Лазер с поперечной диодной накачкой

Изобретение относится к лазерной технике, а именно к импульсным твердотельным лазерам. Лазер с поперечной диодной накачкой содержит активный элемент и параллельно расположенный источник накачки в виде линейки лазерных диодов. В состав введены два отражателя, установленных вдоль продольной оси активного элемента на всем протяжении источника накачки и расположенных по разную сторону от поперечной оси, соединяющей центр активного элемента и линейку лазерных диодов, под углами к этой оси, при которых энергия выходного лазерного излучения максимальна. Отражатели одной своей стороной примыкают к активному элементу на минимально возможном расстоянии от него и перекрывают своей поверхностью излучение накачки, включая крайние лучи с углами, близкими к ϕmax. Расстояние L от линейки лазерных диодов до оси активного элемента диаметром 2r удовлетворяет условию, где αmax - половина угла расходимости излучения накачки. Отражатели могут иметь кривизну в плоскости поперечного сечения активного элемента. Также могут быть введены несколько источников накачки с отражателями по периферии активного элемента. Технический результат заключается в обеспечении возможности повышения КПД накачки. 2 з.п. ф-лы, 3 ил.

 

Изобретение относится к лазерной технике, а именно, к импульсным твердотельным лазерам.

Известны твердотельные лазеры, содержащие активный элемент и параллельно расположенный источник оптической накачки в виде газорязрядной лампы [1]. Такие лазеры имеют значительные энергетические потери ввиду несовпадения спектра излучения ламп со спектром поглощения активного элемента.

Этот недостаток устранен в лазерах с полупроводниковой накачкой. Наиболее близким по технической сущности к предлагаемому техническому решению является лазерный излучатель, описанный в [2].

Указанный лазерный излучатель содержит активный элемент с параллельно расположенным источником накачки в виде линейки лазерных диодов. Такая конфигурация устройства характеризуется неравномерным освещением активного элемента - во-первых, из-за высокой расходимости излучения лазерных диодов в поперечном сечении устройства, во-вторых, вследствие колоколообразого характера распределения интенсивности излучения лазерных диодов в этом сечении. Вследствие этого неизбежны апертурные потери энергии излучения накачки и неравномерное распределение энергии накачки в объеме активного элемента. Все это приводит к снижению эффективности накачки и уменьшению выходной энергии лазера.

Задачей изобретения является повышение КПД и увеличение выходной энергии лазера.

Поставленная задача решается за счет того, что в известном лазере с поперечной диодной накачкой, содержащем активный элемент и параллельно расположенный источник накачки в виде линейки лазерных диодов, введены два отражателя, установленных вдоль продольной оси активного элемента на всем протяжении источника накачки и расположенных по разную сторону от поперечной оси, соединяющей центр активного элемента и линейку лазерных диодов, под углами к этой оси, при которых энергия выходного лазерного излучения максимальна, причем отражатели одной своей стороной примыкают к активному элементу на минимально возможном расстоянии от него и перекрывают своей поверхностью излучение накачки, включая крайние лучи с углами, близкими к ϕmax, а расстояние L от линейки лазерных диодов до оси активного элемента диаметром 2r удовлетворяет условию , где ϕmax - половина угла расходимости излучения накачки.

Отражатели могут иметь кривизну в плоскости поперечного сечения активного элемента, при которой энергия выходного лазерного излучения максимальна

По периферии активного элемента могут быть введены несколько источников накачки с отражателями.

На фиг. 1 представлена конструкция лазера. Фиг. 2 иллюстрирует принцип действия устройства. На фиг. 3 показано распределение энергии излучения накачки в поперечном сечении активного элемента - исходное и откорректированное зеркалами при разном угле наклона.

Лазер (фиг. 1, 2) включает источник накачки 1, с линейкой лазерных диодов 2, активный элемент 3 и отражатели 4, 5.

Устройство работает следующим образом.

