Прирабатываемая вставка уплотнения турбины

Изобретение относится к уплотнениям зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций. Прирабатываемая вставка уплотнения турбины выполнена из адгезионно соединенных между собой путем спекания частиц порошкового наполнителя и порошковых добавок. Вставка выполнена в виде фасонного бруска с гребешками с размерами и формой, обеспечивающими при кольцевом соединении формирование полного торцевого уплотнения турбины. Фасонный брусок имеет в поперечном сечении у основания форму прямоугольника, на котором расположена равнобедренная трапеция. Боковые стороны прямоугольника переходят в боковые стороны равнобедренной трапеции, а последние переходят в боковые стороны гребешков, расположенных перпендикулярно верхнему основанию трапеции. Гребешки имеют высоту от 40 до 60% от всей высоты фасонного бруска, толщину от 6 до 14% от габаритной ширины фасонного бруска и образуют в пространстве между гребешками рабочую прирабатываемую зону. Обеспечивается повышение надежности уплотнения и его функциональных свойств при высокой прирабатываемости, механической прочности и износостойкости. 3 з.п. ф-лы, 1 ил.

 

Изобретение относится к машиностроению, в частности к уплотнениям зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций.

Эффективность работы паровых турбин зависит от герметичности уплотнения между вращающимися лопатками и внутренней поверхностью корпуса в вентиляторе, компрессоре и турбине. Одним из основных видов подобных уплотнений являются истираемые уплотнения, герметичность которых обеспечивается за счет прорезания выступами на торцах лопаток канавок в истираемом уплотнительном материале. Уплотнения турбин выполняют, например, используя плетеные металлические волокна, соты [патент США N 5080934, МПК F01D 11/08, 427/271, 1991] или спеченные металлические частицы. Приработка этих уплотнений происходит за счет его высокой пористости и его низкой прочности. Последнее обуславливает невысокую эрозионную стойкость уплотнительных материалов, что приводит к быстрому износу уплотнения. В качестве прирабатываемых уплотнений в современных двигателях и установках используют также газотермические покрытия, имеющие, по сравнению с вышеописанными материалами, меньшую трудоемкость изготовления.

Известно прирабатываемое уплотнение турбомашины [патент США №4291089], получаемое методом газотермического напыления порошкового материала. При этом уплотнение формируется в виде покрытия, которое наносится непосредственно на кольцевой элемент корпуса турбомашины в зону уплотнения между корпусом и лопаткой.

Недостатком известного уплотнения является невозможность одновременного обеспечения высокой прирабатываемости и износостойкости покрытия.

Известно также прирабатываемое уплотнение турбомашины [патент США №4936745], выполненное в виде высокопористого керамического слоя с пористостью от 20 до 35 объемных %.

Недостатком известного уплотнения является низкая эрозионная стойкость и прочность.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является прирабатываемое уплотнение турбины, выполненное из адгезионно соединенных между собой путем спекания частиц порошкового наполнителя, составляющего основу материала уплотнения, и порошковых добавок [патент РФ №2039631, МПК B22F 3/10, Способ изготовления истираемого материала, 1995]. При этом уплотнение включает заполненный в сотовые ячейки и спеченный в вакууме или защитной среде гранулированный прошковый материл состава Cr-Fe-NB-C-Ni.

Известный материал прирабатываемого уплотнения турбомашины [патент РФ №2039631, МПК B22F 3/10, Способ изготовления истираемого материала, 1995] используется для уплотнения, которое выполнено в виде жестко соединенного со статором слоя сотовой структуры. При соприкосновении выступов на торце лопатки с сотовой структурой острые кромки гребешков притупляются, что приводит к снижению эффективности уплотнения. При этом слой сотовой структуры может быть закреплен на элементе турбомашины методом сварки или пайки [например, патент РФ №2277637, МПК F01D 11/08, 2006 г. ].

Процесс изготовления и прикрепления сотовой структуры достаточно сложен, трудоемок, а также связан с большими временными затратами. При этом сотовая структура может быть соединена как с кольцевым элементом турбомашины, так и с отдельными, образующими кольцо вставками [например, патент РФ 2287063, МПК F01D 11/08, 2006 г. ].

