Способ получения ферритов и хромитов со структурой шпинели

Изобретение относится к способу получения твердых растворов со структурой шпинели на основе ферритов и хромитов переходных элементов и может найти применение в химической промышленности в процессах органического синтеза для производства бутадиена и углеводородов из синтез-газа. Способ получения шпинели на основе феррита-хромита никеля (II)-меди (II) заключается в смешивании исходных оксидов никеля (II), меди (II), железа (III), хрома (III). При этом оксиды получают из растворов сульфатов никеля (II), меди (II), железа (III), хрома (III) с концентрацией 1 моль/л, выпаривая на песчаной бане в течение 0,5 часа, высушивая при температуре 100°С до постоянного веса в течение 0,5 часа и ступенчато термообрабатывая при температурах 600-700-800-900°С с выдержкой при каждой указанной температуре в течение 1 часа. Обеспечивается получение шпинелей на основе ферритов-хромитов переходных элементов, имеющих контролируемую форму, при более низких температурах термообработки, с меньшей продолжительностью, что позволяет существенно снизить энергоемкость и тем самым удешевить их производство, а также получать шпинели с улучшенными эксплуатационными характеристиками. 5 ил., 1 табл., 4 пр.

 

Изобретение относится к способу получения твердых растворов ферритов-хромитов переходных элементов со структурой шпинели и может найти применение в химической промышленности в процессах органического синтеза, например, при производстве бутадиена и конверсии оксида углерода (II).

Известен способ получения катализатора конверсии оксида углерода (II) на основе хромита-алюмината меди (II)-цинка [Технология катализаторов / Под ред. И.П. Мухленова, Л.: Химия, 1989. - 272 с.], по которому в качестве исходных материалов применяются гидрокарбонат меди (II), гидроксид алюминия и хромовая кислота. Исходные вещества проводят в пластификаторе с паровым обогревом, полученную массу сушат 8-10 часов на ленточной сушилке при 100-120°С, а затем во вращающейся прокалочной печи при температуре 450°С в течение 6-8 часов. Прокаленную шихту повторно смешивают со связующей добавкой, в качестве которой используют бихромат меди с оксидом цинка, подсушивают при 100-110°С в течение 8-10 часов, смешивают с графитом и таблетируют.

Недостатком этого способа получения шпинелей являются длительность процесса, использование опасных для здоровья веществ.

Наиболее близким к заявляемому является способ получения шпинелей из смеси оксидов [Кооперативный эффект Яна-Теллера в твердых растворах NiFe2-xCrxO4 / Иванов В.В., Кирсанова А.И., Таланов В.М., Шабельская Н.П. // Изв. Вузов. Сев. -Кавк. Регион. Естественные науки. - 1995. - №2. - С. 34-38], по которому исходные оксиды отвешивают с погрешностью 0,0005 г, гомогенизируют в течение часа со спиртом на воздухе. Затем смесь оксидов брикетируют под давлением Р=15 МПа в таблетки диаметром 20 мм и обжигают при температуре 1200-1300°С в течение 90 часов.

Недостатком этого способа является использование высоких температур термообработки, большая продолжительность термообработки, что влечет за собой большие расходы электроэнергии, а также отсутствие возможности контроля формы полученных образцов.

Перед авторами стояла задача разработки способа получения шпинелей на основе ферритов-хромитов переходных элементов, имеющих контролируемую форму, при более низких температурах термообработки, с меньшей продолжительностью, что позволяет существенно снизить энергоемкость и, тем самым, удешевить их производство, а также получать шпинели с улучшенными эксплуатационными характеристиками.

Поставленная задача решается путем получения образцов ферритов-хромитов со структурой шпинели посредством гомогенизации исходных оксидов железа (III), хрома (III), никеля (II) и меди (II) при этом, смесь оксидов получают при выпаривании с последующим прокаливанием сульфатов соответствующих элементов и термообработку смеси проводят при температуре 600-900°С с выдержкой при температурах 600, 700, 800, 900°С в течение 1 часа.

Техническим результат обеспечивается за счет получения и использования более активных прекурсоров, равномерного их распределения, что позволяет исключить операцию гомогенизации оксидов и перевести процесс формирования структуры шпинели в процессе термообработки из диффузионной области в кинетическую.

На фиг. 1 представлена рентгенограмма образцов шпинелей Ni0.3Cu0.7Fe0.6Cr1.4O4, полученных из растворов сульфатов переходных элементов при температуре термообработки 600-700-800-900°С с выдержкой 1 час.

