Способ получения ацеталей фурфурола, являющихся антидетонационной добавкой автомобильных топлив, и топливная композиция, содержащая добавку

Изобретение относится к способу получения продуктов переработки фурфурола, а именно к способу получения ацеталей фурфурола. Предлагаемый способ осуществляется путем взаимодействия фурфурола и алифатических одноатомных спиртов С13, в присутствии сульфокатионитного катализатора макропористой и/или гелевой структуры при мольном соотношении фурфурол : спирты С13 = 1:6-10 и при диапазоне температур 0-30°С без отвода воды из системы. Также изобретение относится к композиции автомобильного топлива из углеводородных фракций, содержащей антидетонационную добавку, полученную по разработанному способу в концентрации 1,0-15,0 мас.%. Технический результат изобретения – разработан новый способ получения ацеталей фурфурола с высокими конверсией и выходом, которые являются антидетонационной добавкой и могут быть использованы в составе автомобильных топлив для повышения их детонационной стойкости и улучшения смазывающей способности. 3 н.п. ф-лы, 3 табл., 3 пр.

 

Изобретение относится к способу получения продуктов переработки фурфурола, а именно ацеталей фурфурола, используемых в качестве антидетонационных добавок к автомобильному топливу, а также к композициям топлива, использующих разработанные добавки.

В последнее время большое количество исследований посвящено разработке новых, не нефтяных источников энергии, в том числе и биотоплив, что особо актуально для транспортного сектора. Первое поколение биотоплива в настоящее время производится из сахаров, крахмалов и масел растительного происхождения [J.P. Lange et al. А promising platform for lignocellulosic biofuels // Chemistry and sustainability energy & materials. - 2012. - V. 5. - №1. P. 150-166]. Более перспективным и распространенным материалом для получения биотоплив на сегодня является лигноцеллюлозное сырье, однако существуют проблемы с его предварительной обработкой и последующим гидролизом с одновременным получением простых сахаров С6 - глюкозы, С5 - ксилозы. Из шестичленных сахаров в основном получают биоэтанол, также могут быть получены левулиновая кислота, различные алканы, из С5 сахаров в основном получают фурфурол - перспективное возобновляемое исходное сырье для получения широкого спектра соединений [Ершов М.А. и др. Обзор производных фурфурола в качестве перспективных октаноповышающих добавок к топливу// Журнал прикладной химии. - 2017. - Т. 90. - №9. - С. 103-113], которые используются в качестве новых, но уже успешно зарекомендовавших себя добавок в топливо. Важным направлением превращения фурфурола в компоненты моторных топлив является его переработка совместно со спиртами различного строения.

Существуют исследования [P. Panagiotopoulou et al. Effect of hydrogen donor on liquid phase catalytic transfer hydrogenation of furfural over a Ru/RuO2/C catalyst // Journal of molecular catalysis A: Chemical. - 2014. - V. 392. - P. 223-228], в которых установлена корреляция между строением спиртов, которые используются как среда для гидрирования, и получаемыми продуктами. Показано, что при реализации процесса на Ru/C катализаторе в спиртах С15 линейного строения преимущественно образуются соответствующие алкилфурфуриловые эфиры. Однако возможность синтеза фурфуриловых эфиров в литературе освещена достаточно мало, существующие методы получения алкилфурфуриловых эфиров либо крайне дороги и трудоемки, либо низкоселективны [И.Л. Симакова и др. Каталитическое гидрирование фурфурола в спиртовых средах // Журнал Сибирского федерального университета. - 2015. - №8. - С. 482-490].

Авторами работы [И.Л. Симакова и др. Каталитическое гидрирование фурфурола в спиртовых средах // Журнал Сибирского федерального университета. - 2015. - №8. - С. 482-490] отмечается факт получения алкилфурфуриловых эфиров через стадию образования соответствующих ацеталей, а если вести процесс в отсутствии водорода, то селективность по ацеталям достигает 100% масс.

С технологической точки зрения целесообразным является вовлечение в топливные композиции именно ацеталей фурфурола, а не их эфиров. Такой подход позволит сократить технологическую цепочку получения оксигената путем исключения стадии его гидрирования.

Известен способ получения диметил- и диэтилацеталей фурфурола путем взаимодействия тетраметокси- и тетраэтоксисиланов с фурфуролом, где в качестве катализатора используются активные концентрированные фосфорная или серная кислоты [И.Н. Назаров и др. // Журнал органической химии. - 1959. - Т. 29. - С. 106]. Недостатком метода является использованием крайне дорогостоящих реактивов и растворимой кислоты в качестве катализатора, которая не может быть использована повторно или регенерирована, а также достаточно коррозионно активна, время синтеза составляет 6-12 часов, а температура от 80 до 100°С.

