Корреляционно-фазовый пеленгатор



Корреляционно-фазовый пеленгатор
Корреляционно-фазовый пеленгатор
Корреляционно-фазовый пеленгатор

Владельцы патента RU 2703715:

Акционерное общество научно-внедренческое предприятие "ПРОТЕК" (RU)

Изобретение относится к области радионавигации и может быть использовано для определения угловых координат источников фазоманипулированных радиосигналов с известной структурой при наличии радиопомех. Достигаемый технический результат - определение местоположения источников фазоманипулированных сигналов с заранее известной структурой. Технический результат достигается тем, что корреляционно-фазовый пеленгатор содержит две антенны, два высокочастотных блока, два демодулятора, два спектроанализатора, блок сравнения спектров, два запоминающих устройства, измеритель задержки между максимумами взаимно-корреляционных функций и два согласованных фильтра, обеспечивающих на своих выходах формирование взаимно-корреляционных функций между входным фазоманипулированным сигналом и кодом, содержащимся в них, при этом перечисленные средства определенным образом соединены между собой. 1 ил.

 

Изобретение относится к области радионавигации и может быть использовано для определения угловых координат источников фазоманипулированных радиосигналов с известной структурой при наличии радиопомех.

Известен фазовый пеленгатор [1], содержащий две антенны, два усилителя высокой частоты, фазовый детектор, логарифмические видеоусилители, аналоговый сумматор, аналого-цифровые преобразователи, обнаружитель импульсных сигналов, вычислитель разности фаз, блок формирования кода мощности, блок формирования кода коррекции и цифровой сумматор, определенным образом соединенные между собой.

Известен фазовый пеленгатор [2], содержащий первый и второй антенные входы, первый и второй приемные устройства, гетеродин, первый, второй и третий преобразователи частоты, фильтр суммарной частоты, первый и второй узкополосные фильтры, фазометр.

Эти пеленгаторы используют фазовый принцип пеленгации, когда радиоволна с плоским фронтом образует на выходах антенн когерентные сигналы, разность фаз Δϕ между которыми зависит от направления а на пеленгуемый источник излучения

где d - расстояние между антеннами (база), λ - длина волны.

Недостатком этих пеленгаторов является невозможность корректного определения направления на объект при углах, приводящих к задержке принимаемых сигналов больше длительности периода несущей частоты.

Известен корреляционно-фазовый пеленгатор [3], используемый в качестве прототипа, содержащий две антенны, два высокочастотных (ВЧ) блока, два демодулятора, два спектроанализатора, блок сравнения спектров, два запоминающих устройства, коррелятор. В этом пеленгаторе устраняется неоднозначность, вызванная периодическим характером несущей частоты сигнала, что обеспечивается демодуляторами, выделяющими низкочастотную составляющую сообщения, находящегося в принимаемом сигнале.

Общим недостатком известных фазовых пеленгаторов является отсутствие возможности использования структуры фазоманипулированного сигнала для определения направления его прихода при наличии помех.

Техническая задача настоящего изобретения заключается в определении местоположения источников фазоманипулированных сигналов с заранее известной структурой.

Технический результат достигается тем, что в корреляционно-фазовый пеленгатор, содержащий две антенны, два высокочастотных ВЧ-блока, два демодулятора, два спектроанализатора, блок сравнения спектров, два запоминающих устройства (ЗУ), введены два согласованных фильтра, обеспечивающих на своих выходах формирование взаимно-корреляционных функций между входным фазоманипулированным сигналом и кодом, содержащимся в них, при этом входы согласованных фильтров подключены к выходам высокочастотных блоков, а выходы - к входам демодуляторов, и измеритель задержки между максимумами взаимно-корреляционных функций, один из входов которого подключен к выходу блока сравнения спектров, а два других входа подключены соответственно к выходам запоминающих устройств.

Сущность изобретения поясняется чертежом.

На Фиг. 1 приведена функциональная схема предлагаемого корреляционно-фазового пеленгатора.

Корреляционно-фазовый пеленгатор содержит антенны 1 и 2, согласованные фильтры 13 и 14, высокочастотные блоки 3 и 4, демодуляторы 5 и 6, спектроанализаторы 7 и 8, блок сравнения спектров 9, запоминающие устройства (ЗУ) 10 и 12, измеритель задержки 11, выход которого является информационным выходом т пеленгатора.

Антенны 1 и 2 соединены соответственно с входами высокочастотных блоков 3 и 4, выходы которых подключены к входам согласованных фильтров 13 и 14, выходы согласованных фильтров соединены соответственно с входами демодуляторов 5 и 6, выходы которых соединены соответственно со входами спектроанализаторов 7 и 8, выходы которых подключены ко входам блока 9 сравнения спектров, выход которого соединен с разрешающим входом Е измерителя задержки 11, первый информационный вход X которого соединен с выходом ЗУ 10, вход которого соединен с выходом демодулятора 5, второй информационный вход У измерителя задержки 11 соединен с выходом ЗУ 12, вход которого соединен с выходом демодулятора 6. выход измерителя задержки 11 является информационным выходом корреляционно-фазового пеленгатора.