Недостатками прототипа являются невозможность одновременного обеспечения высокой прирабатываемости, механической прочности и износостойкости материала уплотнения, а также необходимости использования сотовых ячеек.

В этой связи, использование уплотнения, не содержащего слоя сотовой структуры, а выполненного из монолитного материала, допускающего врезание в него выступов лопатки и снижающего их износ в процессе эксплуатации, привело бы к дальнейшему повышению эффективности работы турбомашин.

Техническим результатом заявляемого изобретения является повышение надежности уплотнения и его функциональных свойств при обеспечении высокой прирабатываемости, механической прочности и износостойкости материала уплотнения.

Технический результат достигается тем, что прирабатываемая вставка уплотнения турбины, выполненная из адгезионно соединенных между собой путем спекания частиц порошкового наполнителя, составляющего основу материала уплотнения, и порошковых добавок, в отличие от прототипа, выполнена в виде фасонного бруска с гребешками с размерами и формой, обеспечивающими при кольцевом соединении формирование полного торцевого уплотнения турбины, причем фасонный брусок имеет в поперечном сечении у основания форму прямоугольника, на котором расположена равнобедренная трапеция, причем боковые стороны прямоугольника переходят в боковые стороны равнобедренной трапеции, а последние переходят в боковые стороны гребешков, расположенных перпендикулярно верхнему основанию трапеции, причем гребешки имеют высоту от 40 до 60% от всей высоты фасонного бруска, толщину от 6 до 14% от габаритной ширины фасонного бруска и образуют в пространстве между гребешками рабочую прирабатываемую зону, причем на верхних торцах гребешков с внешней стороны каждого под углом от 45 до 60 градусов к основанию фасонного бруска выполнена фаска, обеспечивающая уменьшение площади торца гребешка 40-70%, а высота прямоугольника у основания составляет от 9 до 20%, высота трапеции от 20 до 46% от общей высоты фасонного бруска, причем все упомянутые переходы поверхностей выполнены плавными.

Технический результат достигается также тем, что в качестве материала наполнителя использован сплав состава,, в вес. %: Сr - от 10,0% до 18,0%, Мо - от 0,8% до 3,7%, Fe, или Ti, - остальное, или сплав состава,, в вес. %: Сr - от 18% до 34%; Ni - остальное, или сплав состава,, в вес. %: Сr - от 18% до 34%; Fe - от 16% до 30%; Ni - остальное, с размерами частиц порошка от 30 мкм до 100 мкм, а в качестве порошковой добавки использованы гексагональный нитрид бора с размерами частиц порошка от 20 мкм до 100 мкм в количестве от 4,0% до 5,0% от общего объема материала уплотнения и фторид кальция с размерами частиц порошка от 20 мкм до 100 мкм в количестве от 6,0% до 8,0% от общего объема материала уплотнения.

Технический результат достигается также тем, что прирабатываемая вставка уплотнения турбины, дополнительно в качестве добавки содержит, в вес. %: от 0,8% до 1,2% BaSO4 с размерами частиц от 20 мкм до 100 мкм.

Технический результат достигается также тем, что прирабатываемая вставка выполнена в виде фасонного бруска, размеры и форма которого обеспечивают при соединении элементов в кольцо, формирование полного торцевого уплотнения турбомашины, а его размеры составляют: длина от 20 мм до 700 мм, ширина от 10 мм до 70 мм, высота от 5 мм до 50 мм и радиус кривизны по длине элемента, по его прирабатываемой поверхности от 200 мм до 3000 мм.

