Применение полисилоксановых герметиков в качестве конструкционных клеев в керамических ракетных обтекателях

Изобретение относится к области полимерных материалов и может быть использовано при склеивании элементов конструкций из металла и керамики, преимущественно для соединения керамической оболочки ракетного антенного обтекателя с переходником или переходными элементами - шпангоутом к металлическому корпусу ракеты. Применяют полисилоксановые герметики холодного отверждения типа Виксинт в качестве конструкционных клеев в керамических ракетных обтекателях при внешнем расположении керамической оболочки обтекателя относительно переходника. Геометрические и физико-механические параметры соединения оболочки и переходника выбираются из условия в соответствии с указанным уравнением. Изобретение позволяет обеспечить теплопрочностные и деформационные характеристики используемых герметиков с учетом сохранения радиотехнических требований к обтекателям ракет разных классов. 1 табл.

 

Изобретение относится к области полимерных материалов и может быть использовано при склеивании элементов конструкций из металла и керамики, преимущественно для соединения керамической оболочки ракетного антенного обтекателя с переходником или переходными элементами (шпангоутом) к металлическому корпусу ракеты, с помощью термостойкого конструкционного эластичного кремнийорганического клея холодного отверждения (эластомера конструкционного).

В случае применения хрупких, малопрочных керамических материалов, таких как кварцевая керамика и стеклокерамика, в качестве высокоответственного элемента летательного аппарата - головного обтекателя, вопрос способа соединения керамического элемента (керамической оболочки) со шпангоутом приобретает основополагающее значение для обеспечения работоспособности и надежности летательного аппарата.

Технические требования к соединению зачастую весьма противоречивы.

Адгезионный слой, соединяющий тонкостенную керамическую оболочку с переходником, должен обеспечивать:

- несущую способность обтекателя в широком диапазоне аэродинамических асимметричных нагрузок и рабочих температур, и радиотехнические требования к его конструкции (обеспечение допустимого уровня относительных угловых смещений продольных осей обтекателя и корпуса ракеты);

- герметичность конструкции обтекателя и устойчивость соединения переходника с тонкостенной керамической оболочкой к термоциклическим и вибродинамическим эксплуатационным воздействиям;

- долговечность соединения в течение 20-25 лет и более;

- технологичность изготовления обтекателя;

- доступность (недифицитность) компонентов крепящего материала и адаптируемость его к конструктивным модификациям элементов конструкции обтекателя (ассортимент материалов переходника и его элементов, геометрические параметры переходника и клеевого шва.

Известны термостойкие конструкционные жесткие клеи горячего отверждения (КЖКГО) типа ВК2, ВК18, ВК20… и холодного отверждения (КЖК-ХО) типа ВК9, ВК58, ВК18М, ВК20М…, предназначенные для работы в условиях жестких теплосиловых эксплуатационных воздействий (Авиационные материалы, Избранные труды под общей редакцией Е.Н. Каблова, М. «МИССИС» ВИАМ» 2002, с. 321-326).

Известны также эластомеры герметизирующие холодного отверждения (ЭГХО) такие, как кремнийорганические герметики типа Виксинт (для поверхностной герметизации - Виксинт У-1-18 НТ…, внутришовной герметизации: Виксинт У-2-28 НТ…), работающие при высоких температурах (250…350°С), в качестве не силовых герметизирующих материалов (Авиационные материалы, Избранные труды 1932-2002, под общей редакцией Е.Н. Каблова, М. «МИССИС» ВИАМ» 2002, с. 326-328).

Известно также, что требования к термостойкости, теплопрочности крепящих материалов (адгезивов) и их эластичности являются противоречимыми.

Несмотря на высокие прочностные характеристики современных термостойких конструкционных жестких клеев типа ВК58, ВК18 и др. (10…20 МПа и более в нормальных условиях и 2…5 МПа при 400°С и выше), из-за их высокой жесткости (модуль упругости второго рода, модуль сдвига, Gж=(0,2…1,0)⋅103 МПа)), хрупкости (разрушение без пластических деформаций), высоких значений температурного коэффициента линейного расширения (ТКЛР), на порядок и более высоких, чем, например, у кварцевой керамики, удовлетворительное их применение в конструкциях современных керамических обтекателей ракет существенно затруднено. Степень рассогласованности ТКЛР керамических материалов и ТКЛР материалов переходника является одним из важнейших факторов, влияющих на несущую способность и надежность обтекателя.

