Способ тепловых испытаний элементов летательных аппаратов

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к средствам воспроизведения аэродинамического теплового воздействия на поверхности элементов летательных аппаратов, например головных обтекателей ракет, в наземных условиях. Предложен способ тепловых испытаний элементов летательных аппаратов, включающий нагрев наружной поверхности элементов ЛА, измерение температуры и обдув нагреваемой поверхности газовым потоком. Причем газовый поток разделен как минимум на две струи, которые подаются со скоростью, регулируемой автономно друг от друга, вдоль поверхности изделия в сторону носка и в сторону торца элемента ЛА. Технический результат - уменьшение влияния перегрева элемента ЛА при проведении наземных тепловых испытаний. 1 ил.

 

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к средствам воспроизведения аэродинамического теплового воздействия на поверхности элементов летательных аппаратов, например головных обтекателей ракет в наземных условиях.

В настоящее время воспроизведение аэродинамического нагрева осуществляется в различных установках: аэродинамических трубах, баллистических установках, плазменных установках, стендах на основе сжигания топлива (прямоточных реактивных двигателях) [Баранов А.Н., Белозеров Л.Г., Ильин Ю.С., Кутьинов В.Ф. Статические испытания на прочность сверхзвуковых самолетов. - М.: Машиностроение. - 1974. - 344 с.; Материалы и покрытия в экстремальных условиях. Взгляд в будущее: В 3 т. - Т. 3. Экспериментальные исследования / Ю.В. Полежаев, С.В. Резник, А.Н. Баранов и др., Под ред. Ю.В. Полежаева и С.В. Резника. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2002. - 264 с.: ил.]. Испытание натурных конструкций в таких установках требует огромных материальных затрат, поэтому широкого распространения в практике наземных испытаний эти установки не получили.

Наиболее широкое распространение в практике наземных испытаний получили стенды радиационного нагрева, так как они просты в эксплуатации, позволяют достаточно легко изменять конфигурацию нагревателя в зависимости от геометрии конструкции обтекателя.

Однако, стандартные стенды радиационного нагрева (на базе ламп инфракрасного излучения) имеют ряд ограничений. Практически во всех установках радиационного нагрева инфракрасные нагреватели расположены близко к нагревательной поверхности. Кроме того, для увеличения КПД применяют теплоизолирующие отражательные экраны. По этой причине в таких установках наблюдается значительный перегрев испытуемого изделия, что недопустимо, так как может выйти из строя дорогое и уникальное электронное оборудование, размещенное в головном обтекателе ракеты.

Другой аспект тепловых испытаний в установках радиационного нагрева - воспроизведение теплового поля с учетом наветренной и подветренной сторон на поверхности обтекателя ракеты. В этом случае наблюдается сильное влияние наветренной стороны (с более высокой заданной температурой) на подветренную сторону. Происходит перегрев подветренной стороны.

Известно изобретение «Инфракрасный нагреватель» [А.с. СССР №1785411, МПК Н05В 3/44, опубл. 15.08.1994], в котором инфракрасные нагреватели (лампы инфракрасного излучения) и объект испытания в процессе воспроизведения участков режима с отрицательным темпом нагрева обдуваются воздухом. Недостатком изобретения является сложность его реализации.

Наиболее близким по технической сущности является способ тепловых испытаний обтекателей ракет из неметаллических материалов, в котором для повышения точности задания температурного поля реализован обдув поверхности обтекателя ракеты газовой смесью в двух направлениях: от вершины к торцу обтекателя и со стороны зон нагрева в направлении нормали к поверхности обтекателя в процессе проведения испытаний [патент РФ №2632031, МПК G01N 25/72, опубл. 02.10.2017]. Однако этого недостаточно для устранения перегрева испытуемого изделия.

Техническим результатом заявляемого изобретения является уменьшение влияния перегрева элементов ЛА при проведении наземных тепловых испытаний.

Указанный технический результат достигается тем, что предложен способ тепловых испытаний элементов летательных аппаратов, включающий нагрев наружной поверхности элементов ЛА, измерение температуры и обдув нагреваемой поверхности газовым потоком, отличающийся тем, что газовый поток разделен как минимум на две струи, которые подаются со скоростью, регулируемой автономно друг от друга, вдоль поверхности изделия в сторону носка и в сторону торца элемента ЛА.

На фигуре представлены схемы, иллюстрирующие вариант реализации предложенного способа тепловых испытаний элементов ЛА. Изделие 1 монтируется на стенд, содержащий нагреватели 2, тумбу 3, смонтированную на комплект оснастки 5. В тумбе 3 установлена внутренняя перегородка 4, разделяющая внутренний объем тумбы пополам и образующая два газовых коллектора. Для раздельного регулирования подачи газовой смеси в коллекторы предусмотрены блоки регулирования подачи 6. Основание тумбы 3, на которое монтируется изделие 1, имеет сквозные отверстия 7, через которые газовая смесь под давлением, например воздух, поступает из коллекторов на поверхность изделия 1. В коллекторы газ подается на участках режима с отрицательным темпом и в конце режима испытания. Для обдува носка изделия предусмотрен колпак 8 в который через блок регулирования подачи 6, подается газовый поток.

Заявленное изобретение дает возможность повысить точность воспроизведения режимов нагрева на участках с отрицательным темпом и снизить себестоимость проведения испытаний за счет сохранения испытуемого объекта и оборудования в нем.

