Импульсный нейтронный генератор

Изобретение относится к импульсному нейтронному генератору. Импульсный нейтронный генератор содержит в герметичном металлическом корпусе вакуумную нейтронную трубку с трехэлектродным источником ионов с анодом, катодом и поджигом, а также схему его питания и формирования импульса ускоряющего напряжения. Схема включает высоковольтный трансформатор, накопительный конденсатор, сопротивление смещения, дроссель, в зазор между корпусом и сеточным электродом нейтронной трубки вставлена спиральная пружина с прямоугольным профилем поперечного сечения витка, а элементы схемы питания и формирования ускоряющего напряжения и электроды трехэлектродного ионного источника соединены между собой с помощью плавающих контактов «штырь–гнездо». Техническим результатом является повышение надежности, ремонтопригодности, срока службы нейтронного генератора, снижение трудоемкости изготовления нейтронного генератора. 1 ил.

 

Изобретение относится к области физического приборостроения, в частности к источникам нейтронного излучения, и предназначено для использования при разработке нейтронных и рентгеновских генераторов.

Известен импульсный нейтронный генератор на вакуумной нейтронной трубке, содержащий в металлическом корпусе, залитом жидким диэлектриком, нейтронную трубку с элементами питания ее источника и формирователь импульсного ускоряющего напряжения, включающий высоковольтный трансформатор, накопительный конденсатор коммутатор. Авторское свидетельство СССР № 497932, МПК H05H 1/00, 27.08.1974.

Недостатком этого генератора является жесткое крепление нейтронной трубки за торец анодного электрода к корпусу при помощи металлической втулки и винтов. Консольное, жесткое крепление нейтронной трубки за торец анодного электрода приводит к большому радиальному смещению мишенного электрода, асимметричности мишени относительно корпуса. Наличие стяжных винтов требует их равномерную затяжку, что усложняет сборку. Кроме того, при механических нагрузках это может привести к разгерметизации нейтронной трубки и выходу из строя генератора.

Известен скважинный импульсный нейтронный генератор, содержащий вакуумную нейтронную трубку и электрическую схему питания вакуумной нейтронной трубки, состоящую из двух высоковольтных трансформаторов, конденсатора накопительного, схемы формирования ускоряющего импульса, конденсатора источника питания нейтронной трубки и зарядного дросселя, размещенных в герметичном корпусе, в котором все элементы электрической схемы питания вакуумной нейтронной трубки выполнены в виде тел вращения с центральными отверстиями, соединены между собой механически и электрически с помощью резьбовых электрических контактов с центральными отверстиями, а с вакуумной нейтронной трубкой – через чашеобразные резьбовые втулки с центральным и боковыми отверстиями, установленные на мишени и аноде вакуумной нейтронной трубки. Патент Российской Федерации № 2368024, МПК G21G 4/02, 20.09.2009.

Недостатком этого генератора являются ограниченный ресурс работы трубки из-за отсутствия антидинатронной сетки, т.е. системы подавления вторичной электронной эмиссии, возникающей в результате бомбардировки мишени трубки ионами дейтерия. Следствием этого является быстрый выход из строя ионного источника трубки и малый срок службы трубки.

Кроме того, недостатком известного генератора является жесткое крепление нейтронной трубки при помощи резьбовых втулок, приваренных к мишенному и анодному электродам нейтронной трубки. Соединение всех элементов схемы питания нейтронной трубки с помощью резьбовых электрических контактов требует дополнительных затрат времени при сборке и разборке нейтронного генератора.

Известен импульсный нейтронный генератор, содержащий размещенные в герметичном металлическом корпусе залитые жидким диэлектриком вакуумную нейтронную трубку со схемой ее питания и схемой формирования ускоряющего импульса, состоящей из двух высоковольтных трансформаторов, выполненных на замкнутых сердечниках из электротехнической стали, выходы высоковольтных трансформаторов соединены чашеобразными экранами и расположенной в них вакуумной нейтронной трубкой содержащей размещенные в герметичном запаянном стеклянном корпусе управляемый 3-электродный искровой источник, который состоит из кольцевого анода, катода и поджигающего электрода. Патент Российской Федерации № 165286, МПК G21G 4/00, 10.10.2016. Данное техническое решение принято в качестве прототипа.