Часть излучения накачки от источника 1, распространяющаяся в пределах угла 2ϕ≤2ϕr, непосредственно попадает на активный элемент 3. В обозначениях фиг. 2, 3 tgϕr=r/L, где r - половина диаметра активного элемента, a L - расстояние от линейки лазерных диодов 2 до оси активного элемента 3. Лучи с углами ϕ>ϕr отклоняются в сторону активного элемента отражателями 4, 5. При этом происходит зеркальное оборачивание боковых ветвей углового распределения накачки на его центральную часть (фиг. 3) - так, что максимальные значения энергетической плотности отраженных в сторону активного элемента боковых ветвей излучения оказываются у краев активного элемента, а минимальные - в его центральной части. Тем самым, во-первых, устраняются апертурные потери излучения накачки, а, во-вторых, выравнивается колоколообразный характер углового распределения [3], и его вершина становится более прямоугольной или даже вогнутой. Оптимальный выбор расстояния L и угла α позволяет сформировать такое распределение излучения накачки, при котором происходит наиболее равномерное возбуждение активного элемента во всем его объеме. При этом обеспечивается максимальная эффективность накачки, благодаря чему реализуются максимальный КПД и максимальная энергия выходного излучения лазера. На фиг. 3 показан характер распределения энергии в сечении активного элемента при разных значениях углов α для левой ветви распределения (α1) и правой ветви (α2). Видно (фиг. 3), что при меньшем значении α=α2 формируется более пологая вершина распределения излучения накачки. Если источник накачки расположен вплотную к активному элементу, т.е. ϕmaxr, то коррекция формы распределения энергии невозможна. Этим обусловлено ограничение на расстояние .

При необходимости, если первичное угловое распределение излучения не позволяет сформировать оптимальное распределение с помощью прямых отражателей, то отражатели могут быть выполнены с кривизной R в поперечном сечении, как отражатель 5 на фиг 2 (на фиг. 1 этот отражатель условно не показан). При указанном направлении изгиба отражателя расходимость излучения после отражателя увеличивается, а при противоположном направлении изгиба - уменьшается. Благодаря этому обеспечивается возможность более эффективного использования боковых ветвей излучения накачки при больших значениях угла ϕmaxr.

Для ускорения процесса накачки и выравнивания распределения накачки в объеме активного элемента могут быть введены несколько источников накачки с отражателями по периферии активного элемента - два источника с противоположных сторон активного элемента или три источника, центральносимметрично расположенные вокруг активного элемента под углами 120° один относительно другого.

Пример 1.

Нормированное распределение плотности энергии Е в поперечном сечении излучения накачки имеет колоколообразную синусквадратную форму [3]

при условии

где ϕmax - половина полного угла расходимости излучения накачки;

w - масштабный коэффициент.

Если ϕmax=20°, то из (2) следует w=90/20=4,5.

Если уровень плотности Е(ϕ) на краю активного элемента равен Е(ϕr)=0,5, то

Поскольку tgϕr=r/L, то при r=2 мм расстояние L=2/tg(10°)=11,3 мм.

Пример 2.

Пусть L1 - расстояние от линейки лазерных диодов до точки касания отражателя лучом, падающим под углом ϕ (фиг. 2). В обозначениях фиг. 2 выполняется соотношение

Откуда

Пусть L=11 мм, L1=2 мм, r=2 мм, ϕ=20° (крайний луч).

Тогда

На фиг. 3 показан характер влияния угла α на форму отраженных в сторону активного элемента ветвей исходного распределения 6. Отраженные ветви показаны пунктиром на фоне суммарного распределения 7.

Фиг 2 иллюстрирует форму отражателя в зависимости от положения его края со стороны активного элемента. Видно, что при минимально возможном расстоянии между ними отражатель 5 располагается более компактно, а при увеличении этого расстояния увеличивается необходимый угол α и появляется необходимость искривления отражателя 4 радиусом R для обеспечения оптимального угла расходимости отраженного излучения.

Оптимальные значения параметров L, R и α определяются экспериментально в зависимости от распределения интенсивности на выходе источника накачки и формы активного элемента, а также в зависимости от ограничений на габариты лазера.

