Способ оценки аллелопатического почвоутомления для конкретных культур

Изобретение относится к области сельского хозяйства, в частности к земледелию и растениеводству. В способе последовательно формируют, по меньшей мере, два образца семян зерновых культур: опытный и контрольный вариант образцов семян зерновых культур, обеспечивают контакт опытного образца семян с почвой с добавлением воды до достижения наименьшей влагоемкости почвы; обеспечивают контакт контрольного образца семян с песком с добавлением воды до достижения наименьшей влагоемкости песка; осуществляют выдержку указанных опытных и контрольных образцов семян до проращивания, удаляют почву и песок с пророщенных семян и помещают очищенные опытные и контрольные образцы пророщенных семян в идентичные прозрачные емкости с водой, уплотняют пророщенные семена в емкостях посредством вибрационного воздействия в вертикальной плоскости и последующего ударного воздействия на дно емкости. При этом после вибрационного воздействия на образцы семян в емкости помещают идентичные по массе грузы, определяют насыпные объемы опытных (V2i) и контрольного (V3) образцов пророщенных семян по высоте размещения груза от дна емкости, определяют величины ингибирования для каждого образца (Иi) по формуле: Иi=((V3-V2i)/(V3-V1))*100%, где V1 - поправочный коэффициент, характеризующий насыпной объем набухших семян, проращивание которых осуществлялось в течение 24 часов; V2i - насыпной объем проросших семян опытного образца; V3 - насыпной объем проросших семян контрольного образца, i - порядковый номер опытного образца, определяют минимальное Иi, по которому определяют опытный образец с минимальной величиной ингибирования, характеризующей степень аллелопатического почвоутомления для конкретных зерновых культур. Способ обеспечивает повышение достоверности получаемых результатов за счет возможности увеличения объема статистической выборки. 8 з.п. ф-лы, 6 ил., 4 табл., 6 пр.

 

Область техники

Изобретение относится к области сельского хозяйства (земледелия, растениеводства) и может быть использовано для оценки почвенного плодородия и целесообразности возделывания тех или иных сельскохозяйственных культур на конкретном поле, которое имеет определенную предысторию при использовании в севообороте.

Уровень техники

В современной научной литературе накоплены достоверные сведения о том, что в результате многократного культивирования растений одного вида на одном и том же поле (монокультура), а также в результате ряда других причин наступает прогрессирующая утрата плодородия почвы. Это в первую очередь связано с нарастающим токсикозом плодородного слоя, обусловленным накоплением в нем ядовитых выделений растений (колинов) и микроорганизмов, которые могут быть представлены различными соединениями и их смесями. Отдельные компоненты токсичных смесей могут не обладать токсичностью, и токсичные соединения могут находиться в почве в концентрациях, когда каждое из них в отдельности не является токсичным для растений. Это является причиной почвоутомления и снижения урожайности сельскохозяйственных культур.

Известен метод определения аллелопатической активности почв, включающий два этапа и предусматривающий выделение токсинов из почвы путем химического вытеснения рутином с последующим проращиванием семян на растворах токсинов и учетом их лабораторной всхожести [Гродзинский A.M. Аллелопатия растений и почвоутомление. - Киев, Наукова думка, 1991, с. 192].

Данный метод является дорогостоящим, трудоемким, долго реализуемым и сложным в исполнении, в связи с чем требует высокой квалификации исполнителей и не находит широкого практического использования. Кроме того, химический метод извлечения из почвы токсинов не обеспечивает полного их выхода в раствор, что снижает объективность метода и влияет на достоверность получаемых результатов.

Наиболее близким к заявляемому является способ оценки почвоутомления [Стаценко А.П., Гришин Г.Е., Чернышов В.Е. Способ оценки почвоутомления. Патент РФ №2181238, 2002], включающий проращивание семян в испытуемой почве, помещенной в вегетационные сосуды или кюветы, при этом проращивание проводят в течение 10-12 суток (после 20-минутного замачивания в теплой (30°С) воде и двухчасового просушивания на фильтровальной бумаге) в испытуемой на почвоутомление почве, отобранной в корнеобитаемом слое 0-20 см при влажности 60% от полной влагоемкости, 12-часовом (в сутки) освещении 5 тыс.лк. В качестве оценочного теста используют смесь трех тестовых культур редиса, салата и тимофеевки луговой с последующим вычислением процента всхожести, на базе которого выделяют три степени почвоутомления: низкую (всхожесть составляет 76% и выше); среднюю (от 50 до 75%); высокую (49% и ниже), на основе чего делают вывод о целесообразности использования поля в сельскохозяйственном производстве.

Недостатками данного метода являются его низкая производительность из-за продолжительности проведения эксперимента и получение усредненных результатов на тест-культурах, а не на выбранных семенах, которые могут быть толерантными к токсинам, находящимся в почвах, и не угнетаться ими.

Раскрытие изобретения

Технической проблемой, решаемой посредством заявляемого изобретения, является необходимость преодоления недостатков, присущих аналогам, а именно, необходимость создания способа оценки аллелопатического почвоутомления для конкретных культур.

Способ позволяет оценить степень ингибирования выбранной почвой конкретных семян, а также существенно снизить затраты на проведение такой оценки с одновременным повышением оперативности получения результата.

Технический результат, достигаемый при использовании заявляемого изобретения, заключается в обеспечении возможности одновременного проведения измерений как для больших партий семян (от 1000 до 1200 семян), так и для широкой линейки почв, что ведет к повышению достоверности получаемых результатов за счет возможности увеличения объема статистической выборки. Преимуществом предлагаемого способа также является возможность проверки пригодности семян для посева на конкретных почвах, а также его высокая производительность и точность. Результат можно получить через 48 часов, проводя испытания с тысячами семян. Увеличение количества семян практически не усложняет работу, так как определяют интегральный параметр, но значительно повышает точность получаемых результатов. Использование повторности с последующей статистической обработкой результатов приводит к тому, что согласно критерию Стъюдента ошибка при 95% уровне значимости не превышает 7%.