Некоторые результаты поиска при выборе адгезива для вариантов конструкций и способов сборки (технологический процесс сборки), являющегося триединой задачей для обтекателей с керамическими оболочками, можно представить следующим образом:

- с одной стороны, при нанесении лишь капли клея холодного отверждения типа ВК9, ВК58 на поверхность пластины из кварцевой керамики (SiO2) с пористостью 8-10% (НИАСИТ 8ПП) после отверждения и климатического термоциклирования (от минус 60°С до +60°С, 10 циклов) вызывает когезионное разрушение керамического элемента с образованием лунки под каплей клея. Начало разрушения керамического элемента (в виде возникновения в нем трещин на краях склейки) происходит и при соединении его с элементами из стеклопластиков с разными связующими;

- целостность связи нанесенных полосок клея горячего отверждения типа ВК18 на поверхности образца из SiО2 нарушается даже от остаточных напряжений в процессе охлаждения;

- хотя использование инварных сплавов для переходника вместо композиционных материалов в соединении элементов из SiО2 с помощью жестких клеев холодного отверждения типа ВК9, ВК58 обеспечивает заданную работоспособность, как при климатическом термоциклировании (от минус 60°С до +60°С, 10 циклов), так и при высоком уровне сдвигающих усилий, возбуждающих в керамическом элементе (тонкостенной оболочке) растягивающие напряжения, близкие к значениям предела прочности при растяжении для SiO2 (=20…40 МПа), однако высокий уровень касательных напряжений на краях склейки из-за жесткости клея создает условия для снижения стабильности несущей способности и надежности керамического элемента обтекателя, что было зафиксировано на десятках экспериментальных изделий.

При увеличении температуры испытания, Ти до 400…500°С прочность конструкционных клеев (КЖКГО и КЖКХО) зачастую приобретает значения, соизмеримые с прочностью широко известных кремнийорганических герметиков типа Виксинт в нормальных условиях (3…4 МПа).

Для исключения опасности возникновения и развития трещин - нарушения сплошности в жестких, хрупких элементах конструкции при термоциклических эксплуатационных воздействиях (термоциклы климатические от минус 60°С до плюс 60°С для ракет класса «поверхность - воздух» или в условиях совместного полета ракеты с ее носителем, когда термоциклическое воздействие ужесточается - от минус 60°С до плюс 120…240°С…) требуется согласованность по ТКЛР склеиваемых материалов (керамика + керамика, керамика + углепластик, керамика + углерод-углеродный материал…), или снижение жесткости адгезива.

В случае применения эластичных адгезивов в соединениях керамической оболочки обтекателя с переходными элементами к корпусу ракеты одной из главных задач является установление допустимых уровней теплопрочностных и деформационных характеристик таких клеев с точки зрения прочностных и радиотехнических требований к керамическому обтекателю современных ракет разных классов.

Установлено, что:

- применение кремнийорганических герметиков типа Виксинт, (Виксинт У-1-18 НТ, Виксинт У-2-28 НТ - ТУ 38.303-04-04-90) в неразъемных трубчатых (телескопических) соединениях тонкостенной керамической оболочки обтекателя ракет разных классов со шпангоутом (переходником к их корпусу), согласованным по ТКЛР с керамической оболочкой, в качестве конструкционного эластомера (конструкционного клея) обеспечивает заданную эксплуатационную надежность (по механической прочности и радиотехническим требованиям - допустимым угловым смещениям оси обтекателя относительно оси корпуса ракеты) современных ракет с носовыми антенными обтекателями с керамической оболочкой;

- при контролируемом среднем значении предела прочности при сдвиге в нормальных условиях, τв ср 20, клеевого соединения керамического элемента и элемента из материала переходника, составляющих τв ср 20 ≥ 2,0 МПа при оптимальном диапазоне толщин клея его снижение в результате кратковременного прогрева клея до 300°С в 3-5 раз по сравнению с контролируемым в нормальных условиях является допустимым, если геометрические и физико-механические параметры элементов соединения выбираются из условия:

σ/τ=kΣ (L/ h), где

σ - допускаемые в предварительных проектировочных расчетах значения предела прочности при растяжении материала керамической оболочки при заданной надежности обтекателя, МПа;

h - толщина стенки керамической оболочки у зоны ее склейки с переходником, мм;

kΣ - интегральный коэффициент (суммарный, комплексный, компенсационный), учитывающий эффекты опоры торца керамической оболочки в зоне сжатия (k1), упруго-пластические эффекты в хвостовой части переходника (k2), стеснение радиальных температурных перемещений, согласованных по ТКЛР трубчатых элементов (k3), упрочнения соединения и увеличение жесткостных характеристик клеевого слоя при термообработке (k4), кратковременное (шоковое) тепловое воздействие на клеевой шов (k5) и др.;

τ - экспериментальные средние значения предела прочности клея на сдвиг при условной 5-минутной выдержке плоских моделей - имитаторов реальных конструкций при температуре испытания в тепловой камере, МПа;

L - длина перекрытия в осевом направлении склеиваемых поверхностей трубчатых элементов, мм.