Нейтронная трубка жестко прикреплена к корпусу чашеобразного экрана при помощи винтов, расположенных на торце анодного электрода. Жесткое консольное крепление нейтронной трубки к корпусу может привести к разрушению колбы нейтронной трубки при механических воздействиях в эксплуатации.

Кроме того, сопротивление смещения, расположенное вокруг сеточного электрода нейтронной трубке, ухудшает теплоотдачу от мишенного электрода. Затруднена также сборка и разборка генератора. При необходимости замены нейтронной трубки надо полностью разобрать весь генератор. Из-за большого расстояния мишени от боковой поверхности корпуса и наличия замедляющей среды масла уменьшается выход нейтронов.

Задачей изобретения является повышение надежности, ремонтопригодности, снижение трудоемкости изготовления, повышение выхода нейтронного генератора.

Техническим результатом изобретения является повышение надежности, ремонтопригодности, срока службы нейтронного генератора, снижение трудоемкости изготовления нейтронного генератора.

Технический результат достигается тем, что в импульсном нейтронном генераторе, содержащем в герметичном металлическом корпусе вакуумную нейтронную трубку с трехэлектродным источником ионов с анодом, катодом и поджигом, а также схему его питания и формирования импульса ускоряющего напряжения, включающую высоковольтный трансформатор, накопительный конденсатор, сопротивление смещения, дроссель, в зазор между корпусом и сеточным электродом нейтронной трубки вставлена спиральная пружина с прямоугольным профилем поперечного сечения витка, а элементы схемы питания и формирования ускоряющего напряжения и электроды трехэлектродного ионного источника соединены между собой с помощью плавающих контактов «штырь–гнездо».

Сущность изобретения поясняется чертежом, где:

1 – металлический корпус блока;

2 – нейтронная трубка;

3 – импульсный высоковольтный трансформатор;

4 – накопительный конденсатор;

5 – конденсатор источника;

6 – дроссель;

7 – сопротивление смещения

8 – мишенный электрод нейтронной трубки;

9 – сеточный электрод нейтронной трубки;

10 – анодный электрод нейтронной трубки;

11 – катодный электрод нейтронной трубки;

12 – поджигающий электрод нейтронной трубки;

13 – пружинный контакт;

14 – теплопроводящая керамическая втулка;

15 – плавающие контакты «штырь–гнездо»;

16 – высоковольтный проходной изолятор;

17 – жидкий диэлектрик;

18 – электрический экран;

19 – термокомпенсатор.

Импульсный нейтронный генератор выполнен по схеме включения нейтронной трубки с заземленной мишенью. Импульсный нейтронный генератор включает корпус 1, выполненный в виде двух цилиндров большего и меньшего диаметра и усеченного конуса между ними, нейтронную трубку 2, высоковольтную часть схемы её питания, обеспечивающую ускоряющее напряжение с высоковольтным трансформатором 3 на замкнутом металлическом сердечнике, накопительный конденсатор 4, конденсатор источника ионов 5, дроссель 6.

Нейтронная трубка 2 представляет собой вакуумно-герметичную оболочку с размещенной в ней элементами: мишенным электродом 8, сеточным электродом 9 и ионно-оптической системой источника ионов искро-дугового типа, содержащей соосно расположенные анод 10, катод 11 и поджиг 12. Сопротивление смещения 7 выполнено в виде втулки 14 из теплопроводящей керамики имеющей тепловой и электрический контакт с мишенным электродом с одной стороны, а с другой – хороший тепловой контакт с корпусом 1. Сопротивление керамического цилиндра 14 равно сопротивлению смещения между сеточным 9 и мишенным 8 электродами. Величина этого сопротивления лежит в пределах от 800 Ом до 2 кОм.

Технологически сопротивление на керамике может быть выполнено различными способами: намоткой провода ПЭВНХ, выполнением объемного сопротивления в керамике и т.д.