Техническая сущность изобретения заключается в том, что реакция семян на ингибирование конкретными почвами определяется их способностью прорастать и давать корни и ростки (проростки) при развитии на этих почвах по сравнению с развитием на песке. Почвы, как правило, содержат токсины, образовавшиеся функционировавшими в них фитопатогенами, при разложении растительных остатков или выделенные растениями. При приведении семян в контакт с влажной почвой начинается поступление токсинов из почв в семена. У семян есть видовая и сортовая чувствительность к токсинам, а в разных по предыстории почвах могут накапливаться различные токсины. В результате чувствительность различных семян к токсинам, накопившимся в почвах, будет отличаться. Семена будут лучше прорастать на тех почвах, в которых содержатся токсины, к которым они устойчивы, а образующиеся из них растения будут лучше в этих почвах развиваться и дадут максимальные урожаи. Содержание токсинов в песке по сравнению с почвой пренебрежимо мало, что позволяет брать развитие проростков семян в песке за базовый показатель для сравнения. Подобное также возможно потому, что прорастающие в течение 2 суток семена еще не начинают поглощать питательные вещества из почвы, а развиваются за счет накопленных ресурсов. Поэтому при сравнении развития семян в конкретной почве с их развитием в песке, можно оценить реакцию семян на токсины, содержащиеся в почве. В связи с тем, что первые этапы прорастания (набухание и проклевывание семян) обусловлены веществами, запасенными при созревании семян, информацию о прохождении биохимических процессов в семенах можно получить только на этапе развития проростков, то есть примерно через 24-36 часов после приведения семян в контакт с влагой при температуре 22-25°С. Таким образом, сравнение отношений скоростей развития проростков семян на песке и в изучаемой почве позволяет понять пригодность проверяемых семян для посева на конкретной почве с ее конкретной предысторией. Под конкретными почвами понимают любые почвы, которые предполагается использовать для посева, взятые с одного поля. Полученный в результате реализации способа результат будет распространяться именно на эти почвы, независимо от их исходного качества - плодородные, неплодородные, загрязненные и т.д.

Для этого одинаковые навески сравниваемых семян помещают в емкости, одни из которых содержат песок, а другие изучаемую почву. К ним добавляют навески воды, которые обеспечивают оптимальное развитие семян на почве и песке. После этого емкости с образцами термостатируют при влажности воздуха близкой к 100% в течение 24-36 часов при температуре 22-25°С. По прошествии времени измеряют насыпные объемы проросших в почве и песке семян и сравнивают отношение насыпных объемов в песке и изучаемой почве, определяя величину ингибирования в процентах прорастания семян в почве по сравнению с песком. Следует отметить, что из-за свойственной семенам разнокачественности, сравнение можно проводить, определяя насыпные объемы для больших (более 1000 штук) используемых в эксперименте массивов семян. В противном случае обнаружить значимых различий в прорастании семян не представляется возможным.

Поставленная задача решается тем, что способ оценки аллелопатического почвоутомления для конкретных зерновых культур при их посеве на определенной почве заключается в определении ингибирующего действия почвы (И) на развитие семян по сравнению с песком и включает последовательно выполняемые следующие этапы:

- формирование, по меньшей мере, двух образцов семян зерновых культур: опытного и контрольного образцов семян зерновых культур,

- обеспечение контакта опытного образца семян с почвой с добавлением воды до достижения наименьшей влагоемкости почвы;

- обеспечение контакта контрольного образца семян с песком с добавлением воды до достижения наименьшей влагоемкости песка;

- выдержка указанных опытных и контрольных образцов семян до проращивания,

- удаление почвы и песка с пророщенных семян и помещение очищенных опытных и контрольных образцов пророщенных семян в идентичные прозрачные емкости с водой,

- уплотнение пророщенных семян в емкостях посредством вибрационного воздействия в вертикальной плоскости, и последующего ударного воздействия на дно емкости, при этом после вибрационного воздействия на образцы семян в емкости помещают идентичные по массе грузы,

- определение насыпных объемов опытных (V2i) и контрольного (V3) образцов пророщенных семян по высоте размещения груза от дна емкости,

- определение величины ингибирования для каждого образца (Иi) по формуле:

Иi=((V3-V2i)/(V3-V1))*100%,

где V1 - поправочный коэффициент, характеризующий насыпной объем набухших семян, проращивание которых осуществлялось в течение 24 часов;

V2i - насыпной объем проросших семян опытного образца;

V3 - насыпной объем проросших семян контрольного образца,

i - порядковый номер опытного образца,

- определение минимального Иi, по которому определяют опытный образец, с минимальной величиной ингибирования, характеризующей степень аллелопатического почвоутомления для конкретных зерновых культур. В случае, если Иi не превышает 40%, выращивание данной культуры на опытной почве целесообразно. Заявляемый способ выполняют не менее, чем в шестикратной повторности. Возможны варианты при определении времени, достаточного для определения степени проращивания семян, пригодной для дальнейших исследований. Так, выдержка семян до проращивания может быть осуществлена при температуре 22-25°С при 100% влажности воздуха в течение 2 суток или в течение времени, обеспечивающего достижение средней суммарной длины ростков семян одной навески от 5000-7000 мм и до 10000 мм на 7,5 г семян. Помещение и уплотнение семян в емкости может быть выполнено дозированно для объемов, не превышающих 1/5-1/4 объема образца. Для этого 1/5-1/4 объема образца помещают в емкость и уплотняют, после чего помещают следующую часть образца в объеме 1/5-1/4 и уплотняют. Указанные действия повторяют до помещения всего объема образца в емкость. В качестве идентичных прозрачных емкостей используют прозрачные цилиндры с соотношением высоты и диаметра 5:8. Вибрационное воздействие в вертикальной плоскости осуществляют с частотой не более 50 Гц и амплитудой 3-4 мм с допустимой величиной отклонений от указанных значений не более 10%. При ударном воздействии обеспечивают его силу, равную силе свободного падения цилиндрической емкости, заполненной водой и семенами, на поверхность стола с высоты 1 см с допустимой величиной отклонений от указанных значений не более 10%. При определении величины суммарного ингибирования для каждого образца используют значение заранее определенного поправочного коэффициента, характеризующего насыпной объем набухших семян, проращивание которых осуществлялось в течение 24 часов на песке. В результате реализации заявляемого способа получают качественные данные о величинах ингибирующего действия почвы на развитие семян зерновых культур при их посеве на определенной конкретной почве. При этом, возможными к дальнейшему использованию для посева выбранной культуры признают только те почвы, величина И которых составляет менее 40%. Насыпные объемы проросших семян определяют в цилиндре с водой объемом 100 мл, насыпая в цилиндр с водой, стоящий на вибростолике, семена с проростками небольшими порциями до образования равномерной структуры объемом около 20 мл, затем помещают на семена груз массой 8 г, уплотняющий структуру из семян с проростками, делают это несколько раз, пока все семена с проростками изучаемого образца (7,5 г исходных семян) не будут находиться в цилиндре, после чего проводят дополнительное уплотнение образовавшейся структуры из семян с проростками, постукивая цилиндром с семенами с проростками и грузиком на их поверхности о стол 30-40 раз, с последующим измерением насыпного объема, образовавшейся структуры.

Краткое описание чертежей

На фиг. 1 представлена фотография семян тритикале россыпью на фильтровальной бумаге, прораставших в течение 45 часов 5 г.

На фиг. 2. представлена фотография семян тритикале в мерном цилиндре, прораставших в течение 45 часов 5 г.