Исследованиями авторов было установлено, что в определенных условиях возможно создание материала для уплотнений, обладающего, с одной стороны, достаточно высокими механической прочностью и износостойкостью, позволяющими изготавливать из него элементы уплотнений, не разрушающиеся в условиях эксплуатации, а с другой -обладать высокой прирабатываемостью. Совмещение высокой механической прочности и прирабатываемости в разработанном материале для уплотнений объясняется, в частности, тем, что адгезионная прочность частиц наполнителя, образующего материал, весьма высока, тогда как в результате мгновенного ударного-теплового воздействия в условиях эксплуатации уплотнения на отдельную частицу наполнителя кинетическая энергия удара переходит в тепловую энергию. В результате этого, адгезионная прочность на границе рассматриваемой частицы резко снижается и в результате удара происходит его отрыв. В целом же процесс прирабатываемости уплотнения складывается из совокупности единичных процессов отрыва частиц наполнителя в результате снижения адгезионной прочности на границе каждой частицы. Кроме того, отрыв и унос частицы приводит к отводу излишней теплоты из зоны приработки и не позволяет нагреваться основной массе материала. Таким образом реализуется совмещение адгезионной прочности соединения частиц наполнителя, составляющей величину от 20 до 100% прочности частиц и локальной адгезионной прочности соединения частиц в зоне контакта с контртелом от 0,5 до 3% от прочности частиц.

Однако, для реализации описанного механизма прирабатываемости уплотнения необходимо обеспечить ряд условий. К этим условиям относятся: осуществление спекания в пресс-форме частиц порошка прирабатываемого материала с образованием элемента уплотнения заданной формы и размеров; использование в качестве прирабатываемого материала состава, в вес. %: Сr - от 10,0% до 18,0%, Мо - от 0,8% до 3,7%, Fe, или Ti, - остальное, или сплав состава: Сr - от 18% до 34%; Ni - остальное, или сплав состава, в вес. %: Сr - от 18% до 34%; Fe - от 16% до 30%; Ni - остальное, с размерами частиц порошка от 30 мкм до 100 мкм, а в качестве порошковой добавки использованы гексагональный нитрид бора с размерами частиц порошка от 20 мкм до 100 мкм в количестве от 4,0% до 5,0% от общего объема материала уплотнения и фторид кальция с размерами частиц порошка от 20 мкм до 100 мкм в количестве от 6,0% до 8,0% от общего объема материала уплотнения.

На фиг. показано сечение прирабатываемого уплотнения. Фиг. содержит: 1 - прирабатываемая вставка, 2 - прямоугольная часть сечения прирабатываемой вставки, 3 - трапецеидальная часть прирабатываемой вставки, 4 - гребешок, 5 - фаска гребешка, 6 - рабочая прирабатываемая зона. В - габаритная ширина фасонного бруска, Н - высота фасонного бруска, h1 - высота прямоугольной части фасонного бруска, h2 - суммарная высота прямоугольной и трапецеидальной части фасонного бруска.

Пример. Прирабатываемая вставка уплотнения турбины была выполнена в виде фасонного бруска. Размеры фасонного бруска прирабатываемого уплотнения составляли: длина: 20 мм; 50 мм; 100 мм; 200 мм; 500 мм; 700 мм; ширина (В, фиг.): 10 мм; 20 мм; 40 мм; 70 мм; высота: 5 мм; 10 мм; 30 мм; 50 мм; радиус кривизны по длине элемента, по его притираемой поверхности: 200 мм; 400 мм; 1200 мм; 2300 мм; 3000 мм.

Фасонный брусок имел следующее поперечное сечение (фиг.): у основания брусок имел форму прямоугольника 2, на котором расположена равнобедренная трапеция 3, причем боковые стороны прямоугольника переходили в боковые стороны равнобедренной трапеции, а последние переходили в боковые стороны гребешков 4, расположенных перпендикулярно верхнему основанию трапеции 3. Гребешки 4 были выполнены высотой от 40 до 60% от всей высоты фасонного бруска [35%- неудовлетворительный результат (Н.Р.); 40% - удовлетворительный результат (У.Р.); 50% - (У.Р.); 60% - (У.Р.); 65%-(Н.Р.)], толщиной от 6 до 14% от габаритной ширины бруска [5% - (Н.Р.); 6% - (У.Р.); 50% - (У.Р.); 10% - (У.Р.); 14% - (У.Р.); 16% - (Н.Р.)] и образуют в пространстве между гребешками рабочую прирабатываемую зону 5, причем на верхних торцах гребешков с внешней стороны каждого под углом от 45 до 60 градусов к основанию фасонного бруска выполнена фаска 5 [40° (Н.Р.); 45° - (У.Р.); 50° - (У.Р.); 55° - (У.Р.); 65° - (У.Р.); 70° - (Н.Р.)], обеспечивающая уменьшение площади торца гребешка 40-70%, а высота прямоугольника h1 у основания составляет от 9 до 20% [7%-(Н.Р.); 9% - (У.Р.); 14% - (У.Р.); 20% - (У.Р.); 24% - (Н.Р.)], высота трапеции 3 от 20 до 46% [18%-(Н.Р.); 20% - (У.Р.); 30% - (У.Р.); 46% - (У.Р.); 50% - (Н.Р.)] от общей высоты В фасонного бруска, причем все упомянутые переходы поверхностей выполнены плавными.