Расчеты соединений оболочек, телескопически связанных упругим слоем клея, с помощью существующих теорий дают неоднозначные ответы на вопрос о работоспособности и надежности системы «керамика - клей - металл». Попытка решения системы уравнений равновесия и совместности деформаций элементов соединения наталкивается на неопределенность исходных характеристик элементов по кратковременным (секундным) характеристикам (прочностным и деформационным для клея - герметика), а отсюда возникает некорректность теоретических прогнозов и рекомендаций.

В таблице приведены некоторые свойства кремнийорганических (полиси-локсановых) клеев-герметиков типа Виксинт («ВИКСИНТ У-1-18 НТ» для поверхностной герметизации, «ВИКСИНТ У-2-28 НТ» для внутришовной герметизации), применяемых в производстве керамических обтекателей в качестве конструкционных клеев.

Основным фактором, определяющим работоспособность конструкции, является результат стендовых испытаний реальных обтекателей в условиях максимально приближенных к эксплуатационным и результаты летных испытаний. Этот результат можно охарактеризовать следующим образом: - независимо от высокой деформативности материалов «ВИКСИНТ У-1-18 НТ» и «ВИКСИНТ У-2-28 НТ» (от 300 до 400% и более) и сравнительно невысоких теплопрочностных характеристиках (предел прочности при сдвиге от 2,2 до 1,0-1,5 МПа для «ВИКСИНТ-а У-1-18 НТ» и от 1,0 до 0,5 МПа для «ВИК-СИНТ-а У-2-28 НТ» при температуре от 200 до 300°С соответственно) для керамических обтекателей ракет одноразового применения при динамическом воздействии изгибающего эксплуатационного момента, вызывающего близкие к предельным напряжения (σ ≈ 20 МПа) в керамической оболочке с полуволновой толщиной стенки (h ≈ 10 мм), диаметре у основания оболочки ≈400 мм (в качестве примера), темповом нагреве клея и металлического переходника (от 60 до 200 град / мин) и при изменении температуры от 20 до 300°С обеспечивается требуемая работоспособность и надежность соединения керамической оболочки обтекателя с металлическим переходником, что подтверждается положительными стендовыми, летными и ресурсными испытаниями обтекателей в условиях хранения и эксплуатации.

Свойства кремнийорганических герметиков типа Виксинт, применяемых в производстве керамических обтекателей в качестве конструкционных клеев приведены в таблице.

Экспериментально доказано, что в трубчатых клеевых соединениях тонкостенной керамической оболочки при ее внешнем расположении относительно переходника и длине соединения элементов, ориентировочно составляющей (эквивалентно) или величину 10 толщин керамической оболочки в радиопрозрачной области, или 0,5 радиуса срединной поверхности (между наружной и внутренней поверхностями керамической оболочки в зоне соединения), или 0,1 длины типового современного обтекателя возможно и рационально применение эластомеров герметизирующих холодного отверждения (ЭГХО) - герметиков типа Виксинт (Виксинт У-1-18 НТ, Виксинт У-2-28 НТ и их модификаций) в качестве конструкционных эластичных клеев холодного отверждения (КЭК-ХО).

Применение полисилоксановых герметиков холодного отверждения типа Виксинт в качестве конструкционных клеев в керамических ракетных обтекателях при внешнем расположении керамической оболочки обтекателя относительно переходника, при этом геометрические и физико-механические параметры соединения оболочки и переходника выбираются из условия:

L=kh(σ/τ), где

L - длина перекрытия склеиваемых поверхностей трубчатых элементов в осевом направлении;

σ - допускаемые значения предела прочности при растяжении материала керамической оболочки;

τ - средние значения предела прочности клея на сдвиг с учетом эксплуатационных воздействий;

h - толщина стенки в радиопрозрачной области керамической оболочки;

k - интегральный коэффициент, определяемый расчетно-экспериментальным путем для керамического ракетного обтекателя.



 

Похожие патенты:
Изобретение относится к уплотнительному элементу для динамических приложений. Уплотнительный элемент с твердостью по Шору A 60-100 включает эластомерный материал, содержащий каучук, и распределенные в эластомерном материале углеродные нанотрубки в количестве от 0,1 до 15 phr в расчете на 100 вес.ч.

Изобретение относится к резиновой промышленности и может быть использовано для внутреннего слоя уплотнительных элементов в составе водонабухающих пакеров, применяемых в нефтегазодобывающей промышленности.

Изобретение относится к резиновой промышленности и может быть использовано для внешнего слоя уплотнительных элементов в составе водонабухающих пакеров, применяемых в нефтегазодобывающей промышленности.