На фиг. 2 представлена рентгенограмма образцов шпинелей Ni0.3Cu0.7Fe0.6Cr1.4O4, полученных из оксидов переходных элементов при температуре термообработки 600-700-800°С.

На фиг. 3 представлена рентгенограмма образцов шпинелей Ni0.3Cu0.7Fe0.6Cr1.4O4, полученных из растворов сульфатов переходных элементов при температуре термообработки 600-700-800-900°С с выдержкой 0.5 час.

На фиг. 4 представлена микрофотография образца, полученного из растворов сульфатов переходных элементов при температуре термообработки 600-700-800-900°С.

На фиг. 5 представлена микрофотография образца, полученного из оксидов переходных элементов при температуре термообработки 900°С.

Способ заключается в получении твердых растворов со структурой шпинели на основе ферритов-хромитов никеля (II) - меди (II) путем смешивания исходных растворов сульфатов никеля (II), меди (II), железа (III), хрома (III) с концентрацией 1 моль/л. Далее исходные растворы выпаривают на песчаной бане в течение 0,5 часа, высушивают при температуре 100°С до постоянного веса в течение 0,5 часа и подвергают ступенчатой термообработке при температурах 600-700-800-900°С с выдержкой при каждой указанной температуре в течение 1 часа.

Пример 1. Отмеряли с погрешностью 0,1 мл заданные рецептурой количества исходных растворов никеля (II), меди (II), железа (III) и хрома (III). При этом состав исходной шихты (в пересчете на оксиды переходных металлов) был следующий: NiO - 0.3-0.5% (мол.), СuО - 0.5-0.7% (мол.), Fe2O3 - 0.3-0.5% (мол.), Сr2О3 - 0.5-0.7% (мол.). Смесь выпаривали на песчаной бане в течение 0,5 часа, высушивали при температуре 100°С до постоянного веса в течение 0,5 часа и подвергали ступенчатой термообработке при температурах 600-700-800-900°С с выдержкой при каждой указанной температуре в течение 1 часа.

Окончание процесса формирования структуры шпинели определяли с помощью рентгенофазового анализа: синтез шпинелей прошел на 100% (на рентгенограммах образцов содержатся только линии, характеризующие шпинель, фиг. l). При этом материал имеет округлую форму в виде дисков (фиг. 4). Материал имеет развитую поверхность (табл. 1).

Увеличение скорости формирования структуры шпинели и снижение температуры, при которой происходит формирование ее структуры связано с образованием оксидов переходных элементов по реакциям:

NiSO4=NiO+SO3,

CuSO4=CuO+SO3,

Fe2(SO4)3=Fe2O3+3SO3,

Cr2(SO4)3=Cr2O3+3SO3.

Образовавшиеся активные прекурсоры взаимодействуют с получением шпинели состава Ni0.3Cu0.7Fe0.6Cr1.4O4.

Пример 2. Готовили феррит-хромит никеля (II)-меди (II) аналогично описанному в примере 1, только термообработку проводили при температурах 600-700-800°С с выдержкой при каждой указанной температуре в течение 1 часа. По окончании термообработки рентгенофазовый анализ показал, что процесс формирования структуры завершен не полностью (в образце не присутствуют фазы неразложившегося сульфата меди (II) (фиг. 2).

Пример 3. Готовили феррит-хромит никеля (П)-меди (II) аналогично описанному в примере 1, только термообработку проводили при температурах 600 - 700 - 800 - 900°С с выдержкой при каждой указанной температуре в течение 0,5 часа. По окончании термообработки рентгенофазовый анализ показал, что процесс формирования структуры завершен не полностью (в образце присутствует фаза непрореагировавшего оксида меди (II) фиг. 3).

Пример 4. Готовили феррит-хромит никеля (II)-меди (II) аналогично описанному в примере 1, только в качестве исходных веществ использовали оксиды переходных металлов. По окончании термообработки рентгенофазовый анализ показал, что процесс формирования структуры завершен на 60% (в образце присутствуют исходные оксиды), материал имеет форму неправильных кристаллов (фиг. 5). низкую удельную площадь поверхности (табл.1).