На фиг. 3 показана зависимость «насыпной объем - длина проростков» для 5 г семян тритикале, прораставших в дерново-подзолистой почве разное время.

На фиг. 4 представлены фотографии проросших семян тритикале 7,5 г в мерном цилиндре. Структура получена без вибровоздействия на цилиндр (а) и с вибровоздействием (б).

На фиг. 5 представлена зависимость «насыпной объем в воде - длина проростков» для 7,5 г семян тритикале, прораставших в песке разное время.

На фиг. 6 представлены зависимости «насыпной объем в воде - длина проростков» для 7,5 г семян ячменя сорт «Нур», прораставших в песке разное время при опредении насыпного объема при виброуплотнении без груза (кривая 1) и при использовании последовательного уплотнения при воздействии вибрации под грузом (кривая 2).

Осуществление изобретения

Определение токсичности почв заявляемым способом можно проводить для хлебных злаковых зерновых культур, например, таких как пшеница, рожь, ячмень, тритикале и др. злаковых зерновых культурах, у которых мочковатая корневая система.

Для проращивания семян используют любые емкости, подходящие для данных целей. В качестве субстратов для проращивания можно использовать любые почвы зонального ряда: дерново-подзолистые, серые лесные, черноземы, каштановые почвы. Количество субстрата, используемого для проращивания принципиального значения не имеет. Необходимым условием является одинаковое количество субстрата для проращивания опытной, контрольной и поправочной (для учета объема набухших семян (V1)) партии семян. Одинаковые навески семян (опытную и контрольную), помещают в емкости, засыпают песком (для контрольной) или почвой (для опытной) и добавляют воду.

После этого емкости с образцами помещают в термостатируемый шкаф (при 22°С), в котором создают атмосферу 100% влажности и выдерживают в течение 2 суток или в течение времени, которое определяется размером проростков, при этом максимальное время определяется средней суммарной длинной не превышающей 16000 мм и не менее 5000-7000 мм на 7,5 г семян (приблизительно 200 штук). По прошествии указанного времени проросшие семена отмывают от почвы (песка) на сите и помещают в мерные цилиндры с водой. Насыпают семена постепенно, чтобы они оседали в цилиндре раздельно, при этом на цилиндр оказывают вибрационное воздействие, заставляя его колебаться с частотой 50 Гц в вертикальной плоскости с амплитудой 3-4 мм (на специальном вибрационном столике), облегчая перемещение семян друг относительно друга, когда их проростки придут в соприкосновение. Семена с проростками помещают в цилиндр небольшими порциями до образования равномерной (без видимых пустот) структуры объемом около 20 мл, затем помещают на семена груз массой 8 г, уплотняющий структуру из семян, делают это несколько раз, пока все семена с проростками изучаемого образца (7,5 г исходных семян) не будут находиться в цилиндре. После чего уплотняют проросшие семена в цилиндре легкими постукиваниями цилиндра с проросшими семенами о стол (30-40 ударов), поместив предварительно на поверхность семян небольшой грузик (из расчета давления груза 1-2 г/см2) для создания дополнительного давления на поверхность семян в цилиндре. Затем определяют насыпной объем проросших семян в цилиндре по известному заранее значению диаметра цилиндра и высоте, определенной от дна цилиндра до поверхности груза. Величина ингибирования определяется в процентах как отношение разностей насыпных объемов проросших семян в песке и почве к разности насыпного объема контрольного образца на песке и поправочного коэффициента.

Для измерения насыпного объема в качестве прозрачной емкости (сосуда) используют прозрачные цилиндрические емкости с соотношением высоты и диаметра цилиндра 5:8. Предпочтительно использовать лабораторные мерные цилиндры из прозрачного материала.

Объем воды, предварительно наливаемой в цилиндрическую емкость, превышает объем измеряемых семян в 3-5 раз и при постепенном засыпании проросших семян в цилиндр, обеспечивает раздельное друг от друга оседание семян с сохранением проростков.

Ударное воздействие проводят путем встряхивания емкости с водой и семенами 30-40 раз с силой равной силе свободного падения цилиндра на поверхность стола с высоты 1 см с допустимой величиной отклонений от указанных значений не более 10%, при этом диаметр грузика должен быть меньше диаметра цилиндра на 2 мм (с допустимой величиной отклонений от указанного значения не более 10%).

Ниже представлено более детальное описание заявляемого способа, которое не ограничивает объем притязаний заявляемого изобретения, а демонстрирует возможность осуществления изобретения с достижением заявляемого технического результата.

Пример 1. Сравнительный, установление границ применения при определении насыпного объема проросших семян в цилиндре без воды.

Для проращивания семян брали емкость с площадью 4900 мм2, в нее насыпали 20 г дерново-подзолистой почвы влажностью 22-23% и равномерно разравнивали. На нее помещали 5 г семян озимого тритикале сорт «Немчиновский 56», располагая их по всей поверхности почвы. Затем сверху на семена насыпали еще 20 г дерново-подзолистой почвы и разравнивали. После этого из мерной пипетки на поверхность почвы равномерно (по каплям) подавали 7,5 г воды. Приготовленные образцы помещали на 40-48 часов в воздушный термостат при 22°С, в котором поддерживалась близкая к 100% влажность.

По прошествии времени проросшие семена с почвой из емкости переносили на сито с диаметром отверстий 2 мм и отмывали семена от почвы дистиллированной водой. После удаления почвы семена переносили на фильтровальную бумагу, удаляя капиллярную влагу (Фиг. 1). Затем проросшие семена насыпали в мерный цилиндр на 25 мл с внутренним диаметром 18 мм. После этого, постукивая мерным цилиндром о стол 30-40 раз с силой равной силе свободного падения цилиндра на поверхность стола с высоты 1 см, семена в цилиндре уплотнили и зафиксировали полученный насыпной объем (Фиг. 2). Затем семена высыпали из мерного цилиндра, охлаждали (прекращая развитие проростков) и проводили измерение общей длины проростков (корней и ростков). Выдерживая семена в контакте с влажной почвой разное время построили для семян тритикале зависимости длины проростков от измеряемого насыпного объема (Фиг. 3).

На представленных графиках хорошо видно, что до суммарной длины проростков около 2000 мм у исходных 5 г семян тритикале (Фиг. 3) наблюдается линейная зависимость насыпного объема от длины проростков. При дальнейшем увеличении длины проростков они теряют жесткость и линейная зависимость нарушается. Более того, при превышении суммарной длины проростков величины 2000 мм насыпной объем начинает уменьшаться.

Из полученных результатов следует, что на линейном участке кривой «длина проростков - насыпной объем» данный метод можно использовать для определения длины проростков по насыпному объему и, следовательно, для определения влияния почвы на развитие семян.