Способ тепловых испытаний элементов летательных аппаратов, включающий нагрев наружной поверхности элементов ЛА, измерение температуры и обдув нагреваемой поверхности газовым потоком, отличающийся тем, что газовый поток разделен как минимум на две струи, которые подаются со скоростью, регулируемой автономно друг от друга, вдоль поверхности изделия в сторону носка и в сторону торца элемента ЛА.



 

Похожие патенты:

Изобретение относится к области измерительной техники и может быть предназначено для исследования невидимой ткани. Способ предназначен для идентификации невидимой ткани.

Изобретение относится к неразрушающему контролю скрытых дефектов в тепло- и гидроизоляционных обшивках крупногабаритных цилиндрических изделий, относящихся к химической, нефтегазовой и ракетно-космической отраслям промышленности с использованием активного теплового метода.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к воспроизведению тепловых режимов головной части (обтекатель) ракеты в наземных условиях.

Изобретение относится к испытательным установкам тепла-холода и предназначено для испытания крупногабаритных изделий при воздействии на них воздушных потоков с быстро меняющейся температурой.

Изобретение относится к способам тепловых испытаний элементов летательных аппаратов (ЛА), в частности керамических обтекателей ракет. Заявленный способ теплового нагружения обтекателей ракет из неметаллических материалов включает зонный радиационный нагрев обтекателя и измерение температуры.

Изобретение относится к неразрушающему контролю скрытых дефектов в композиционных материалах и изделиях активным тепловым методом, используемых в авиакосмической, ракетной, атомной, машиностроительной и энергетической отраслях промышленности.

Изобретение относится к области определения теплофизических характеристик ограждающих конструкций и может быть использовано в строительстве для оценки теплозащитных свойств по результатам испытаний в натурных условиях.

Изобретение относится к испытательной технике, определяющей тепловую стойкость конструкций изделия, в частности для имитации нагрева внешней поверхности отсека летательного аппарата (ЛА).

Изобретение относится к области испытаний твердых тел и может быть использовано для идентификации невидимой ткани. Новым является то, что испытания проводятся в четыре этапа.

Изобретение относится к технике наземных испытаний головных частей (обтекателей) летательных аппаратов (ЛА), а именно к способам контроля радиотехнических характеристик (РТХ) радиопрозрачного обтекателя (РПО) в условиях, имитирующих аэродинамический нагрев.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к воспроизведению тепловых режимов головной части (обтекатель) ракеты в наземных условиях.

Изобретение относится к экспериментальной аэродинамике, в частности к устройствам для изменения положения испытываемой модели в рабочей части аэродинамической трубы.

Изобретение относится к способам тепловых испытаний элементов летательных аппаратов, в частности керамических обтекателей ракет. Заявлен способ тепловых испытаний натурных керамических элементов летательных аппаратов, который включает нанесение на нагреваемую поверхность высокотемпературного покрытия с высокой степенью черноты, радиационный нагрев и измерение температуры.

Изобретение относится к области машиностроения, авиационной и ракетно-космической отраслям промышленности и может быть использовано на этапе наземной лабораторно-стендовой отработки конструкций летательных аппаратов (ЛА) и их элементов (головных обтекателей, радиопрозрачных вставок, окон и т.д.) для воспроизведения тепловых и комплексных воздействий, имитирующих эксплуатационные нагрузки.

Изобретение относится к области авиации, в частности к системам контроля и диагностики общесамолетных систем воздушных судов. Бортовая распределенная система контроля и диагностики утечек содержит по меньшей мере один волоконно-оптический датчик, блок-преобразователь, который содержит перестраиваемый эрбиевый волоконный лазер, блок коммуникации, блок термостабилизации, блок питания и плату обработки, которая состоит из по меньшей мере одного оптического разветвителя, фотоприемника, усилителя, аналого-цифрового преобразователя, программируемой логической интегральной схемы, центрального сигнального процессора.

Изобретение относится к области аэромеханических измерений и может быть использовано для измерения шарнирных моментов, действующих на органы управления и взлетно-посадочную механизацию аэродинамических моделей летательных аппаратов в потоке аэродинамической трубы.

Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на обтекатель ракеты в наземных условиях и может быть использовано при наземных испытаниях элементов летательных аппаратов.

Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на головную часть обтекателя ракеты в наземных условиях. Предложен способ теплового нагружения обтекателей ракет из неметаллических материалов, включающий зонный нагрев обтекателя контактным нагревателем в виде электропроводящих секторов, соединенных в электрическую цепь последовательно, координаты которых заданы относительно вершины обтекателя и измерение температуры.
Изобретение относится к области тепловых испытаний летательных аппаратов и может быть использовано при наземных испытаниях антенных обтекателей ракет. Предложен способ управления нагревом при тепловых испытаниях антенных обтекателей ракет, включающий зонный нагрев поверхности обтекателя регулируемыми электрическими нагревателями и измерение в каждой зоне датчиками теплового потока величины подводимого к обтекателю теплового потока.
Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на обтекатель летательного аппарата в наземных условиях. Заявленный способ теплового нагружения обтекателей летательных аппаратов из неметаллических материалов включает нагрев наружной поверхности обтекателя и измерение температуры.

Изобретение относится к области натурных и модельных испытаний элементов летательных аппаратов. Способ исследования макета ламинаризированной поверхности, снабженной активной системой ламинаризации, содержит микроперфорированную поверхность и систему отсоса пограничного слоя.
Наверх