С целью «мягкого» крепления, центрирования нейтронной трубки, обеспечения электрического контакта и повышения теплопередачи в зазор между меньшим цилиндром корпуса 1 и сеточным электродом 9 нейтронной трубки вставлен пружинный контакт 13 в виде спиральной пружины с прямоугольным профилем поперечного сечения витка из ленты прямоугольного сечения. При установке в корпус на прилегающих сторонах пружины контакта 13 сплюснуты. Пружины выполнены из материала с высокой теплопроводностью и электропроводностью, например из бронзы, пружинные свойства которой обеспечивают достаточное контактное давление на стенки в переменном по величине зазоре, а следовательно, хороший электрический контакт и хорошую теплопередачу.

Для обеспечения ремонтопригодности, снижения трудоемкости изготовления, быстрой замены нейтронной трубки элементы схемы питания и формирования ускоряющего напряжения и электроды трехэлектродного ионного источника соединены между собой с помощью плавающих контактов 15 «штырь–гнездо».

Для обеспечения электрической прочности и улучшения теплопередачи от внутренних источников энергии во внешнюю среду блок залит жидким диэлектриком 17. Для компенсации температурного изменения объёма жидкого диэлектрика установлен компенсатор 19. Для выравнивания электрических полей на мишенный электрод и анод ионного источника установлены экраны 18.

В качестве жидкого диэлектрика 17 в блоке использовано масло трансформаторное ТКп, имеющее хорошие диэлектрические свойства.

Внешнее питание и импульсы запуска подают через керамические проходные изоляторы 16.

Блок излучателя работает следующим образом.

При срабатывании коммутирующего элемента (на чертеже не показан) накопительный конденсатор 5, заряженный до напряжения 4,5 кВ, разряжается через первичные обмотки трансформатора 3. На вторичной обмотке формируется импульс напряжения отрицательной полярности 100–150 кВ длительностью 4 мкс и через пружинные контакты 13 подается на сетку 9 нейтронной трубки. С задержкой 0,8 мкс формируется импульс поджига ионного источника и разряд конденсаторов 5 через анод 10 и катод 11. Образовавшиеся ионы дейтерия бомбардируют мишень М нейтронной трубки 2. На мишени в результате реакции 1Н2 + 1Н32Не4 + n образуются нейтроны с энергией 14 МэВ и вторичные электроны.

При протекании тока через ускоряющий зазор на керамическом цилиндре 14 в результате наличия в нем электрического сопротивлении смещения (от 800 Ом до 2 кОм) возникает разность потенциалов, которая запирает вторичные электроны, образовавшиеся в процессе бомбардировки мишени нейтронной трубки ионами дейтерия, что позволяет уменьшить паразитный ток трубки и повысить тем самым срок ее службы.

Предложенная конструкция «мягкого» крепления нейтронной трубки в корпусе нейтронного генератора обеспечивает центрирование нейтронной трубки, амортизацию при механических воздействиях, хороший тепловой и электрический контакт, удобство сборки-разборки генератора, возможность быстрой замены трубки после выработки ресурса.

Улучшение теплопередачи за счет увеличения теплового потока от мишенного электрода, к которому обеспечен свободный доступ жидкого диэлектрика, приводит к увеличению срока службы.

Кроме того, предложенная конструкция корпуса, имеющая минимальный диаметр вокруг мишенного и сеточного электродов, позволяет увеличить выход нейтронов за счет уменьшения масляного промежутка.

Импульсный нейтронный генератор, содержащий в герметичном металлическом корпусе вакуумную нейтронную трубку с трехэлектродным источником ионов с анодом, катодом и поджигом, а также схему его питания и формирования импульса ускоряющего напряжения, включающую высоковольтный трансформатор, накопительный конденсатор, сопротивление смещения, дроссель, отличающийся тем, что в зазор между корпусом и сеточным электродом нейтронной трубки вставлена спиральная пружина с прямоугольным профилем поперечного сечения витка, а элементы схемы питания и формирования ускоряющего напряжения и электроды трехэлектродного ионного источника соединены между собой с помощью плавающих контактов «штырь–гнездо».



 

Похожие патенты:

Изобретение относится к блоку излучателя нейтронов. Устройство содержит в металлическом герметичном корпусе, залитом жидким диэлектриком, следующие элементы: нейтронную трубку, схему формирования ускоряющего напряжения, включающую схему умножения с высоковольтным трансформатором на входе, температурный компенсатор.