Линейная зависимость между общей длиной проростков и насыпным объемом проросших семян позволяет не измерять длину корней, а по сравнению насыпных объемов проросших семян опытного образца (V2) и контроля (V3) определять ингибирующее действие почвы, взяв за 100% увеличение насыпного объема контрольного образца при проращивании. Для определения суммарного ингибирования сначала измеряли объем набухших семян поправочной партии семян, проращиваемой 24 часа, с последующим уплотнением их в цилиндре - V1.

Процент суммарного ингибирования (суммарного ингибирования (И)) определяли по формуле:

И=((V3-V2)/(V3-V1))*100%,

где V1 - поправочный коэффициент, характеризующий насыпной объем набухших семян, проращиваемых в течение 24 часов;

V2 - насыпной объем проросших семян опытного образца;

V3 - насыпной объем проросших семян контрольного образца.

Ниже в примерах 2, 3 приведены последовательности действий по определению насыпных объемов пророщенных семян различных зерновых культур при проращивании их в песке при прочих равных условиях.

Пример 2. Определение насыпного объема проросших семян в воде.

Для проращивания семян брали емкость с площадью 7850 мм2, в нее насыпали 30 г сухого песка, равномерно разравнивали, на него помещали 7,5 г семян озимого тритикале сорт «Немчиновский 56», располагая их по всей поверхности песка. Затем сверху на семена насыпали еще 30 г сухого песка и разравнивали. После этого из мерной пипетки на поверхность песка равномерно (по каплям) подавали 15 г воды. Приготовленные образцы помещали на 40-52 часа в воздушный термостат при 22°С, в котором поддерживалась близкая к 100% влажность.

По прошествии времени проросшие семена с песком из емкости переносили на сито с диаметром отверстий 2 мм и отмывали песок дистиллированной водой. После удаления песка семена переносили в цилиндр с водой объемом 100 мл с внутренними диаметром 28 мм. При этом на цилиндр оказывали вибрационное воздействие, заставляя его колебаться с частотой 50 Гц в вертикальной плоскости с амплитудой 3-4 мм (на специальном вибрационном столике). Насыпали проросшие семена в цилиндр постепенно, чтобы они оседали раздельно друг от друга. Из полученных данных (Фиг. 4) хорошо видно, что использование вибрационного воздействия на цилиндр позволяет избавиться от пустот, возникающих в структуре из проросших семян и, следовательно, повышает воспроизводимость метода.

После этого на поверхность семян в цилиндре помещали грузик весом 8 г (в воде за вычетом веса вытесненной воды), создавая давление на поверхность семян в цилиндре 1,3 г/см2. Постукивая мерным цилиндром о стол 30-40 раз с амплитудой 0-5 см, семена в цилиндре уплотняли повторно и фиксировали насыпной объем. Затем семена высыпали из мерного цилиндра, охлаждали (прекращая развитие проростков) и проводили измерение общей длины проростков (корней и ростков). Выдерживая семена в контакте с влажным песком различное время, построили для семян тритикале зависимость измеряемого насыпного объема в воде проросших семян от длины проростков (Фиг. 5). При суммарной длине проростков более 8500 мм линейная зависимость нарушается.

Таким образом, способ определения насыпного объема проросших семян в воде примерно в 3 раза позволяет увеличить предельную суммарную длину проростков 7,5 г семян тритикале, которая может быть измерена этим способом (с 3000 мм до 8500 мм), по сравнению с измерением насыпного объема сухих семян, что значительно увеличивает возможности способа.

Для удобства пересчета при проведении экспериментов данные «насыпной объем - длина проростков» представлены в виде таблицы 1, характеризующей зависимость насыпного объема 7,5 г проросших семян озимого тритикале сорт «Немчиновский 56» от длины проростков, определенную в цилиндре 100 мл с водой при воздействии на цилиндр с водой при внесении в него семян вибрации частотой 50 Гц с амплитудой 3-4 мм с последующим постукиванием цилиндром о стол (40 раз) при помещении на поверхность семян грузика 8 г с диаметром 26 мм, создавая давление на поверхность семян в цилиндре 1,3 г/см2.

Пример 3. Определение насыпного объема проросших семян в воде при последовательном виброуплотнении с грузом.

Для проращивания семян брали емкость с площадью 7850 мм2, в нее насыпали 30 г сухого песка, равномерно разравнивали, на него помещали 7,5 г семян ярового ячменя сорт «Нур», располагая их по всей поверхности песка. Затем сверху на семена насыпали еще 30 г сухого песка и разравнивали. После этого из мерной пипетки на поверхность песка равномерно (по каплям) подавали 15 г воды. Приготовленные образцы помещали на 40-52 часа в воздушный термостат при 22°С, в котором поддерживалась близкая к 100% влажность.

По прошествии времени проросшие семена с песком из емкости переносили на сито с диаметром отверстий 2 мм и отмывали песок дистиллированной водой. После удаления песка семена переносили в цилиндр с водой объемом 100 мл с внутренними диаметром 28 мм. При этом на цилиндр оказывали вибрационное воздействие, заставляя его колебаться с частотой 50 Гц в вертикальной плоскости с амплитудой 3-4 мм (на специальном вибрационном столике). Насыпали проросшие семена в цилиндр постепенно, чтобы они оседали раздельно друг от друга до объема около 20 мл после этого на семена помещали груз 8 г и уплотняли семена с проростками под грузом при воздействии вибрации 15-20 секунд. После этого груз снимали и опять насыпали около 20 мл семян и опять уплотняли семена при воздействии вибрации под грузом. Операции последовательного уплотнения под грузом проводили до тех пор, пока в цилиндре не оказывались все семена изучаемого образца. Обычно 4-5 раз.

После этого на поверхность семян в цилиндре помещали грузик весом 8 г (в воде за вычетом веса вытесненной воды), создавая давление на поверхность семян в цилиндре 1,3 г/см2. Постукивая мерным цилиндром о стол 30-40 раз с амплитудой 0-5 см, семена в цилиндре уплотняли повторно и фиксировали насыпной объем. Затем семена высыпали из мерного цилиндра, охлаждали (прекращая развитие проростков) и проводили измерение общей длины проростков (корней и ростков). Выдерживая семена в контакте с влажным песком различное время, построили для семян ячменя зависимость измеряемого насыпного объема в воде проросших семян от длины проростков при использовании последовательного уплотнения при воздействии вибрации под грузом в сравнении с получением структур в цилиндре по способу описанному в примере 2. При суммарной длине проростков более 8500 мм линейная зависимость в методе из примера 2 нарушается (Фиг. 6, кривая 1), а при использовании последовательного уплотнения при воздействии вибрации под грузом линейность сохраняется до 15000-16000 мм (Фиг. 6, кривая 1), то есть увеличивается почти в 2 раза.

