно.

До начала укладки бетона устанавливают (через лючки наружной формы) грузоподъемные анкеры и форсунки, которые закрепляются с помощью резиновых груш и шпилек.

После укладки и уплотнения бетонной смеси трубу выдерживают (в опалубке) до набора бетоном распалубочной прочности (не менее 20 МПа), после чего производится распалубка трубы.

После набора прочности и распалубки трубу с помощью траверсы и подъемного механизма достают из формовочного оборудования и перемещают трубы в горизонтальное положение для дальнейшего набора прочностных характеристик, с последующей транспортировкой на склад готовой продукции.

Подъем и перемещение готовой продукции выполняют, используя замоноличенные в тело трубы анкеры и грузоподъемные захваты. Выступающий во втулочной части трубы стеклокомпозитный хвостовик должен быть защищен от механических повреждений.

Таким образом, испытания опытного образца, при использовании предложенного к патентованию устройства показали, что достигается сокращение трудоемкости и упрощение процесса производства трубы, т.к. изготовление устройства достигается в несколько стадий, а также повышение эксплуатационных характеристик таких как, прочностные характеристики наружной железобетонной обоймы, воспринимающей усилие продавливания и внешние нагрузки, и внутреннего стеклокомпозитного сердечника, обеспечивающего стойкость к внутреннему гидравлическому давлению (до 32 атм), герметичность и коррозионную стойкость в трубопроводе.

Патентуемое изобретение позволит объединить преимущества железобетона и стеклокомпозита и расширить сферу применения труб для микротоннелирования. В отличии от железобетонных труб для микротоннелирования, прокладка стеклопластиковых труб в железобетонной оболочке позволит осуществлять прокладку напорных трубопроводных систем. Также будет решена задача прокладки трубопроводов в сейсмоактивных районах (до 9 баллов по СП 14.13330) методом микротоннелирования, а стеклокомпозитный сердечник труб обеспечит нормальную эксплуатацию труб в условиях действия (внутри трубопровода) агрессивной, в т.ч. биологически-активной, среды со средней и сильной степенью агрессивности по СП 28.13330.

Анализ совокупности всех существенных признаков предложенного изобретения доказывает, что исключение хотя бы одного из них приводит к невозможности полного обеспечения достигаемого технического результата.

Анализ уровня техники показывает, что неизвестно такое устройство, которому присущи признаки, идентичные всем существенным признакам данного технического решения, что свидетельствует о его неизвестности и, следовательно, новизне.

Вышеперечисленное доказывает также соответствие заявленного устройства критерию изобретательского уровня.

При осуществлении изобретения действительно реализуется наличие предложенного объекта, что свидетельствует о его промышленной применимости.

1. Железобетонная труба с внутренним стеклокомпозитным сердечником для напорных и безнапорных трубопроводов, прокладываемых методом микротоннелирования, характеризующаяся тем, что состоит из стеклокомпозитной трубы и муфты, герметично соединенных между собой эластичными уплотнительными кольцами, изготовленных методом непрерывной намотки на оправку армирующих наполнителей, пропитанных связующими на основе ненасыщенных полиэфирных смол с последующим отверждением, при этом в состав стеклокомпозитной муфты и трубы входят: матрица на основе полиэфирного связующего - от 25 до 35% массовой доли; непрерывные и рубленые стеклянные волокна - от 12 до 66% массовой доли; дисперсный наполнитель - от 0 до 54% массовой доли, при этом муфта снабжена уплотнительными кольцами и центральным стопорным кольцом, установленными в выточенные пазы, внешняя поверхность стеклокомпозитной трубы для увеличения адгезии обработана и соединена с железобетонной оболочкой, которая выполнена методом высокочастотного виброформования, содержащей обечайку раструбную и уплотнительную манжету.

2. Железобетонная труба с внутренним стеклокомпозитным сердечником для напорных и безнапорных трубопроводов, прокладываемых методом микротоннелирования по п. 1, отличающаяся тем, что на внешнюю поверхность стеклокомпозитной трубы нанесен дисперсный минеральный наполнитель с полимерной матрицей.

3. Железобетонная труба с внутренним стеклокомпозитным сердечником для напорных и безнапорных трубопроводов, прокладываемых методом микротоннелирования по п. 1, отличающаяся тем, что внешняя поверхность стеклокомпозитной трубы подвергнута абразивной обработке.

4. Железобетонная труба с внутренним стеклокомпозитным сердечником для напорных и безнапорных трубопроводов, прокладываемых методом микротоннелирования по п. 1, отличающаяся тем, что на внешнюю поверхность стеклокомпозитной трубы наформовывают дополнительные выступы из армирующих наполнителей и полимерной матрицы.