Изобретение относится к медицинской технике, а именно к устройствам для нейтронно-захватной терапии. Облучатель для нейтронно-захватной терапии содержит вход волоконного пучка, мишень, замедлитель, примыкающий к указанной мишени, отражатель вокруг указанного замедлителя, поглотитель тепловых нейтронов, примыкающий к указанному замедлителю, массив биологической защиты реактора и выход волоконного пучка, размещенные в облучателе, мишень служит для работы с протонными пучками, выведенными от входа волоконного пучка с возникновением атомной реакции для получения нейтронов, нейтроны образуют пучки нейтронов, ось пучков нейтронов направлена на замедлитель, который замедляет нейтроны, выделенные от мишени, направленные в активную зону эпитепловых нейтронов, между замедлителем и отражателем имеется воздушный или вакуумный зазор, с возможностью прохождения по нему пучка нейтронов для усиления интенсивности пучка эпитепловых нейтронов, при этом мишень отделена от зазора замедлителем и зазор образован отражателем, замедлителем и поглотителем тепловых нейтронов, отклоненные нейтроны будут отражены обратно по оси, чтобы повысить интенсивность пучка эпитепловых нейтронов, поглотитель тепловых нейтронов поглощает тепловые нейтроны, чтобы избежать чрезмерных поверхностных доз при терапии прямо под поверхностными нормальными тканями, массив биологической защиты реактора предназначен для защиты от утечки нейтронов и фотонов, чтобы уменьшить дозу для нормальных тканей в необлученных зонах.

Изобретение относится к устройству для получения нейтронов с использованием частиц высоких энергий и может быть использовано при изготовлении компактных источников нейтронного излучения.

Изобретение относится к фотонейтронным источникам. Фотонейтронный источник включает канал для ввода пучка электронов, облучаемый пучком электронов с энергией 6-8 МэВ, е-γ-конвертер из вольфрама толщиной 0,1 см, две фотонейтронные мишени из бериллия, полость для облучения образцов, замедлитель быстрых нейтронов из полиэтилена и биологическую защиту из борированного полиэтилена для поглощения тепловых и замедления и поглощения быстрых нейтронов, вылетающих наружу из источника.

Изобретение относится к способу изготовления титано-тритиевых мишеней нейтронных трубок, используемых в скважинной геофизической аппаратуре для каротажа нефтяных и газовых месторождений, а также в составе аппаратуры нейтронного активационного анализа.

Использование: для излучения импульсов нейтронного и рентгеновского излучения. Сущность изобретения заключается в том, что скважинный излучатель нейтронов в охранном кожухе содержит вакуумную нейтронную трубку со схемой питания, состоящую из двух высоковольтных трансформаторов, накопительного конденсатора, схемы формирования ускоряющего импульса, выполненной по биполярной схеме, блока питания с коммутатором и схемой формирования импульса запуска коммутатора, при этом на мишенном и анодном электродах нейтронной трубки установлены теплопроводящие изоляторы, выполненные в виде полых цилиндров с кольцевыми проточками, имеющие тепловой контакт с электродами нейтронной трубки и внутренней поверхностью охранного кожуха.

Изобретение относится к устройствам импульсных излучателей-генераторов разовых или многоразовых импульсов нейтронного и рентгеновского излучения. В заявленном скважинном импульсном нейтронном генераторе трансформаторы (2) и (3) залиты компаундом с диэлектрической проницаемостью, уменьшающейся с ростом температуры, конденсаторы (4), (6) и (7) залиты компаундом с диэлектрической проницаемостью, увеличивающейся с ростом температуры.

Изобретение относится к конструктивным элементам ускорителей заряженных частиц, в частности к изоляторам нейтронных трубок, и может быть использовано при разработке нейтронных трубок и генераторов нейтронов.

Изобретение относится к способу изготовления электродов и мишеней нейтронных трубок для генерации потоков нейтронов и может быть использовано при разработке генераторов нейтронов для исследования геофизических и промысловых скважин.

Изобретение относится к ядерной физике и медицине и может быть применено для нейтронозахватной терапии злокачественных опухолей с использованием источника нейтронов, выполненного на основе ускорителя заряженных частиц.
Наверх