Пример 4. Определение ингибирования яровой пшеницы сорт «Лиза» разными почвами.

В качестве субстратов использовали сухой отмытый речной песок с размером частиц 0,5-0,8 мм, образцы дерново-подзолистой почвы из окрестностей поймы р. Яхрома влажностью 18,1% (после зерновых), серой лесной почвы из Тульской области (Щекинский район) влажностью 21,6% (после зерновых), чернозема типичного из Липецкой области (Данковский район) влажностью 33,1% (после картошки), а также каштановой почвы из Волгоградской области (Иловлинский район) влажностью 19,3% (залежь).

Для проращивания семян брали емкость с площадью 7850 мм2, в нее насыпали 30 г субстрата, равномерно разравнивали, на него помещали 7,5 г семян яровой пшеницы сорт «Лиза», располагая их по всей поверхности субстрата. Затем сверху на семена насыпали еще 30 г субстрата и разравнивали. После этого из мерной пипетки на поверхность субстрата равномерно (по каплям) подавали воду. Для используемых субстратов оптимальные навески воды составили: песка - 15 г, дерново-подзолистой почвы - 9 г, серой лесной почвы - 13,5 г, чернозема - 13,5 г, каштановой почвы - 15 г. Приготовленные образцы помещали на 48 часов в воздушный термостат при 22°С, в котором поддерживалась близкая к 100% влажность.

По прошествии времени проросшие семена с субстратом из емкости переносили на сито с диаметром отверстий 2 мм и отмывали субстрат дистиллированной водой. После удаления субстрата семена переносили в цилиндр с водой объемом 100 мл с внутренними диаметром 28 мм. При этом на цилиндр оказывали вибрационное воздействие, заставляя его колебаться с частотой 50 Гц в вертикальной плоскости с амплитудой 3-4 мм (на специальном вибрационном столике). Насыпали проросшие семена в цилиндр постепенно, чтобы они оседали раздельно друг от друга до объема около 20 мл после этого на семена помещали груз 8 г и уплотняли семена с проростками под грузом при воздействии вибрации 15-20 секунд. После этого груз снимали и опять насыпали около 20 мл семян и опять уплотняли семена при воздействии вибрации под грузом. Операции последовательного уплотнения под грузом проводили до тех пор, пока в цилиндре не оказывались все семена изучаемого образца. Обычно 4-5 раз.

После этого на поверхность семян в цилиндре помещали грузик весом 8 г (в воде за вычетом веса вытесненной воды), создавая давление на поверхность семян в цилиндре 1,3 г/см2. Постукивая мерным цилиндром о стол 30-40 раз с амплитудой 0-5 см, семена в цилиндре уплотняли повторно и фиксировали насыпной объем.

Величину ингибирующего действия почвы (И) для каждого опытного образца определяли по формуле:

И=((V3-V2)/(V3-V1))*100%,

где V1 - поправочный коэффициент, характеризующий насыпной объем набухших семян зерновых колосовых культур, проращивание которых осуществлялось в течение 24 часов на песке, равный 20 мл; Данный коэффициент равен 20 мл для таких культур и практически не изменяется при изменении субстрата, в пределах погрешности определения. В случае других злаковых культур (не колосовых), размер зерна которых значительно больше (допустим, кукуруза), или меньше (просо) этот объем будет другим и может быть определен указанным выше способом.

V2 - насыпной объем проросших семян опытного образца;

V3 - насыпной объем проросших семян контрольного образца.

Полученные данные по ингибирующему действию почв на развитие яровой пшеницы сорта «Лиза» представлены в таблице 2.

Из полученных данных следует, что данную пшеницу можно сеять в каштановую почву и дерново-подзолистую почву, образцы которых исследовались, поскольку полученные значения величины ингибирования данными почвами составляют менее 40%.

Пример 5. Определение ингибирования ярового ячменя сорт «Нур» разными почвами.

В качестве субстратов использовали сухой отмытый речной песок с размером частиц 0,5-0,8 мм, образцы дерново-подзолистой почвы из окрестностей поймы р. Яхрома влажностью 18,1% (после зерновых), серой лесной почвы из Тульской области (Щекинский район) влажностью 21,6% (после зерновых), чернозема типичного из Липецкой области (Данковский район) влажностью 33,1% (после картошки), а также каштановой почвы из Волгоградской области (Иловлинский район) влажностью 19,3% (залежь).

Для проращивания семян брали емкость с площадью 7850 мм2, в нее насыпали 30 г субстрата, равномерно разравнивали, на него помещали 7,5 г семян яровой пшеницы сорт «Лиза», располагая их по всей поверхности субстрата. Затем сверху на семена насыпали еще 30 г субстрата и разравнивали. После этого из мерной пипетки на поверхность субстрата равномерно (по каплям) подавали воду. Для используемых субстратов оптимальные навески воды составили: песка - 15 г, дерново-подзолистой почвы - 9 г, серой лесной почвы - 13,5 г, чернозема - 13,5 г, каштановой почвы - 15 г. Приготовленные образцы помещали на 48 часов в воздушный термостат при 22°С, в котором поддерживалась близкая к 100% влажность.

По прошествии времени проросшие семена с субстратом из емкости переносили на сито с диаметром отверстий 2 мм и отмывали субстрат дистиллированной водой. После удаления субстрата семена переносили в цилиндр с водой объемом 100 мл с внутренними диаметром 28 мм. При этом на цилиндр оказывали вибрационное воздействие, заставляя его колебаться с частотой 50 Гц в вертикальной плоскости с амплитудой 3-4 мм (на специальном вибрационном столике). Насыпали проросшие семена в цилиндр постепенно, чтобы они оседали раздельно друг от друга до объема около 20 мл после этого на семена помещали груз 8 г и уплотняли семена с проростками под грузом при воздействии вибрации 15-20 секунд. После этого груз снимали и опять насыпали около 20 мл семян и опять уплотняли семена при воздействии вибрации под грузом. Операции последовательного уплотнения под грузом проводили до тех пор, пока в цилиндре не оказывались все семена изучаемого образца. Обычно 4-5 раз.

После этого на поверхность семян в цилиндре помещали грузик весом 8 г (в воде за вычетом веса вытесненной воды), создавая давление на поверхность семян в цилиндре 1,3 г/см2. Постукивая мерным цилиндром о стол 30-40 раз с амплитудой 0-5 см, семена в цилиндре уплотняли повторно и фиксировали насыпной объем.

Величину ингибирующего действия почвы (И) определяли по формуле:

И=((V3-V2)/(V3-V1))*100%,

где V1 - поправочный коэффициент, характеризующий насыпной объем набухших семян, проращивание которых осуществлялось в течение 24 часов на песке, равный 20 мл;

V2 - насыпной объем проросших семян опытного образца;

V3 - насыпной объем проросших семян контрольного образца.