Изобретение относится к клеевой промышленности и может быть использовано в авиационной, автомобильной, судостроительной и других отраслях машиностроения. Армированный термоклей получают путем нанесения расплава клеящего состава на армирующий элемент.
Изобретение относится к нехроматному ингибитору коррозии для использования в составах герметиков в области авиационно-космического назначения, к вариантам композиции герметика, к отвержденному герметику, к способу герметизации детали, к системе герметика, к отверждаемой композиции герметика, к применению отвержденного герметика, к авиационно-космическому кораблю.
Изобретение относится к нехроматному ингибитору коррозии для использования в составах герметиков в области авиационно-космического назначения, к вариантам композиции герметика, к отвержденному герметику, к способу герметизации детали, к системе герметика, к отверждаемой композиции герметика, к применению отвержденного герметика, к авиационно-космическому кораблю.

Изобретение относится к радиоэлектронике. Устанавливают на металлическом основании с глухими резьбовыми отверстиями печатную плату с навесными элементами.

Настоящее изобретение относится к герметизирующему составу для покрытия поверхности. Герметизирующий состав представляет смесь в основном неотвержденной базовой массы и отверждающего вещества, которое содержит по меньшей мере одну эпоксидную композицию.

Изобретение относится к полимерной промышленности и может быть использовано для изготовления методом литья под давлением элементов в пакерном скважинном оборудовании.

Изобретение относится к получению наполненного полимерного композиционного материала и может найти применение при изготовлении электроизоляционных композиционных материалов на силиконовой основе, применяемых для герметизации радио- и электротехнических изделий.

Группа изобретений относится к области медицины, а именно к вариантам контактирующего с кожей материала медицинского назначения для расположения на коже человека или животного, который включает: (i) гидроколлоидный субстрат, содержащий целлюлозу, ее производное или их комбинацию и имеющий первую поверхность для расположения на коже и вторую поверхность, которая обращена от кожи; и (ii) силиконовый адгезив, содержащий катализируемый силиконовый эластомер с низкотемпературным отверждением из двух частей, для адгезивного прикрепления материала к коже, который прерывисто нанесен на первую поверхность для создания областей, не скрытых адгезивом, что обеспечивает перенос влаги от кожи к субстрату, при этом в одном из вариантов адгезив обеспечен в виде линий или бороздок для создания геометрических форм или концентрических окружностей; а также к применениям указанного материала для изготовления медицинского перевязочного материала, манжеты для стомы, медицинской адгезивной подушечки, кожезащитной подушечки для стомы или калоприемника.

Изобретение относится к керамической и авиационной отраслям промышленности и может быть использовано при изготовлении антенных обтекателей летательных аппаратов.

Изобретение относится к области термостойких клеевых композиций на основе полиметилфенилсилоксана, предназначенных для применения в теплонагруженных узлах изделий авиационной и других отраслей техники.

Средство (2) крепления согласно изобретению служит для крепления объекта на основании (11). Средство (2) крепления состоит из аэробного клея (3) и текучего материала.

Изобретение относится к силикон-акриловым сополимерам и их композициям. Предложен новый силикон-акриловый сополимер, который содержит силиконовый полимер, ковалентно связанный с акриловым полимером через связь -Si-O-Si- при соотношении силиконового и акрилового полимеров от 50:1 до 1:50.

Изобретение относится к полимерным композициям для получения антикоррозионных, электроизоляционных, теплостойких покрытий горячего отверждения на металлах и получения клея для глиноземной керамики и может быть использовано в электротехнике, радиоэлектронной промышленности, энергетике, машиностроении и металлургии.

Группа изобретений может быть использована, например, при производстве шин, конвейерных лент, шлангов, в подвесках двигателя или рукоятках клюшек для гольфа. Аминоалкоксимодифицированные силсесквиоксановые (амино АМС) и/или амино со-АМС соединения, которые также могут содержать меркаптосилан и/или блокированный меркаптосилан, являются превосходными адгезивами для покрытия стали вулканизированным каучуком.

Изобретение относится к химической промышленности и касается изготовления огнестойких материалов. .

Изобретение относится к клеящей композиции на основе эпоксидной диановой смолы и отвердителя аминного типа. .

Изобретение относится к клеевой композиции на основе силиконового каучука, а именно к составу двухкомпонентного клея, применяемого для крепления как однородных, так и разнородных поверхностей изделий, в том числе изделий из углеводородных каучуков и силиконовых эластомеров.

Изобретение относится к радиоэлектронике. Устанавливают на металлическом основании с глухими резьбовыми отверстиями печатную плату с навесными элементами.
Наверх