Как видно из приведенных примеров, процесс изготовления ферритов-хромитов никеля (П)-меди (II) из смеси сульфатов соответствующих переходных металлов при температуре не выше 900°С проходит полнее по сравнению с процессом с применением готовых исходных оксидов металлов и завершается формированием структуры с наиболее высоким значением площади удельной поверхности; с заданной формой. Синтез шпинелей с использованием сульфатов переходных металлов для получения оксидов проходит при температурах на 300-400°С ниже, чем в прототипе и требует значительно меньшей продолжительности. Это позволяет проводить процесс синтеза шпинелей с меньшими энергозатратами, приводит к удешевлению производства, одновременно получаются материалы с улучшенными характеристиками (контролируемая форма зерен, повышенные значения площади поверхности).

При проведении процесса из смеси сульфатов соответствующих переходных металлов при термообработке ниже 900°С или с продолжительностью термообработки менее 1 часа не удается получить образцы, содержащие только фазу шпинели. Проведение процесса синтеза шпинелей из оксидов переходных элементов сопровождается формированием образцов неконтролируемой формы с менее развитой поверхностью.

Способ получения ферритов и хромитов со структурой шпинели путем смешивания исходных оксидов никеля (II), меди (II), железа (III), хрома (III), отличающийся тем, что оксиды получают из растворов сульфатов никеля (II), меди (II), железа (III), хрома (III) с концентрацией 1 моль/л, при этом растворы выпаривают на песчаной бане в течение 0,5 часа, высушивают при температуре 100°С до постоянного веса в течение 0,5 часа и ступенчато термообрабатывают при температурах 600-700-800-900°С с выдержкой при каждой указанной температуре в течение 1 часа.



 

Похожие патенты:

Изобретение относится к способу получения катализатора полимеризации. Описан способ для получения катализатора полимеризации с низкими выбросами высокоактивных летучих органических соединений (HRVOC), включающий следующие этапы:(a) обжиг кремнеземного носителя при температурах в диапазоне от около 100°C до около 500°C для формирования предварительно обожженного кремнеземного носителя;(b) приведение в контакт предварительно обожженного кремнеземного носителя с изопропилатом титана для формирования титанированного носителя; (c) после окончания этапа b) приведение в контакт титанированного носителя с полиолом для формирования связанного с полиолом титанированного носителя (PATS);(d) приведение в контакт упомянутого связанного с полиолом титанированного носителя с ацетиацетонатом хрома (III) для формирования прекурсора катализатора полимеризации;(e) высушивание прекурсора катализатора полимеризации для формирования высушенного прекурсора катализатора полимеризации; и (f) обжиг высушенного предшественника катализатора полимеризации для получения катализатора полимеризации, причем в течение обжига высушенного прекурсора катализатора полимеризации выбросы HRVOC составляют менее 0,1 мас.%.
Изобретение относится к способу получения оксидного катализатора и способу получения ненасыщенного нитрила. Способ получения оксидного катализатора, предназначенного для газофазного каталитического аммоксидирования пропана или изобутана и содержащего Mo, V, Sb, Nb и кремнезем, включает стадию приготовления исходного материала, содержащую субстадию (I) получения водной жидкой смеси (A), содержащей Mo, V и Sb; субстадию (II) добавления пероксида водорода к водной жидкой смеси (A), способствуя тем самым окислению водной жидкой смеси (A) и получению водной жидкой смеси (A'); и субстадию (III) смешивания водной жидкой смеси (A'), Nb-содержащего исходного жидкого материала (B) и исходного материала носителя, содержащего кремнезем, и получения тем самым водной жидкой смеси (C); стадию сушки водной жидкой смеси (C) и получения тем самым сухого порошка и стадию обжига сухого порошка в атмосфере инертного газа, где время, прошедшее от добавления пероксида водорода к водной жидкой смеси (A) до смешивания с ней Nb-содержащего исходного жидкого материала (B), составляет менее чем 5 минут, и водная жидкая смесь (A') перед подверганием субстадии (III) имеет окислительно-восстановительный потенциал от 150 до 350 мВ.

Изобретение относится к катализатору, предназначенному для синтеза оксалата посредством реакции связывания СО. Данный катализатор включает (a) активный компонент, содержащий палладий (Pd) либо его оксид; (b) вспомогательное вещество, содержащее вспомогательный элемент, выбранный из группы, состоящей из никеля, кобальта, марганца, циркония, церия, лантана, молибдена, бария, ванадия, титана, железа, иттрия, ниобия, вольфрама, олова и висмута; и (c) носитель, состоящий из полых микросфер из α-Al2O3.
Изобретение относится к катализатору для реакции аммоксидирования в псевдоожиженном слое, содержащему диоксид кремния и оксид металла, где композит из диоксида кремния и оксида металла описывается следующей формулой (1): Mo12BiaFebNicMgdCoeCefCrgZnhXiOj/(SiO2)A (1), а также к способу его производства и к способу производства акрилонитрила при использовании катализатора формулы (1) для реакции аммоксидирования.