 

Похожие патенты:

Изобретение относится к трубопроводной технике. Способ включает нанесение бетонного покрытия на трубу с закрепленными на ней кабель-каналами, при котором бетонное покрытие наносят до полного укрытия кабель-каналов в его толщине.

Изобретение относится к трубам, резервуарам и сосудам с водостойким барьером, а также способам их изготовления. Конструктивный элемент железобетонной конструкции содержит железобетонный каркас 104 и головку 106 вокруг отверстия.

Изобретение относится к трубам, резервуарам и сосудам с водостойким барьером, а также способам их изготовления. Конструктивный элемент железобетонной конструкции содержит железобетонный каркас 104 и головку 106 вокруг отверстия.

Группа изобретений относится к трубопроводной технике, а именно к трубам с бетонным покрытием. Предложенная труба состоит из проводящей трубы 1 с многослойным бетонным покрытием.

Изобретение относится к стальным трубам, облицованным бетоном. Сущность изобретения: облицованная литьем под давлением стальная труба, которая введена в эксплуатацию для транспортировки жидкой среды, содержит кольцевую облицовку из бетона или цементного раствора, образующую внутренний диаметр трубы, металлическую оболочку, окружающую облицовку.

Изобретение относится к области строительства и к подводным трубопроводам, а именно к полым колоннам и сваям, к трубам с балластным покрытием, используемым для морских трубопроводов, а также к технологии их изготовления.

Изобретение относится к подводным трубопроводам, а именно к трубам с балластным покрытием, используемым для морских трубопроводов. .

Изобретение относится к производству асбоцементных и бетонных труб с усиливающей наружной оболочкой и может найти применение в строительстве, например, при устройстве коммуникационных сетей.

Изобретение относится к строительной индустрии, а именно к магистральным и технологическим трубопроводам для сети отопления и горячего водоснабжения, а также газо- и нефтепроводам.

Изобретение относится к области строительства инженерных сетей, в частности канализационных труб и коллекторов. .

Изобретение относится к области производства огнеупорных изделий, более конкретно к линии для изготовления профильных изделий из керамики, и может найти применение при производстве широкой гаммы сравнительно дешевых огнеупорных керамических изделий сложной конфигурации, изделий с многочисленными каналами или с открытыми пазами различного сечения, в том числе для высокотемпературных керамических фильтров, теплообменников, изоляторов и др.

Устройство и способ предназначены для формирования секций трубной изоляции из минеральной ваты. Устройство содержит участок отверждения секций трубной изоляции из минеральной ваты, содержащий одну или более форм (31, 32), цилиндрических со стороны внутренней поверхности, при этом участок отверждения секций трубной изоляции из минеральной ваты дополнительно содержит сердечники (51, 52), установленные по одному внутри каждой формы или выполненные с возможностью установки в нее и извлечения из нее, причем для каждой формы (31, 32) предусмотрены первые элементы для нагревания формы, по меньшей мере, по ее внутренней поверхности, и вторые элементы для воздействия на секции трубной изоляции из минеральной ваты, установленные в формах, с помощью микроволнового излучения, причем указанные вторые элементы представляют собой генераторы (61, 62), служащие для передачи микроволновой энергии к каждой форме посредством проводящих модулей (11, 12) и переходных элементов (21, 22), при этом указанные сердечники выполнены из материала, нагревающегося под воздействием микроволнового излучения.

Изобретение относится к области строительства, а именно к способам изготовления углеродотрубобетонных конструкций. .

Изобретение относится к трубопроводной технике, а именно к изготовлению труб с балластным покрытием, используемым при прокладке трубопроводов по дну водоемов или по заболоченной местности.

Изобретение относится к производству строительных материалов и изделий, в частности к конструкции коррозионно-стойкой железобетонной трубы и способу ее изготовления.

Изобретение относится к устройствам для обработки армированных полимерных труб. .

Изобретение относится к области оборудования для получения изделий торообразной формы, при изготовлении которых используют в качестве армирующего элемента нити ткани и связующее вещество.

Изобретение относится к способам и устройствам для изготовления промышленных изделий, особенно материалов для контейнеров и упаковки, из гидравлически твердующих смесей и соединений с высоким неорганическим наполнением.

Изобретение относится к изделию производства, способу и оборудованию для производства листов, имеющих матрицу, заполненную большим количеством неорганических веществ, полученных путем смешивания органического полимерного связующего, воды, одного или более неорганических агрегатных материалов, волокон и выбранных дополнительных смесей в заданных пропорциях для того, чтобы получить лист, который имеет заданные свойства.
Наверх