В качестве материалов для получения прирабатываемой вставки уплотнения использовался металлический порошок следующих составов: 1) [Сr - 9,0%, Мо - 0,6%, Fe - остальное] - (Н.Р.); 2) [Сr - 10,0%, Мо - от 0,8%, Fe - остальное] - (У.Р.); 3) [Сr - 14,3%, Мо - 2,6%, Fe - остальное] - (У.Р.); 4) [Сr - 18,0%, Мо - 3,7%, Fe - остальное] - (У.Р.); 5) [Сr - 8,0%, Мо - 0,7%, Ti - остальное] - (Н.Р.); 6) [Сr - 10,0%, Мо - от 0,8%, Ti - остальное] - (У.Р.); 7) [Сr - 14,3%, Мо - 2,6%, Ti - остальное] - (У.Р.); 8) [Сr - 18,0%, Мо - 3,7%, Ti - остальное] - (У.Р.); 9) [Сr - от 16%; Ni -остальное] - (Н.Р.); 10) [Сr - от 18%; Ni - остальное] - (У.Р.); 11) [Сr -34%; Ni - остальное] - (У.Р.); 12) [Сr - 16%; Fe - 14%; Ni - остальное] - (Н.Р.); 13) Сr - 18%; Fe - 16%; Ni - остальное] - (У.Р.); 14) Сr - 34%; Fe 30%; Ni - остальное] - (У.Р.).

Прирабатываемая вставка была изготовлена спеканием в вакууме, при остаточном давлении в камере не хуже 10-2 мм рт.ст. Спекание заготовок производилось при температуре от 1100 до 1200°С, [(от 1100°С до 1200°С)±100°С], в электропечи ОКБ 8086. Давление прессования при изготовлении заготовок прирабатываемого уплотнения было равным: 40 кгс/мм2; 50 кгс/мм2; 60 кгс/мм2; 70 кгс/мм2. Механические свойства полученного материала составили: твердость НВ от 139 до 147; σв=29,1…37,2 кгс/мм2; σт=17,1…25,8 кгс/мм2; ударная вязкость 1,16…1,57 кгм/см2. Результаты испытаний образцов уплотнений из разработанного материала в условиях эксплуатации показали сочетание высоких прочностных характеристик уплотнений, с хорошей прирабатываемостью.

1. Прирабатываемая вставка уплотнения турбины, выполненная из адгезионно соединенных между собой путем спекания частиц порошкового наполнителя, составляющего основу материала уплотнения, и порошковых добавок, отличающаяся тем, что она выполнена в виде фасонного бруска с гребешками с размерами и формой, обеспечивающими при кольцевом соединении формирование полного торцевого уплотнения турбины, причем фасонный брусок имеет в поперечном сечении у основания форму прямоугольника, на котором расположена равнобедренная трапеция, при этом боковые стороны прямоугольника переходят в боковые стороны равнобедренной трапеции, а последние переходят в боковые стороны гребешков, расположенных перпендикулярно верхнему основанию трапеции, причем гребешки имеют высоту от 40 до 60% от всей высоты фасонного бруска, толщину от 6 до 14% от габаритной ширины фасонного бруска и образуют в пространстве между гребешками рабочую прирабатываемую зону, при этом на верхних торцах гребешков с внешней стороны каждого под углом от 45 до 60 градусов к основанию фасонного бруска выполнена фаска, обеспечивающая уменьшение площади торца гребешка 40-70%, а высота прямоугольника у основания составляет от 9 до 20%, высота трапеции - от 20 до 46% от общей высоты фасонного бруска, причем все упомянутые переходы поверхностей выполнены плавными.