Определение угловой координаты α источника излучения радиоволн, которым является пеленгуемый объект, осуществляется путем измерения разности времен прихода фронта волны к двум разнесенным на расстояние d приемным антеннам 1 и 2. По результатам оценки задержки τ находят искомый угол

α=arcsin(τ/d).

Работает корреляционно-фазовый пеленгатор следующим образом.

Антенны 1 и 2 принимают радиоизлучение от пеленгуемого объекта. Предполагаются априорно известными код фазовой модуляции, используемый при передаче информации от объекта, и значение несущей частоты.

Селектированные по известным несущим частотам и усиленные в высокочастотных блоках 3, 4 сигналы направляются в согласованные фильтры 13 и 14, обеспечивающие на своих выходах формирование взаимно-корреляционных функций между входным фазоманипулированным сигналом и кодом, содержащимся в согласованных фильтрах. Взаимно-корреляционные функции поступают в демодуляторы 5, 6 для устранения высокочастотных составляющих и выделения их огибающих.

Полученные низкочастотные сигналы направляются в спектроанализаторы 7, 8 для определения их спектра за время анализа t и одновременно в ЗУ 10, 12, в которых задерживаются на время t. Далее по истечении времени анализа t результаты определения спектров направляются в блок сравнения спектров 9, назначением которого является вычисление количественного показателя, по значению которого можно было бы судить, насколько похожи спектры сигналов, полученные в результате согласованной фильтрации и демодуляции принятых пеленгатором высокочастотных сигналов. При принятии блоком 9 решения о высокой степени похожести спектров на его выходе формируется сигнал Е, разрешающий работу измерителя задержки 11.

Разрешение на работу измерителя задержки 11 выдается только в случае идентичности спектров, а идентичность спектров улучшается за счет использования согласованных фильтров. Если по результатам сравнения в блоке 9 будет установлено, что спектры демодулированных сигналов недостаточно похожи, то сигнал Е разрешения работы измерителя задержки 11 не выдается и поступающая с выходов ЗУ 10, 12 информация в измерении задержки не участвует.

Назначение измерителя задержки 11 состоит в определении относительного временного сдвига между взаимно-корреляционными функциями, поступающими на его информационные входы X, Y. Указанный временной сдвиг является оценкой т задержки, по значению которой определяют искомый угол α.

Из приведенного описания видно, что для оценки временного сдвига используются не высокочастотные сигналы, а сигналы, прошедшие корреляционную обработку с помощью согласованных фильтров, обеспечивающую выделение искомого фазоманипулированного сигнала на фоне помех в виде взаимно-корреляционных функций, и демодуляцию, устраняющую высокочастотные колебания. Благодаря этому обеспечивается повышение отношения сигнал/помеха и устранение неоднозначности определения пеленга, вызванной периодичностью высокочастотных несущих, а, следовательно, расширяется диапазон измерения угловых координат.

Литература

1. Патент №2362179 РФ, МПК G01S 3/46. Фазовый пеленгатор / Смирнов В.Н., Седунов Э.И. (РФ); ФГУП «Центральное конструкторское бюро автоматики» (РФ). - №2007144853; Заявлено 03.12.2007. Опубл. 20.07.2009, Бюл. №20, - 8 с.: 3 ил.

2. Патент 2454715 РФ, МПК G06G 7/78, G01S 3/00. Фазовый пеленгатор / Березовский В.А., Золотарев И.Д., Лапшин С.А., Привалов Д.Д. (РФ); Открытое акционерное общество «Омский научно-исследовательский институт приборостроения» (РФ). - №2011118696; Заявлено 10.05.2011. Опубл. 27.06.2012, Бюл. №18, - 6 с.: 1 ил.

3. Патент №2474835 РФ, МПК G01S 3/46. Корреляционно-фазовый пеленгатор / Чеботарев А.С., Аванесян Г.Р., Жуков А.О., Турлов 3.Т., Смирнова О.В. (РФ). - №2011139169; Заявлено 26.2009.2011. Опубл. 10.02.2013, Бюл. №4, - 7 с.: 2 ил.

Корреляционно-фазовый пеленгатор содержит две антенны, два высокочастотных блока, два демодулятора, два спектроанализатора, блок сравнения спектров, два запоминающих устройства, антенны подключены ко входам высокочастотных блоков, выходы демодуляторов соединены соответственно со входами запоминающих устройств и спектроанализаторов, выходы спектроанализаторов подключены ко входам блока сравнения спектров, отличающийся тем, что в него дополнительно введены два согласованных фильтра, обеспечивающие формирование взаимно-корреляционных функций фазоманипулированных сигналов, и измеритель задержки, входы первого и второго согласованных фильтров соединены с соответствующими выходами первого и второго высокочастотных блоков, выходы первого и второго согласованных фильтров соединены с соответствующими входами первого и второго демодуляторов, один из входов измерителя задержки подключен к выходу блока сравнения спектров, а два других входа подключены соответственно к выходам запоминающих устройств, выходом пеленгатора является выход измерителя задержки.