Полученные данные по ингибирующему действию почв на развитие ярового ячменя сорта «Нур» представлены в таблице 3.

Из полученных данных следует, что данный ячмень можно сеять во все почвы, образцы которых исследовались, кроме серой лесной почвы, но лучших урожаев следует ждать при посеве в дерново-подзолистую и каштановую почвы (поскольку полученные значения величины ингибирования данными почвами составляют менее 40%).

Пример 6. Определение ингибирования яровой пшеницы сорт «Злата» разными почвами.

В качестве субстратов использовали сухой отмытый речной песок с размером частиц 0,5-0,8 мм, образцы дерново-подзолистой почвы из окрестностей поймы р. Яхрома влажностью 18,1% (после зерновых), серой лесной почвы из Тульской области (Щекинский район) влажностью 21,6% (после зерновых), чернозема типичного из Липецкой области (Данковский район) влажностью 33,1% (после картошки), а также каштановой почвы из Волгоградской области (Иловлинский район) влажностью 19,3% (залежь).

Для проращивания семян брали емкость с площадью 7850 мм2, в нее насыпали 30 г субстрата, равномерно разравнивали, на него помещали 7,5 г семян яровой пшеницы сорт «Лиза», располагая их по всей поверхности субстрата. Затем сверху на семена насыпали еще 30 г субстрата и разравнивали. После этого из мерной пипетки на поверхность субстрата равномерно (по каплям) подавали воду. Для используемых субстратов оптимальные навески воды составили: песка - 15 г, дерново-подзолистой почвы - 9 г, серой лесной почвы - 13,5 г, чернозема - 13,5 г, каштановой почвы - 15 г. Приготовленные образцы помещали на 48 часов в воздушный термостат при 22°С, в котором поддерживалась близкая к 100% влажность.

По прошествии времени проросшие семена с субстратом из емкости переносили на сито с диаметром отверстий 2 мм и отмывали субстрат дистиллированной водой. После удаления субстрата семена переносили в цилиндр с водой объемом 100 мл с внутренними диаметром 28 мм. При этом на цилиндр оказывали вибрационное воздействие, заставляя его колебаться с частотой 50 Гц в вертикальной плоскости с амплитудой 3-4 мм (на специальном вибрационном столике). Насыпали проросшие семена в цилиндр постепенно, чтобы они оседали раздельно друг от друга до объема около 20 мл после этого на семена помещали груз 8 г и уплотняли семена с проростками под грузом при воздействии вибрации 15-20 секунд. После этого груз снимали и опять насыпали около 20 мл семян и опять уплотняли семена при воздействии вибрации под грузом. Операции последовательного уплотнения под грузом проводили до тех пор, пока в цилиндре не оказывались все семена изучаемого образца. Обычно 4-5 раз.

После этого на поверхность семян в цилиндре помещали грузик весом 8 г (в воде за вычетом веса вытесненной воды), создавая давление на поверхность семян в цилиндре 1,3 г/см2. Постукивая мерным цилиндром о стол 30-40 раз с амплитудой 0-5 см, семена в цилиндре уплотняли повторно и фиксировали насыпной объем.

Величину ингибирующего действия почвы (И) определяли по формуле:

И=((V3-V2)/(V3-V1))*100%,

где V1 - поправочный коэффициент, характеризующий насыпной объем набухших семян, проращивание которых осуществлялось в течение 24 часов на песке, равный 20 мл;

V2 - насыпной объем проросших семян опытного образца;

V3 - насыпной объем проросших семян контрольного образца.

Полученные данные по ингибирующему действию почв на развитие яровой пшеницы сорта «Злата» представлены в таблице 4.

Из полученных данных следует, что данную пшеницу из исследованных почв можно сеять только в каштановую почву.

Таким образом, способ оценки аллелопатического почвоутомления для конкретных культур позволяет быстро проверить возможность использования имеющихся в хозяйствах семян для их посева на почвах различных полей предприятия. Особенно перспективно использование данного способа для яровых культур, так как почвы с полей можно отобрать поздней осенью, а зимой есть достаточно времени для проведения исследования.

1. Способ оценки аллелопатического почвоутомления для конкретных зерновых культур, включающий последовательно выполняемые следующие этапы:

- формирование, по меньшей мере, двух образцов семян зерновых культур: опытного и контрольного варианта образцов семян зерновых культур,

- обеспечение контакта опытного образца семян с почвой с добавлением воды до достижения наименьшей влагоемкости почвы;

- обеспечение контакта контрольного образца семян с песком с добавлением воды до достижения наименьшей влагоемкости песка;

- выдержка указанных опытных и контрольных образцов семян до проращивания,

- удаление почвы и песка с пророщенных семян и помещение очищенных опытных и контрольных образцов пророщенных семян в идентичные прозрачные емкости с водой,

- уплотнение пророщенных семян в емкостях посредством вибрационного воздействия в вертикальной плоскости, и последующего ударного воздействия на дно емкости, при этом после вибрационного воздействия на образцы семян в емкости помещают идентичные по массе грузы,

- определение насыпных объемов опытных (V2i) и контрольного (V3) образцов пророщенных семян по высоте размещения груза от дна емкости,

- определение величины ингибирования для каждого образца (Иi) по формуле:

Иi=((V3-V2i)/(V3-V1))*100%,

где V1 - поправочный коэффициент, характеризующий насыпной объем набухших семян, проращивание которых осуществлялось в течение 24 часов;

V2i - насыпной объем проросших семян опытного образца;

V3 - насыпной объем проросших семян контрольного образца,

i - порядковый номер опытного образца,

- определение минимального Иi, по которому определяют опытный образец, с минимальной величиной ингибирования, характеризующей степень аллелопатического почвоутомления для конкретных зерновых культур.

2. Способ по п. 1, характеризующийся тем, что при получении значения Иi более 40% делают вывод о достижении максимального аллелопатического почвоутомления в отношении i-того образца.

3. Способ по п. 1, характеризующийся тем, что выдержку семян до проращивания осуществляют при температуре 22-25°C при 100% влажности воздуха в течение 2 суток.

4. Способ по п. 1, характеризующийся тем, что выдержку семян до проращивания осуществляют в течение времени, обеспечивающего достижение средней суммарной длины ростков семян одной навески от 5000-7000 мм и до 10000 мм на 7,5 г семян.

5. Способ по п. 1, характеризующийся тем, что помещение и уплотнение семян в емкости выполняют дозированно для объемов, не превышающих 1/5-1/4 объема образца.

6. Способ по п. 1, характеризующийся тем, что его выполняют не менее чем в шестикратной повторности для опытных и контрольного образцов.