Известен процесс ацетализации фурфурола этанолом [J.М. Rubio-Caballeroa et al. Acetalization of furfural with zeolites under benign reaction conditions // Catalysis today. - 2014. - V. 234. - P. 233-236] с выходом 80% на цеолитах. К недостаткам метода можно отнести высокое разбавление фурфурола спиртом, при соотношении 100 моль спирта на 1 моль фурфурола, и большом времени контакта, до 200 мин. Этот факт делает весьма затратным процесс выделения ацеталя из реакционной массы.

Наиболее близким процессом к предлагаемому является процесс ацетализации фурфурола [З.И. Зикельман // Известия вузов. Пищевая технология. - 1967. - №5. - С. 116] спиртами С46 на сульфокатионите в следующих условиях: мольное отношение 1 моль фурфурола на 3 моль спирта, выделяющаяся в ходе реакции вода отводилась при помощи создания азеотропа с бензолом (выходы 40-70%) при температуре кипения смеси.

К недостаткам данного способа можно отнести наличие третьего компонента - бензола, образование твердого нерастворимого остатка до 15% масс., и высокую температуру процесса. Этот факт осложняет технологическую реализацию процесса, а также при этом невозможно использование низших спиртов при азеотропном разделении продуктов.

Задача изобретения состоит в разработке каталитического способа получения (синтеза) ацеталей фурфурола путем прямого взаимодействия фурфурола и спиртов С13, без введения третьего компонента и образования твердого нерастворимого остатка, с высокими конверсией и выходами ацеталей фурфурола, а также использование полученных ацеталей фурфурола в качестве антидетонационной добавки к автомобильным топливам, и разработка композиции автомобильного топлива с использованием антидетонационной добавки.

Для решения поставленной задачи предлагается способ получения ацеталей фурфурола, осуществляемый путем взаимодействия фурфурола и спиртов в присутствии катализатора, который отличается тем, что в качестве спиртов используют алифатические одноатомные спирты С13, а в качестве катализатора используют сульфокатионитные катализаторы макропористой и/или гелевой структуры, при мольном соотношении фурфурол : спирты C1-C3=1:6-10, при диапазоне температур 0-30°С, без отвода воды из системы.

Полученные ацетали фурфурола являются антидетонационной добавкой к автомобильным топливам.

Также разработана композиция автомобильного топлива из углеводородных фракций, содержащая антидетонационную добавку, полученную по разработанному способу в концентрации 1,0-15,0% масс.

Общая методика синтеза.

К 1 моль фурфурола (98 г) прибавляли (6-10 моль) спирта нормального строения термостатированного при 0-30°С, разово вносили 10-15% масс., высушенного до постоянной массы сульфокатионита и перемешивали 5-60 мин. Реакционную массу отделяли от катализатора на воронке Шотта, сушили сульфатом магния и фракционировали на колонке Вигре (60 см). Избыток спирта отгонялся при атмосферном давлении, а бесцветную смесь фурфурол-ацеталь разделяли в вакууме 2-5 мм. рт.ст.

В качестве примеров предлагаемого изобретения приведены основные данные по синтезу и выходам ацеталей фурфурола C1, проведенные в температурном интервале 0-30°С; чистота спиртов - 99,9%. Аналогичные результаты получены с использованием спиртов С23.

Полученные образцы ацеталей были использованы в качестве добавки в базовые топлива, отличающиеся компонентным составом и показателями качества (таблица 1): БТ-1, БТ-2, БТ-3, БТ-4. Все компоненты, использованные для приготовления базовых топлив, промышленного производства.

В качестве примеров предлагаемого изобретения было приготовлено четыре образца топлива с добавкой ацеталей фурфурола. Составы образцов и результаты испытаний представлены в таблице 2.

Результаты испытаний показывают, что добавление ацеталей в концентрации 1,0-15,0% масс, полученных согласно предлагаемому способу, позволяет получать топлива, отвечающие основным требованиям ГОСТ 32513 и TP ТС 013/2011. Топлива обладают необходимыми антидетонационными свойствами - для образцов №1, №3 и №4 - октановые числа по исследовательскому методу - не менее 92,0, по моторному - не менее 83,0, для образца №2 не менее 80,0 и 76,0 соответственно. Полученные бензины имеют низкое содержание серы, ароматических и олефиновых углеводородов, бензола, обладают необходимо испаряемостью.

Дополнительно была исследована смазывающая способность ацеталей на образцах дизельного топлива с промышленных установок. В качестве примера приведены результаты испытаний смазывающей способности дипропилацеталя фурфурола (ДиПАФ) в дизельном топливе, полученного в процессе гидрокрекинга, в концентрации 3% масс.

Определение диаметра пятна износа было выполнено на аппарате HFRR с точностью до 1 мкм, измерения представлены сериями для трех параллельных опытов (таблица 3).