Предлагаемый лазер имеет следующие преимущества.

- Благодаря введению отражателей с предлагаемыми параметрами излучение накачки фокусируется на активном элементе более узким пучком.

- Распределение излучения накачки в сечении активного элемента обеспечивает равномерную прокачку активного элемента и, соответственно, оптимальное использование энергии накачки для возбуждения активного элемента во всем его объеме.

Указанные преимущества обеспечивают решение поставленной задачи: повышение КПД и увеличение выходной энергии лазера

Данный вывод подтвержден положительными результатами изготовления и испытаний макетного образца лазера. После корректировки документации по результатам испытаний лазер будет запущен в производство.

Источники информации

1. Справочник по лазерной технике. Киев, «Технiка», 1978 г., - с. 60.

2. В.Н. Быков и др. Излучатель на эрбиевом стекле с поперечной полупроводниковой накачкой и пассивной модуляцией добротности. «Квантовая электроника», 38, №3 (2008), с. 209-212 - прототип.

3. В.Г. Вильнер и др. Новые методы повышения энергии зондирующего излучения импульсных дальномеров на основе полупроводниковых лазеров. «Проблемы энергетики», №11-12, 2013 г., с. 33.

1. Лазер с поперечной диодной накачкой, содержащий активный элемент и параллельно расположенный источник накачки в виде линейки лазерных диодов, отличающийся тем, что введены два отражателя, установленных вдоль продольной оси активного элемента на всем протяжении источника накачки и расположенных по разную сторону от поперечной оси, соединяющей центр активного элемента и линейку лазерных диодов, под углами к этой оси, при которых энергия выходного лазерного излучения максимальна, причем отражатели одной своей стороной примыкают к активному элементу на минимально возможном расстоянии от него и перекрывают своей поверхностью излучение накачки, включая крайние лучи с углами, близкими к ϕmax, а расстояние L от линейки лазерных диодов до оси активного элемента диаметром 2r удовлетворяет условию , где ϕmax - половина угла расходимости излучения накачки.

2. Лазер по п. 1, отличающийся тем, что отражатели имеют кривизну в плоскости поперечного сечения активного элемента, при которой энергия выходного лазерного излучения максимальна..

3. Лазер по п. 1, отличающийся тем, что введены несколько источников накачки с отражателями по периферии активного элемента.



 

Похожие патенты:

Изобретение относится к лазерной технике. Лазерная система инфракрасного (ИК) диапазона включает в себя импульсный задающий генератор, снабженный сборками квазинепрерывных или QCW-лазерных диодов накачки, и усилитель мощности, снабжённый сборками непрерывных или CW-лазерных диодов накачки.

Твердотельное лазерное устройство с оптической накачкой содержит активный элемент (302) в резонаторе (221, 302). Несколько лазерных диодов накачки (100) выполнены с возможностью отражения излучения накачки от одной поверхности зеркала резонатора.

Высокомощный сверхъяркий малошумящий источник накачки содержит затравочный источник, который генерирует малошумящий световой сигнал, множество высокомощных полупроводниковых лазерных диодов, объединенных для испускания излучения вспомогательной накачки, и легированный Yb мультимодовый волоконный преобразователь длин волн излучения вспомогательной накачки.

Изобретение относится к способу управления импульсным режимом генерации лазерного излучения в лазерной установке на основе твердотельного лазера на кристалле Nd:YAG с диодной накачкой активной среды.

Изобретение относится к лазерной технике. Твердотельный лазер дисковидной формы включает в себя матрицу (1) полупроводниковых лазеров накачки, резонатор с кристаллом (6) дисковидной формы и выходной линзой (8), ударно-струйную систему (10) охлаждения лазерного кристалла (6) и коллиматор (2) пучка накачки.