В рамках настоящего изобретения предлагается катализатор карбонилирования для синтеза оксалата из монооксида углерода (CO) и нитрита в газовой фазе, включающий: (a) активный компонент, содержащий частицы палладия (Pd), в количестве от 0,01 до 1,00 вес.%, причем частицы Pd обладают степенью дисперсии от 20 до 50% и средним размером частиц от 2,5 до 4,0 нм; (b) вспомогательное вещество в количестве от 0,01 до 12 вес.%, причем вспомогательным элементом является щелочной металл либо щелочноземельный металл; от 0,01 до 11 вес.%, причем вспомогательный элемент выбран из группы, состоящей из IIB, IVB, VB, VIIB, VIII, IIIA и IVA; или от 0,01 до 10 вес.%, причем вспомогательным элементом является лантаноид; (c) носитель, содержащий оксид алюминия, и в котором по меньшей мере 90 вес.% оксида алюминия находится в форме альфа-оксида алюминия, и в котором соотношение мостиковой адсорбции СО к линейной адсорбции СО на катализаторе составляет от 1,8 до 4,3.

Настоящее изобретение относится к способу получения катализатора процесса алкилирования парафинов олефинами, включающему в себя деактивацию его кислотных центров, причем в качестве катализатора используют кристаллический цеолит в водородной форме, деактивацию проводят путем его обработки в условиях алкилирования смесью парафинов С4-С5 и олефинов С2-С5, содержащей до 5% олефинов С2-С5 и 95% изопарафиновых углеводородов, до момента, пока на выходе реактора не появляются непрореагировавшие олефины, с последующей обработкой цеолита растворами солей щелочных или щелочно-земельных металлов и высокотемпературной обработкой в окислительной среде.

Изобретение относится к способу приготовления катализатора гидроочистки нефтяных фракций, включающему пропитку носителя раствором соединений металлов VI группы и оксикарбоната никеля или кобальта, из совместного пропиточного раствора, содержащего фосфорно-молибденовый или фосфорно-вольфрамовый гетерополикомплекс и ионы металлов никеля или кобальта Me2+.

Изобретение может быть использовано в химической промышленности при получении адсорбентов, катализаторов гидрогенизации органических соединений газообразным водородом.

Изобретение может быть использовано в химической промышленности при получении адсорбентов, катализаторов гидрогенизации органических соединений газообразным водородом.

Настоящее изобретение относится к области гидрокрекинга каталитического дизельного масла. Описан катализатор гидрокрекинга дизельного масла, включающий подложку, компонент - активный металл и углерод, в котором, в пересчете на общую массу катализатора, содержание подложки составляет 60-90% масс., содержание компонента - активного металла в пересчете на оксиды металла составляет 15-40 % масс., и содержание углерода в пересчете на элементный С составляет 1-5% масс., причем сумма долей компонентов в катализаторе составляет 100% масс., в котором подложка представляет собой подложку на основе оксидов кремния и алюминия, которая содержит модифицированные молекулярные сита Y-типа, металл в компоненте - активном металле выбран из металлов - элементов VIII группы и/или металлов - элементов VIB подгруппы, источник углерода выбран из газообразного или жидкого углеродного материала; при этом содержание металлов - элементов VIII группы в пересчете на оксиды металла составляет 2-15% масс., а содержание металлов - элементов VIB подгруппы в пересчете на оксиды металла составляет 10-30% масс., на поверхности катализатора атомное отношение металлов - элементов VIII группы к Al составляет (0,2-0,5):1, и атомное отношение металлов - элементов VIB подгруппы к Al составляет (0,4-0,8):1; при этом полученные с помощью способа оценки кислотности методом инфракрасной спектроскопии кислотные свойства катализатора гидрокрекинга следующие: общее количество кислоты по данным метода инфракрасной спектроскопии составляет 0,4-0,8 ммоль/г, причем количество кислоты по данным метода инфракрасной спектроскопии для сильной кислоты с температурой десорбции выше 350°C составляет 0,08 ммоль/г или ниже, а отношение общего количества кислоты по данным метода инфракрасной спектроскопии к количеству кислоты по данным метода инфракрасной спектроскопии для сильной кислоты с температурой десорбции выше 350°C составляет 5-50, и описывает катализатор гидрокрекинга, способ его получения и его применение, а также способ гидрокрекинга каталитического дизельного масла.