Как видно из таблицы 3, диаметр пятна износа при испытаниях базового дизельного топлива составил 639±5 мкм, а при введении 3% ДиПАФ - 584±6 мкм, что говорит о снижении диаметра пятна износа на 55 мкм, что свидетельствует о положительном влиянии ДиПАФ на смазывающую способность топлива.

Пример 1

Пример 2

Пример 3

Технический результат изобретения - способ получения ацеталей фурфурола с конверсией фурфурола до 98%, химическим выходом ацеталей фурфурола 95-98%, которые являются антидетонационной добавкой и могут быть использованы в составе автомобильных топлив для повышения их детонационной стойкости и улучшения смазывающей способности.

1. Способ получения ацеталей фурфурола, осуществляемый путем взаимодействия фурфурола и спиртов в присутствии катализатора, отличающийся тем, что в качестве спиртов используют алифатические одноатомные спирты C1-C3, а в качестве катализатора используются сульфокатионитные катализаторы макропористой и/или гелевой структуры при мольном соотношении фурфурол:cпирты С13 = 1:6-10, при диапазоне температур 0-30°С.

2. Антидетонационная добавка к автомобильным топливам, отличающаяся тем, что в качестве добавки используют ацетали фурфурола, полученные по п. 1.

3. Композиция автомобильного топлива из углеводородных фракций, отличающаяся тем, что содержит антидетонационную добавку по п. 2, полученную по способу п. 1 в концентрации 1,0-15,0 мас.%.



 

Похожие патенты:
Изобретение раскрывает комплексную присадку к автомобильным бензинам для двигателей внутреннего сгорания с искровым зажиганием, включающую метил-трет-бутиловый эфир и изобутиловый спирт, характеризующуюся тем, что дополнительно содержит азотсодержащее ароматическое соединение ММА и антикоррозионную присадку DCI-11 при следующем соотношении компонентов: ИБС – 20-80 мас.%, ММА – 0,5 мас.%, антикоррозионная присадка DCI-11 – 0,015 мас.%, МТБЭ – остальное.

Изобретение относится к композиции, содержащей изопропанол в количестве от 60 до 70 об.%, дизельное топливо и бензин, каждый в количестве от 10 до 20 об.%, и воду в количестве от 1 до 5 об.%.

Изобретение раскрывает противоизносную присадку к топливу для реактивных двигателей, которая содержит композицию жирных кислот растительных масел с легкой углеводородной фракцией гидрокрекинга при следующем соотношении компонентов, % мас.: жирные кислоты растительных масел - 70-90; легкая углеводородная фракция гидрокрекинга - до 100.

Изобретение относится к способу получения депрессорной присадки in situ в процессе трубопроводного транспорта высокопарафинистой нефти. Способ получения депрессорной присадки in situ заключается в том, что через дозирующее устройство в поток перекачиваемой нефти вводят противотурбулентную присадку (ПТП) в виде раствора в углеводородном растворителе.

Изобретение раскрывает способ получения компонента автомобильных бензинов, характеризующийся тем, что после смешения легкокипящего побочного продукта производства бутиловых спиртов и легких углеводородных фракций с начальной температурой кипения не ниже 25°С и конечной температурой кипения не выше 250°С в массовом соотношении компонентов 0,2:0,8 (легкокипящий побочный продукт : легкая углеводородная фракция) отделяется вода методом сепарации и добавляется антикоррозионная присадка в количестве 0,05% масс.

Изобретение раскрывает способ получения компонента автомобильных бензинов, характеризующийся тем, что после смешения легкокипящего побочного продукта производства бутиловых спиртов и легких углеводородных фракций с начальной температурой кипения не ниже 25°С и конечной температурой кипения не выше 250°С в массовом соотношении компонентов 0,2:0,8 (легкокипящий побочный продукт : легкая углеводородная фракция) отделяется вода методом сепарации и добавляется антикоррозионная присадка в количестве 0,05% масс.