Изобретение относится к лазерной технике и может быть использовано при создании коротковолновых источников когерентного излучения Твердотельный ап-конверсионный лазер включает ап-конверсионную лазерную среду, помещенную в оптический резонатор, и устройство накачки, включающее два полупроводниковых источника излучения на длинах волн λ1 и λ2 и волоконный модуль, расположенный таким образом, что оптические выходы обоих источников излучения накачки сопряжены с волоконным модулем, а фокусирующая система выполнена ахроматической на длинах волн λ1 и λ2 и расположена таким образом, что выход волоконного модуля сопряжен через нее с ап-конверсионной лазерной средой.

Изобретение относится к лазерной технике, а именно к конструкциям твердотельных лазеров с накачкой лазерными диодами. .

Изобретение относится к квантовой электронике и может быть использовано при работе с твердотельными, жидкостными и газовыми лазерами, применяемыми в лазерной технологии, системах передачи информации, медицине, в научных исследованиях.

Изобретение относится к лазерной технике. Многолучевой электроразрядный лазер включает в себя параллельные газоразрядные трубы, расположенные вокруг центральной оси, оптический резонатор из глухого и частично отражающего зеркал, расположенный напротив торцов газоразрядных труб перпендикулярно к их оси, и две уголковые зеркальные призмы, установленные возле противоположных торцевых поверхностей газоразрядных труб.

Изобретение относится к области лазерной техники и касается способа получения последовательности идентичных фемтосекундных импульсов. Способ включает в себя разделение излучения лазера на две части, одна из которых поступает на фотодетектор, где выделяется сигнал с частотой повторения импульсов, который смешивается с сигналом синтезатора опорной частоты повторения импульсов и поступает на блок фазовой привязки частоты повторения импульсов лазера.

Изобретение относится к лазерной технике. Лазер с модуляцией добротности и синхронизацией мод содержит активную среду, два концевых зеркала и один оптический модулятор, используемый как для модуляции добротности, так и для синхронизации мод лазера.

Изобретение относится к технологии получения соединений сложных оксидов со структурой граната, солегированных редкоземельными элементами, которые могут быть применены в технологии синтеза оптических керамических материалов лазерного качества при создании активных тел твердотельных лазеров различной геометрии.

Изобретение относится к области получения наноструктурированных порошков твердых растворов на основе иттрий-алюминиевого граната, легированных редкоземельными элементами для производства керамики, используемой в качестве активной среды твердотельного лазера, термостойкого высокотемпературного электроизоляционного материала, окон или линз в оптических приборах, оптических элементах в ИК области спектра.

Изобретение относится к технологии получения соединений сложных оксидов со структурой граната, содержащих редкоземельные элементы, которые могут быть применены в технологии синтеза оптических керамических материалов лазерного качества при создании активных тел твердотельных лазеров различной геометрии.

Изобретение относится к области получения высоколегированного ионами эрбия прозрачного керамического материала со структурой иттрий-алюминиевого граната (Еr:ИАГ) для использования в качестве лазерного материала в медицине и оптической связи.

Изобретение к лазерной технике. Кольцевой объемный оптический резонатор содержит ограниченную наружной и внутренней стенками кольцевую замкнутую полость с впускным отверстием для активной среды и отводным отверстием, образующую коаксиальные поверхности, систему зеркал, установленных вдоль поверхностей полости и образующих оптическую ось в виде замкнутой ломаной линии, выпускное отверстие для излучения.

Изобретение относится к лазерной технике. Лазерная система инфракрасного (ИК) диапазона включает в себя импульсный задающий генератор, снабженный сборками квазинепрерывных или QCW-лазерных диодов накачки, и усилитель мощности, снабжённый сборками непрерывных или CW-лазерных диодов накачки.

Изобретение относится к области лазерной техники. Способ создания лазерно-активных центров окраски в α-Al2O3 заключается в том, что простые центры окраски - кислородные вакансии, захватившие один или два электрона (F- и F+-центры), созданные при выращивании или в результате термохимической обработки исходных кристаллов, преобразуются в сложные, оптически активные в инфракрасной области спектра, F2+ и F22+-центры.
Наверх