Изобретение относится к катализатору, предназначенному для синтеза оксалата посредством реакции связывания СО. Данный катализатор включает (a) активный компонент, содержащий палладий (Pd) либо его оксид; (b) вспомогательное вещество, содержащее вспомогательный элемент, выбранный из группы, состоящей из никеля, кобальта, марганца, циркония, церия, лантана, молибдена, бария, ванадия, титана, железа, иттрия, ниобия, вольфрама, олова и висмута; и (c) носитель, состоящий из полых микросфер из α-Al2O3.

В рамках настоящего изобретения предлагается катализатор карбонилирования для синтеза оксалата из монооксида углерода (CO) и нитрита в газовой фазе, включающий: (a) активный компонент, содержащий частицы палладия (Pd), в количестве от 0,01 до 1,00 вес.%, причем частицы Pd обладают степенью дисперсии от 20 до 50% и средним размером частиц от 2,5 до 4,0 нм; (b) вспомогательное вещество в количестве от 0,01 до 12 вес.%, причем вспомогательным элементом является щелочной металл либо щелочноземельный металл; от 0,01 до 11 вес.%, причем вспомогательный элемент выбран из группы, состоящей из IIB, IVB, VB, VIIB, VIII, IIIA и IVA; или от 0,01 до 10 вес.%, причем вспомогательным элементом является лантаноид; (c) носитель, содержащий оксид алюминия, и в котором по меньшей мере 90 вес.% оксида алюминия находится в форме альфа-оксида алюминия, и в котором соотношение мостиковой адсорбции СО к линейной адсорбции СО на катализаторе составляет от 1,8 до 4,3.

Описаны способы жидкофазного селективного окисления. Способ включает частичное окисление алканов до частично окисленных продуктов, включающих один или более низших алкиловых спиртов, низших алкилкетонов и низших алкилацетатов.

Разработан активный катализатор гидрообработки, предназначенный для использования в процессах конверсии углеводородов: гидроденитрификации, гидрообессеривания, гидродеметаллирования, гидродесиликации, гидродеароматизации, гидроизомеризации, гидроочистки, гидрофайнинга и гидрокрекинга.

Изобретение относится к носителю катализатора, применяемому в синтезе диалкилоксалата посредством каталитического сочетания монооксида углерода в газовой фазе, при этом указанный носитель катализатора содержит микроскопические поры и одну макроскопическую пору, проходящую сквозь носитель катализатора, при этом отношение среднего диаметра макроскопической поры к среднему диаметру носителя катализатора составляет 0,2 и более, и где носитель катализатора получен из оксида алюминия.

Изобретение относится к катализатору риформинга нафты и способу его получения. Катализатор включает содержащий сульфат-ионы алюминийоксидный носитель и следующие компоненты с содержанием в расчете на количество носителя: металл VIII группы 0,1-2,0% по массе металл VIIB группы 0,1-3,0% по массе сульфат-ионы 0,45-3,0% по массе галоген 0,5-3,0% по массе Указанный содержащий сульфат-ионы алюминийоксидный носитель имеет содержание натрия от 0,008% до 0,03% по массе.

Изобретение относится к технологии производства катализаторов гидрокрекинга и гидроочистки тяжелых остатков нефти, вязкой и высоковязкой нефти. Заявленный катализатор содержит высокопористый ячеистый носитель, выполненный из металла: никель, хром, медь, железо, титан, алюминий в индивидуальной форме или в комбинациях друг с другом, или из оксида алюминия, или оксида железа, или в комбинации друг с другом, активный компонент, выбранный из ряда: никель, хром, медь, железо, титан, алюминий, оксид алюминия оксид железа с пористостью не менее 85%, средним размером пор (ячеек) 0,5-6,0 мм, на высокопористом ячеистом носителе закреплен слой вторичного носителя, выбранного из ряда: цеолит, оксид алюминия, оксид железа, оксид кремния, оксид титана, оксид циркония, алюмосиликат, железосиликат, глина или любая их комбинация, вторичный носитель характеризуется толщиной от 10 до 2000 мкм, удельной поверхностью не менее 20 м2/г, объемом пор от 0,1 до 1,0 см3/г, в котором поры диаметром более 5 нм составляют не менее 50% общего объема пор, наличием кислотных центров Бренстеда и Льюиса, при этом согласно данным температурно-программируемой десорбции аммиака количество средних и сильных кислотных центров Бренстеда и Льюиса с температурными диапазонами десорбции аммиака 250-350°С и более 350°С составляет 1-1500 и 1-1500 мкмоль/г соответственно, а соотношение средних и сильных кислотных центров Бренстеда и Льюиса составляет 1-10:1-5, вторичный носитель в общем составе катализатора составляет не менее 5 мас.%, активный компонент закреплен на вторичном носителе при следующем соотношении компонентов, мас.%: вторичный носитель 5,0-40,0, активный компонент 0,05-40,0, модифицирующий элемент 0-40,0, высокопористый ячеистый материал - остальное.