2. Прирабатываемая вставка по п. 1, отличающаяся тем, что в качестве материала наполнителя использован сплав состава, вес.%: Сr - от 10,0 до 18,0, Мо - от 0,8 до 3,7, Fe или Ti - остальное, или сплав состава: Сr - от 18 до 34, Ni - остальное, или сплав состава, вес.%: Сr - от 18 до 34, Fe - от 16 до 30, Ni - остальное с размерами частиц порошка от 30 до 100 мкм, а в качестве порошковой добавки использованы гексагональный нитрид бора с размерами частиц порошка от 20 до 100 мкм в количестве от 4,0 до 5,0% от общего объема материала уплотнения и фторид кальция с размерами частиц порошка от 20 до 100 мкм в количестве от 6,0 до 8,0% от общего объема материала уплотнения.

3. Прирабатываемая вставка по п. 2, отличающаяся тем, что в качестве порошковой добавки она дополнительно содержит, вес.%: от 0,8 до 1,2 BaSO4 с размерами частиц от 20 до 100 мкм.

4. Прирабатываемая вставка по любому из пп. 1-3, отличающаяся тем, что она выполнена в виде фасонного бруска, размеры и форма которого обеспечивают при соединении элементов в кольцо формирование полного торцевого уплотнения турбомашины, длина составляет от 20 до 700 мм, ширина - от 10 мм до 70 мм, высота - от 5 мм до 50 мм и радиус кривизны по длине элемента по его прирабатываемой поверхности - от 200 до 3000 мм.



 

Похожие патенты:

Неподвижный компонент турбомашины содержит корпус, имеющий базовую поверхность, которая обращена к вращающемуся компоненту турбомашины и имеет фигурные выступы, связующий слой и верхний слой.

Модуль газотурбинного двигателя, содержащий подвижное колесо, установленное с возможностью вращения внутри картера модуля и окруженное сегментированным уплотнительным кольцом (18), которое содержит кольцевой ряд секторов кольца, при этом каждый сектор кольца содержит по меньшей мере один окружной крючок, выполненный с возможностью взаимодействия с кольцевой направляющей крепления картера, при этом модуль дополнительно содержит сегментированную кольцевую защитную прокладку (50), которая установлена между крючками секторов кольца и направляющей картера и содержит кольцевой ряд секторов прокладки, отличающийся тем, что края (60) окружных концов секторов прокладки не совмещены с краями (58) окружных концов секторов кольца вдоль продольной оси модуля.

Группа изобретений относится к системе закрепления детали перед ее герметизацией и/или нанесением на нее истираемого материала и способу закрепления посредством системы.

Изобретение относится к спеченному уплотнительному материалу для газотурбинных двигателей. Материал содержит порошок нитрида бора, порошок нихрома и порошок карбонильного никеля, при этом содержание порошка карбонильного никеля составляет 10-15 мас.% от содержания порошка нихрома.

Изобретение относится к авиадвигателестроению, а именно к конструкции вентиляторов, в частности к межлопаточным платформам вентилятора и способам их изготовления из композиционных материалов.

Осевая турбомашина содержит компрессор со статором, включающий стенку, а также круглый или полукруглый ряд лопаток статора. Стенка выполнена круглой или в виде дуги окружности и содержит направляющую поверхность, предназначенную для направления потока турбомашины.

Роторное устройство для турбомашины содержит диск, лопатки, уплотнительный фланец, промежуточное кольцо и уплотнение. На наружной периферии диска расположены чередующиеся пазы и зубцы, проходящие в нижнем по потоку направлении на диске.