 

Похожие патенты:

Изобретение относится к области радиолокации, в частности к наземно-космическим радиолокационным комплексам. Достигаемый технический результат – расширение возможностей по обнаружению воздушных и космических объектов.

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения перемещения транспортных средств с использованием эффекта Доплера для электромагнитных волн.

Способ относится к радиолокации и радионавигации и предназначен для определения оценок местоположения подвижных источников радиосигнала (ИР) на дорожной сети. Достигаемый технический результат - повышение точности определения координат ИР на дорожной сети.

Изобретение относится к пассивным системам наблюдения за объектами с помощью сканирующего радиометра миллиметрового диапазона длин волн. Достигаемый технический результат - повышение пространственного разрешения.

Изобретение относится к радиотехнике и может быть использовано в системах обнаружения и пеленгования источников радиоизлучения (ИРИ) в условиях априорной неопределенности относительно поляризационных и пространственных параметров радиосигналов, шумов и помех, когда налагаются ограничения на габаритные размеры пеленгаторной антенной системы.

Изобретение относится к радиоприемным устройствам с квадратурной цифровой обработкой сигналов и может быть использовано в радиолокационных станциях. Достигаемый технический результат - расширение динамического диапазона по входу устройства при одновременном сохранении информации об уровне сигнала на квадратурных цифровых выходах радиоприемного устройства и передача нулевых частот в спектре полезного сигнала при одновременной компенсации паразитной постоянной составляющей на выходе аналого-цифрового преобразователя (АЦП).

Изобретение относится к радиоприемным устройствам с квадратурной цифровой обработкой сигналов и может быть использовано в радиолокационных станциях. Достигаемый технический результат - расширение динамического диапазона по входу устройства при одновременном сохранении информации об уровне сигнала на квадратурных цифровых выходах радиоприемного устройства и передача нулевых частот в спектре полезного сигнала при одновременной компенсации паразитной постоянной составляющей на выходе аналого-цифрового преобразователя (АЦП).

Изобретение относится к области радиотехники, в частности к способам и технике радиотехнического мониторинга источников радиоизлучений (ИРИ) с линейно-частотно-модулированным (ЛЧМ) сигналами.

Изобретение относится к области оптико-электронной техники и может быть использовано в лазерных локационных системах, системах оптико-электронного противодействия, а также системах защиты оптико-электронных средств (ОЭС) от мощного лазерного излучения.

Изобретение относится к области радиолокации, а именно к радиолокационным системам. Достигаемый технический результат - создание малогабаритной многорежимной бортовой радиолокационной системы для оснащения перспективных беспилотных и вертолетных систем с целью выполнения мониторинга земной поверхности при проведении поисково-спасательных и специальных операций, а также охраны прибрежной акватории.

Изобретение относится к радиотехнике и может быть использовано в системах обнаружения и пеленгования источников радиоизлучения (ИРИ) в условиях априорной неопределенности относительно поляризационных и пространственных параметров радиосигналов, шумов и помех, когда налагаются ограничения на габаритные размеры пеленгаторной антенной системы.

Изобретение относится к радионавигации и может использоваться для определения пространственных координат движущегося объекта и управления его движением в зонах навигации.

Изобретение относится к области охранной сигнализации, а именно к системам охраны объектов и их периметра, а также к информационным мониторинговым системам и может быть использован для всесуточного и всепогодного обнаружения подвижных нарушителей.

Изобретение относится к области радиотехники, навигации и может быть использовано для определения трехмерных координат летательного аппарата дальномерным методом при расположении станций с известными координатами на равнинной местности.

Изобретение относится к системам радиоконтроля для определения координат местоположения источников радиоизлучения (КМПИРИ) УКВ-СВЧ диапазонов как цифровых, так и аналоговых видов связи, сведения о которых отсутствуют в базе данных (например, государственной радиочастотной службы).

Изобретение относится к радионавигации и может использоваться для определения пространственных координат движущегося объекта и управления его движением в зонах навигации.

Изобретение относится к фазовым пеленгаторам и предназначено для использования в авиационных системах радиомониторинга для пеленгации источников радиоизлучений.

Изобретение относится к радиотехнике и может быть использовано в системах наблюдения за радиотехнической обстановкой в составе комплекса или как самостоятельное устройство.

Изобретение относится к области радиолокации, радионавигации и может быть использовано для определения угловых координат источников излучения сигналов. Достигаемым техническим результатом изобретения является повышение точности измерений.

Изобретение относится к области радиолокации, радионавигации и может быть использовано для определения угловых координат источников излучения сигналов. Достигаемый технический результат изобретения заключается в повышении точности определения направляющего угла на источник излучения за счет учета формы спектра принимаемых сигналов.

Изобретение относится к радиотехнике и может быть использовано в системах наблюдения за радиотехнической обстановкой в составе комплекса или как автономное устройство.
Наверх