Изобретение относится к улучшенному катализатору для использования при аммоксидировании ненасыщенного углеводорода в ненасыщенный нитрил. Описана каталитическая композиция, содержащая комплекс оксидов металлов, причем относительные соотношения перечисленных элементов в указанном катализаторе представлены следующей формулой: Mom Bia Feb Ac Dd Ee Ff Gg Ceh Rbn Ox, где А представляет собой по меньшей мере один элемент, выбранный из группы, состоящей из лития, натрия, калия и цезия; и D представляет собой по меньшей мере один элемент, выбранный из группы, состоящей из никеля, кобальта, марганца, цинка, магния, кальция, стронция, кадмия и бария; Е представляет собой по меньшей мере один элемент, выбранный из группы, состоящей из хрома, вольфрама, бора, алюминия, галлия, индия, фосфора, мышьяка, сурьмы, ванадия и теллура; F представляет собой по меньшей мере один элемент, выбранный из группы, состоящей из лантана, празеодима, неодима, самария, европия, гадолиния, тербия, диспрозия, гольмия, эрбия, тулия, иттербия, лютеция, скандия, иттрия, титана, циркония, гафния, ниобия, тантала, алюминия, галлия, индия, таллия, кремния, свинца и германия; G представляет собой по меньшей мере один элемент, выбранный из группы, состоящей из серебра, золота, рутения, родия, палладия, осмия, иридия, платины и ртути; и а, b, с, d, е, f, g, h, m, n и x соответственно представляют собой атомные отношения висмута (Bi), железа (Fe), A, D, Е, F, G, церия (Се), рубидия (Rb) и кислорода (О) относительно «m» атомов молибдена (Мо), причем а составляет число больше 0, но меньше или равно 7, b составляет 0,1-7, с составляет число больше 0, но меньше или равно 5, d составляет 0,1-12, е составляет 0-5, f составляет 0-5, g составляет 0-0,2, h составляет 0,01-5, m составляет 10-15, n составляет число больше 0, но меньше или равно 5, x представляет собой число атомов кислорода, необходимое для удовлетворения валентных требований других присутствующих составляющих элементов; и причем 0,3≤(a+h)/d, 1,2≤h/b≤5 и 0<(n+c)/(a+h)≤0,2.
Изобретение относится к способу оксихлорирования, включающему превращение этилена в 1,2-дихлорэтан (ДХЭ) в присутствии медного катализатора на носителе, который получен посредством (i) пропитки, на первой стадии, алюмооксидного носителя первым водным раствором, содержащим медь, дополнительный переходный металл, щелочной металл и щелочноземельный металл, чтобы таким образом образовался первый компонент катализатора; и (ii) пропитки, в последующей стадии, первого компонента катализатора вторым водным раствором, содержащим медь и щелочноземельный металл, где второй водный раствор содержит щелочноземельный металл и медь в молярном соотношении более 0,19, чтобы таким образом образовался катализатор на носителе.

Изобретение относится к двигателестроению, в частности к системам очистки выхлопных газов. Система очистки выхлопных газов двигателя внутреннего сгорания, включающая каталитический нейтрализатор выхлопных газов, в котором один из Rh, Pd и Pt нанесен на CeO2-содержащий носитель.

Предложен способ получения циклогексана парофазным гидрированием бензола, содержащего в качестве примесей сернистые соединения, при повышенной температуре и повышенном давлении в нескольких реакционных зонах в присутствии никель-хромового и медьсодержащего катализаторов, расположенных в различных реакционных зонах, с использованием медьсодержащего катализатора в первой по технологическому циклу реакционной зоне, с регулированием температуры в реакционной зоне, содержащей никель-хромовый катализатор, путем подачи конденсата из сепаратора в реакционную зону с последующим его испарением.
Наверх