Изобретение относится к области турбостроения и может быть использовано в качестве сигнализатора предаварийного состояния в связи с уменьшением величины радиального зазора в проточной части турбомашины в уплотнениях на периферии ступеней или в концевых (промежуточных) уплотнениях валов.

Изобретение относится к области турбостроения. Способ восстановления работоспособности сотового уплотнения при ремонте, отличающийся тем, что толщина стенок сот более 0,3 мм, обработку торцевых поверхностей сот выполняют шлифованием до остроты прямоугольной формы торцов стенок сот, при этом восстановление величины монтажного зазора в сотовом уплотнении осуществляется за счет смещения сотоблока в радиальном направлении боковыми пластинами, в которых крепятся сегменты уплотнения.

Узел ротора газовой турбины содержит корпус ротора, стопорную пластину и уплотнительную проволоку. Корпус ротора содержит участок елочного типа, выполненный с возможностью размещения соответствующего участка елочного типа лопатки, и окружную канавку, выполненную вблизи участка елочного типа ротора.

Изобретение относится к области металлургии, а именно к способам изготовления элементов конструкции из сплава на основе никеля, и может быть использовано в конструкциях, работающих при повышенных температурах.

Изобретение относится к изготовлению полых дисков роторов турбин газотурбинных двигателей. Полый диск ротора турбины изготавливают в виде единой детали методом трехмерной печати, содержащей ступицу, полотно, включающее две стенки, образующие полость, и обод.

Группа изобретений относится к упрочняющей композитной вставке, которая может быть использована при изготовлении детали турбогенераторного двигателя. Упрочняющая композитная вставка включает прядь, образованную центральным волокном из керамического материала, окруженным нитями из металлического сплава, навитыми по спирали вокруг центрального волокна, и упрочняющий металлический слой, покрывающий прядь.

Изобретение относится к изготовлению полого диска газотурбинного двигателя. Диск выполняют в виде единой детали методом гетерофазной лазерной металлургии путем наложения кольцевых валиков из порошкового материала слоями с произвольным перекрытием валиков по периферии с шагом 1,3-1,5 мм и высотой 0,6-0,8 мм.
Изобретение относится к изготовлению компонента газотурбинного двигателя из металлического порошка. Способ включает аддитивное изготовление компонента и его термическую обработку.

Изобретение относится к оборудованию для изготовления электрических машин. Устройство для изготовления ротора самотормозящегося асинхронного электродвигателя, имеющего монотонно изменяющуюся магнитную симметрию в радиальном направлении, содержит сборную пресс-форму, состоящую из полого цилиндра, подвижного дна в форме диска, выполненного по внутреннему диаметру полого цилиндра, и вставки.

Изобретение относится к устройствам для прессования изделий из порошков. Устройство содержит матрицу, внутри которой установлен пуансон, и пуансон-матрицу, выполненную составной с глухой формующей полостью, которая примыкает к торцу матрицы.

Изобретение относится к автомобильной промышленности, в частности к способу изготовления шипа для защиты от проскальзывания, при этом шип для защиты от проскальзывания выполнен в виде одной части или нескольких частей по меньшей мере из одной опорной части и одного изнашиваемого штифта.

Изобретение может быть использовано на нефтяных месторождениях. Скважинный инструмент содержит вставку 400, включающую внутренний компонент 410 и металлическое покрытие 420, вокруг, по меньшей мере, части поверхности внутреннего компонента.

Изобретение относится к области авиации, ракетостроения и космонавтики, в частности к лейнерам, которые используются в баллонах высокого давления. Способ изготовления тонкостенного бесшовного лейнера для композитных баков из титановых сплавов включает засыпку гранул из высокопрочного титанового сплава в металлическую капсулу.

Изобретение относится к способу ремонта компонента турбинного двигателя. Способ ремонта компонента турбинного двигателя включает послойное изготовление заготовки путем селективного плавления порошка, содержащего смесь материала припоя и основного материала, идентичного или подобного материалу указанного компонента, и присоединение заготовки к компоненту турбинного двигателя диффузионной пайкой.
Наверх