7. Способ по п. 1, характеризующийся тем, что вибрационное воздействие в вертикальной плоскости осуществляют с частотой не более 50 Гц и амплитудой 3-4 мм с допустимой величиной отклонений от указанных значений не более 10%.

8. Способ по п. 1, характеризующийся тем, что при ударном воздействии обеспечивают его силу, равную силе свободного падения цилиндрической емкости, заполненной водой и семенами, на поверхность стола с высоты 1 см с допустимой величиной отклонений от указанных значений не более 10%.

9. Способ по п. 1, характеризующийся тем, что в качестве идентичных прозрачных емкостей используют прозрачные цилиндры с соотношением высоты и диаметра 5:8.



 

Похожие патенты:

Изобретение относится к области исследований свойств пород сланцевых толщ. При осуществлении способа определяют литологические типы пород в интервалах глубин сланцевой толщи.

Изобретение относится к области сельского хозяйства. В способе формируют, по меньшей мере, один обработанный раствором пестицида опытный образец семян зерновых культур и один необработанный контрольный образец семян зерновых культур, обеспечивают контакт опытного обработанного образца семян с почвой с добавлением воды до достижения наименьшей влагоемкости почвы; обеспечивают контакт контрольного образца семян с песком с добавлением воды до достижения наименьшей влагоемкости песка; осуществляют выдержку указанных опытных и контрольных образцов семян до проращивания, удаляют почву и песок с пророщенных семян и помещают очищенные опытные и контрольные образцы пророщенных семян в идентичные прозрачные емкости с водой, уплотняют пророщенные семена в емкостях посредством вибрационного воздействия в вертикальной плоскости и последующего ударного воздействия на дно емкости, при этом после вибрационного воздействия на образцы семян в емкости помещают идентичные по массе грузы, определяют насыпные объемы опытного (V2) и контрольного (V3) образцов пророщенных семян по высоте размещения груза от дна емкости, по которым определяют величину суммарного ингибирования семян опытного образца токсикозом почв и пестицидом (Иi) по формуле: Иi=((V3-V2i)/(V3-V1))*100%, где V1 - поправочный коэффициент, характеризующий насыпной объем набухших семян злаковых колосовых зерновых культур, проращивание которых осуществлялось в течение 24 часов; V2i - насыпной объем проросших семян опытного образца; V3 - насыпной объем проросших семян контрольного образца, i - порядковый номер опытного образца; по значениям насыпных объемов V2i, где i - порядковый номер опытного образца, строят кинетические зависимости изменения длины проростков для выбранной культуры при проращивании обработанных семян этой культуры на исследуемой почве от времени (toi, мин); определяют величину временного сдвига (%) для каждого образца и выбранной почвы (Ti) Ti=[(toi-tпi)/tпi]*100%, где Ti - временной сдвиг (%), tпi - время прорастания семян в песке, мин, tоi - время прорастания семян в почве до той же длины проростков, что и в песке, мин; формируют зависимость временного сдвига (Ti) от величины суммарного ингибирования (Иi) при развитии семян, определенную по насыпному объему (V2i); определяют время задержки прорастания опытного образца семян в почве по формуле Δto=1080*Ti/100, где Δto - время задержки прорастания обработанных семян в почве (мин), Ti - временной сдвиг, который определили при помощи экспериментальной кривой для величины найденного суммарного ингибирования (%).

Изобретение относится к отрасли сельского хозяйства, а именно к области исследования состояния почвы, может использоваться в сельском хозяйстве для отбора проб почвы с различной глубины и проведения исследований по некоторым ее физико-механическим и химическим свойствам.

Изобретение относится к экологии и может быть использовано для идентификации источника и времени загрязнения окружающей среды дихлордифенилтрихлорэтаном (ДДТ) в регионах Крайнего Севера.

Изобретение относится к области сельского хозяйства. Способ количественной оценки эрозионных потерь почвы с применением наземного лазерного сканера заключается в том, что устанавливают не менее трех опорных реперных точек с известными координатами для идентификации координат их размещения на местности и обеспечения повторности наблюдений либо определяют эти координаты топографо-геодезической съемкой с точностью ±1 мм; устанавливают сканирующее оборудование таким образом, чтобы лазерный сканер находился на самой нижней точке исследуемого подверженного эрозии участка; обрабатывают полученные сканы, а именно сделанные в разное время сканы размещают в единую систему координат, очищают сканы от нежелательных объектов, для каждого скана с помощью встроенных в используемую компьютерную программу алгоритмов строят цифровую трехмерную модель рельефа с шагом сетки, равным шагу сканирования, определяют объём V и толщину слоя i потери почвы от эрозии (i–) и аккумуляции (i+) смытого материала на всем выбранном участке путем вычитания разновременных цифровых моделей рельефа с помощью алгоритмов программы, поставляемой с используемым сканирующим оборудованием; выполняют вычисление показателей почвенной эрозии и аккумуляции на исследуемой территории, для чего рассчитывают слой эрозии почвы и аккумуляции почв на участке площадью S в миллиметрах по объему смыва почв V и объему аккумуляции почв V+ по экспериментально выведенным формулам i– = V–/S × 1000; i+ = V+/S × 1000; выполняют расчёт преобладающего эрозионного процесса Δi: Δi = (V+ – V–/S) × 1000; выполняют расчёт объема смыва аккумуляции почвы на единицу площади, получают интегрированный удельный показатель E: E = (V+ – V–/S) × 10000.

Изобретение относится к грунтоведению и может быть использовано при проектировании искусственных оснований фундаментов зданий и сооружений из насыпного глинистого грунта.

Изобретение относится к инженерно-геологическим изысканиям, в частности к способам определения изменения устойчивости мерзлых грунтовых оснований. Согласно заявленному способу в грунтовом основании размещают зонды, каждый из которых содержит нагревательный элемент, приемный акустический преобразователь и термометр.

Изобретение относится к области измерения содержания газа, в частности к интегрированному газонепроницаемому измерительному прибору для измерения содержания газа, основанному на принципе температурного и избыточного давления и его применения.

Изобретение относится к сельскому хозяйству и почвоведению, а именно к cпособу оценки снижения токсикоза почв для повышения урожайности зерновых культур. Оценку токсикоза почвы проводят по величине ингибирования (И1) развития семян зерновых культур при их посеве на этой почве и данным по оценке токсикоза почвы, обработанной сывороткой или навозом, по величине ингибирования развития семян на почве, обработанной мелиорантом (И2).