Изобретение описывает депрессорно-диспергирующую присадку к дизельному топливу, которая содержит смесь депрессорного и диспергирующего компонентов, при этом в качестве депрессорного компонента применяется полимерное соединение, полученное реакцией радикальной сополимеризации малеинового ангидрида и фракции 1-олефинов С8-С24 с участием инициатора радикальной полимеризации, с соотношением исходных реагентов от 1:0,92 до 1:3,7 при температуре 75-90°С в течение 8-23 ч в соответствующем растворителе, после которой упаривают растворитель и выделяют целевой продукт, а в качестве диспергирующего компонента - полимерное соединение, полученное реакцией метатезисной сополимеризации функционализированного норборнена и синтетического дивинилового каучука и 1-гексена или 1-октена в присутствии металлокомплексного диалкильного рутениевого катализатора общей формулы: где заместители R3 и R4 выбраны из группы: R3=Me, Et, R4=Et, Bn, R3+R4=CH2CH2OCH2CH2, в соответствующем растворителе, при соотношении функционализированный норборнен : каучук от 1:15 до 1:1, соотношении катализатор : олефины в реакционной смеси от 1:350000 до 1:10000, при температуре 25-70°С в течение 8-23 ч, затем реакционную смесь гидрируют водородом при давлении 5-10 атм в присутствии палладия, далее фильтруют через окись алюминия и фильтрат упаривают, причем депрессорный и диспергирующий компоненты находятся в присадке в соотношении от 3:7 до 7:3 по объему.
Изобретение относится к способу получения концентрированной депрессорной суспензии и ингибитора асфальтосмолопарафиновых отложений. Способ включает смешение полиальфаолефина в растворе спирта, в качестве которого используют бутанол и/или гексанол, при добавлении стабилизатора анионного или катионного поверхностно-активного вещества, представляющего собой бензалкониум хлорид или лаурилсульфат натрия.

Изобретение раскрывает присадку к дизельным топливам, которая представляет собой продукт нитрования фракции, выделенной из кубового остатка производства бутиловых спиртов (КОБС), полученных методом оксосинтеза, при этом для нитрования использована фракция КОБС, кипящая в пределах 190°С – КК и содержащая 94-99 масс.

Объектом изобретения является инициирующий состав, содержащий по меньшей мере два тримерных циклических пероксида кетона: тримерный циклический пероксид метилэтилкетона (3MEK-cp) формулы (I) и по меньшей мере один пероксид, удовлетворяющий формуле (II), в которой R1-R3представляют собой алкил, где указанные группы имеют от 2 до 5 атомов углерода, общее число атомов углерода R1+R2+R3 находится в диапазоне 7-15, и молярное соотношение 3MEK-cp и общего количества пероксидов, удовлетворяющих формуле (II), находится в диапазоне от 10:90 до 80:20.

Изобретение относится к циклическому карбонильному соединению общей формулы (2): в которой каждый Y обозначает -О-, n′ равно 0 или 1, где, если n′ равно 0, то атомы углерода с номерами 4 и 6 связаны друг с другом одинарной связью, каждая группа Q′ представляет собой одновалентный радикал, независимо выбранный из группы, включающей водород, пентафторфенилкарбонатную группу, алкильные группы, содержащие от 1 до 30 атомов углерода, арильные группы, содержащие от 6 до 30 атомов углерода, и любые указанные выше группы Q′ замещены пентафторфенилкарбонатной группой, и где одна или большее количество групп Q′ представляют собой пентафторфенилкарбонатную группу.

Изобретение относится к соединениям формулы (I) или их фармацевтически приемлемым солям или сложным эфирам, гидролизующимся in vivo, обладающим ингибирующей клеточный цикл активностью, селективной в отношении к CDK-2 CDK-4 и CDK-6.

Изобретение относится к производным хиназолина формулы I, где m является целым числом от 1 до 2; R1 представляет собой водород, нитро или С1-3алкокси; R2 представляет собой водород или нитро; R3 представляет собой гидрокси, галоген, С1-3алкил, C1-3алкокси, С1-3алканоилокси или циано; X1 представляет собой -О-, -S-, -SO- или -SO2-; R4 представляет собой одну из 13 групп, описанных в п.1 формулы изобретения.

Изобретение относится к новым производным N-(3-гидрокси-4-пиперидинил) (дигидро-2Н-бензопиран или дигидробензодиоксин) карбоксамида, обладающих ценными фармацевтическими свойствами, а именно активностью по стимулированию желудочно-кишечной перистальтики.

Изобретение относится к области химии гетероциклических соединений и касается, в частности, получения 2-(фурил-2)-1,3-диоксолана, который известен в качестве промежуточного реагента в тонком органическом синтезе и как вещество, обладающее биологической активностью.

Изобретение относится к способу селективного получения окисленных производных фурана, исходя из 5-гидроксиметил-2-фурфурола формулы , который заключается в том, что способ окисления проводят непрерывно в потоке в реакторе, в котором предусмотрены средства варьирования параметров реакции, в растворителе, представляющем собой воду, в присутствии сорастворителя, представляющего собой диполярный апротонный растворитель, и где указанное окисленное производное фурана выбрано из 5-гидроксиметилфуран-2-карбоновой кислоты формулы, 2,5-диформилфурана формулы, 5-формилфуран-2-карбоновой кислоты формулы и 2,5-фурандикарбоновой кислоты формулы.

В настоящем изобретении описаны соединения формул (I) и (II), в которых , R1-R7 и R13 описаны в настоящем документе, или их стереоизомеры, энантиомеры или их смеси, или их фармацевтически приемлемые соли.
Наверх