Изобретение относится к способу исследования водопроницаемости и суффозионной устойчивости модели элемента конструкции грунтового гидротехнического сооружения, состоящей из несвязного грунта и фильтрующего геосинтетического материала, включающему размещение модели элемента конструкции на нижней сетке, лежащей на неподвижной опорной решетке, расположенной в нижней части фильтрационной камеры, укладку образца несвязного грунта, выполняемую отдельными слоями, подвергая его легкому уплотнению трамбованием, а около стенок фильтрационной камеры - штыкованию установку поверх образца несвязного грунта верхней сетки, затем подвижной нагрузочной решетки, на которую при помощи устройства для передачи нагрузки передается заданная нагрузка, водонасыщение образца грунта кипяченой или дистиллированной водой при восходящем направлении потока, создание напора бачками верхнего и нижнего бьефов путем подачи воды в бачок верхнего бьефа насосом из емкости для воды, поступающей по трубе, определение градиента напора по показаниям трубчатых пьезометров, подсоединенных к бачкам верхнего и нижнего бьефов, определение нагрузки на грунт по датчику нагрузки, фиксацию осадки подвижной нагрузочной решетки датчиком линейных перемещений, расчет величины коэффициента фильтрации образца грунта при восходящем или нисходящем направлении потока воды.

Изобретение относится к области сельского хозяйства. В способе формируют, по меньшей мере, один обработанный раствором пестицида опытный образец семян зерновых культур и один необработанный контрольный образец семян зерновых культур, обеспечивают контакт опытного обработанного образца семян с почвой с добавлением воды до достижения наименьшей влагоемкости почвы; обеспечивают контакт контрольного образца семян с песком с добавлением воды до достижения наименьшей влагоемкости песка; осуществляют выдержку указанных опытных и контрольных образцов семян до проращивания, удаляют почву и песок с пророщенных семян и помещают очищенные опытные и контрольные образцы пророщенных семян в идентичные прозрачные емкости с водой, уплотняют пророщенные семена в емкостях посредством вибрационного воздействия в вертикальной плоскости и последующего ударного воздействия на дно емкости, при этом после вибрационного воздействия на образцы семян в емкости помещают идентичные по массе грузы, определяют насыпные объемы опытного (V2) и контрольного (V3) образцов пророщенных семян по высоте размещения груза от дна емкости, по которым определяют величину суммарного ингибирования семян опытного образца токсикозом почв и пестицидом (Иi) по формуле: Иi=((V3-V2i)/(V3-V1))*100%, где V1 - поправочный коэффициент, характеризующий насыпной объем набухших семян злаковых колосовых зерновых культур, проращивание которых осуществлялось в течение 24 часов; V2i - насыпной объем проросших семян опытного образца; V3 - насыпной объем проросших семян контрольного образца, i - порядковый номер опытного образца; по значениям насыпных объемов V2i, где i - порядковый номер опытного образца, строят кинетические зависимости изменения длины проростков для выбранной культуры при проращивании обработанных семян этой культуры на исследуемой почве от времени (toi, мин); определяют величину временного сдвига (%) для каждого образца и выбранной почвы (Ti) Ti=[(toi-tпi)/tпi]*100%, где Ti - временной сдвиг (%), tпi - время прорастания семян в песке, мин, tоi - время прорастания семян в почве до той же длины проростков, что и в песке, мин; формируют зависимость временного сдвига (Ti) от величины суммарного ингибирования (Иi) при развитии семян, определенную по насыпному объему (V2i); определяют время задержки прорастания опытного образца семян в почве по формуле Δto=1080*Ti/100, где Δto - время задержки прорастания обработанных семян в почве (мин), Ti - временной сдвиг, который определили при помощи экспериментальной кривой для величины найденного суммарного ингибирования (%).

Изобретение относится к области дезинфектологии, в частности к дезинфекции замкнутых агробиотехносистем типа фитотрона и синерготрона при выращивании овощных культур.

Изобретение относится к области сельского хозяйства, в частности к садоводству. Способ включает опрыскивание деревьев регулятором роста за 40 дней до сбора плодов.

Изобретение относится к области физиологии и биохимии растений и может быть использовано при определении содержания фенольных соединений (ФС) в растительных объектах.

Изобретение относится к области сельского хозяйства, в частности к плодоводству. Способ включает обработку деревьев в маточно-семенном саду в фазу бутонизации раствором регуляторов роста, заготовку созревших плодов и посев семян.

Изобретение относится к сельскому хозяйству. Способ повышения качества кормовых культур включает черезрядное размещение и смешанное их использование, причем кормовые культуры высевают в междурядья многолетнего шалфея лекарственного, с пониженной нормой высева в пределах одной четвертой части, а спустя 20-25 дней в первый год в междурядья высевают амарант, который скашивают в фазу цветения в смеси с шалфеем, и в последующие годы при обработке междурядий, последовательно высевают сильфию пронзеннолистную, сорго, люпин, свербигу, амарант, скашивая их в смеси с шалфеем.

Изобретение относится к области сельского хозяйства, в частности растениеводства. Способ включает формирование, по меньшей мере, двух обработанных растворами соответствующих фунгицидов, опытных образцов семян зерновых культур и одного необработанного контрольного образца семян зерновых культур, обеспечение контакта опытных обработанных образцов семян с почвой с добавлением воды до достижения наименьшей влагоемкости почвы; обеспечение контакта контрольного образца семян с песком с добавлением воды до достижения наименьшей влагоемкости песка; выдержку указанных опытных и контрольных образцов семян до проращивания, удаление почвы и песка с пророщенных семян и помещение очищенных опытных и контрольных образцов пророщенных семян в идентичные прозрачные емкости с водой, уплотнение пророщенных семян в емкостях посредством вибрационного воздействия в вертикальной плоскости и последующего ударного воздействия на дно емкости, при этом после вибрационного воздействия на образцы семян в емкости помещают идентичные по массе грузы, определение насыпных объемов опытных (V2i) и контрольного (V3) образцов пророщенных семян по высоте размещения груза от дна емкости, определение величины суммарного ингибирования для каждого образца (Иi) по формуле: Иi=((V3-V2i)/(V3-V1))*100%, где V1 - поправочный коэффициент, характеризующий насыпной объем набухших семян злаковых колосовых зерновых культур, проращивание которых осуществлялось в течение 24 часов; V2i - насыпной объем проросших семян опытного образца; V3 - насыпной объем проросших семян контрольного образца, i - порядковый номер опытного образца, определение минимального Иi, по которому определяют опытный образец, обработанный фунгицидом с минимальной величиной суммарного ингибирования.

Изобретение относится к области сельского хозяйства, в частности к растениеводству. Способ включает подготовку семян к посеву, осенний посев и укос.

Изобретение относится к области сельского хозяйства, в частности к растениеводству. Способ включает удаление усов с маточных кустов, обработку препаратом Байлетон с последующей упаковкой розеток без корней и листьев в полиэтиленовые пакеты.

Изобретение относится к области сельского хозяйства, в частности к методам рекогносцировочной диагностики состояния растений с применением беспилотных летательных аппаратов (БПЛА) для получения фотометрических данных.
Наверх