Способ переработки тяжелого нефтяного сырья на катализаторе защитного слоя

Изобретение описывает способ переработки тяжелого нефтяного сырья на защитном слое катализатора, в котором тяжелое нефтяное сырье пропускают через неподвижный слой катализатора при температуре 300-600°С, скорости подачи сырья через катализатор 0,2-2г-сырья/г-катализатора/ч, в присутствии водорода, подаваемого под давлением 8-15 МПа, отличающийся тем, что используют катализатор, содержащий в качестве носителя оксид алюминия, а в качестве активного компонента - соединения кальция и/или магния, кальция не более 10 мас.%, магния не более 10 мас.%, катализатор имеет макропоры, образующие регулярную пространственную структуру, причем доля макропор с размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор, катализатор имеет удельную поверхность не менее 100 м2/г с долей внешней поверхности не менее 50 % и удельным объемом пор не менее 0,1 см3/г. Технический результат - дешевый способ подготовки тяжелых нефтей для их каталитической гидропереработки и увеличение срока эксплуатации катализатора защитного слоя в жестких условиях гидропереработки. 3 пр.

 

Изобретение относится к способу переработки тяжелого нефтяного сырья на защитном слое катализатора с целью снижения содержания механических примесей, примесей оксида кремния, металлов, агрегированных макромолекул, например, асфальтенов, кокса, снижения вязкости сырья для дальнейшей его переработки. Переработка сырья с повышенным содержанием нежелательных примесей на установках гидропереработки нефтей приводит к снижению срока службы катализаторов и ухудшению технико-экономических показателей. Для увеличения срока службы основных катализаторов и предотвращения снижения их активности используют многореакторную систему, в том числе реактор с защитным слоем катализатора, расположенный в начале системы. Одним из направлений использования способа может быть процесс получения судового топлива.

В патенте [RU 2178451, C10G47/18, 20.01.2002] изложен процесс облагораживания нефтей, сущность которого заключается в контакте перерабатываемого сырья с катализатором, содержащим цеолит NU-86 и, по меньшей мере, один гидрирующий компонент при температуре, которая находится в интервале от 170 до 500оС, давлении в диапазоне от 1 до 250 бар в присутствии водорода, подаваемого в соотношении от 50 до 2000 л на 1 кг сырья. Недостатком этого способа для переработки тяжелой нефти является высокая стоимость синтетических цеолитов, отравление катализатора серосодержащими соединениями, высокая скорость коксообразования на поверхности цеолитов и быстрая потеря каталитической активности из-за отложений кокса, серы и металлов.

Для увеличения стабильности и срока службы катализаторов, в том числе цеолитсодержащих, используют каталитическую систему, включающую несколько слоев катализаторов, в том числе катализатор защитного слоя, расположенный впереди катализаторов основного слоя. Компания Хальдор Топсе предлагает в качестве катализаторов защитного слоя NiMo катализаторы с высокой емкостью по поглощению металлов (Ni, V, Fe) и кремния, например, с наименованием ТК-453, а компания KNT-групп – ряд катализаторов, как не имеющих в своем составе активных компонентов (КНТ-300, КНТ-310, КНТ-326), так и содержащих 8-13 мас. % MoO3 и 0,5-4 мас. % NiO (КНТ-330, КНТ-351). Катализаторы защитного слоя позволяют снизить влияние отложений на перепад давления в реакторе, улучшить распределение газо-сырьевого потока в реакторе, обеспечивают удаление содержащихся в сырье механических примесей, непредельных соединений и каталитических ядов до поступления газо-сырьевой смеси на катализатор основного слоя, что способствует повышению длительности межрегенерационного цикла и общего срока службы каталитической системы.

В патенте RU2140964 описан способ получения малосернистых нефтяных фракций в присутствии катализатора защитного слоя на основе оксида алюминия, имеющего в своем составе 2-5 мас. % - α-оксида алюминия, 73-85 мас. % β-оксида алюминия и 25-10 мас. % γ-оксида алюминия. В состав каталитического пакета из нескольких слоев входит 2-10 мас. % катализатора защитного слоя, полученного путем пропитки носителя - оксида алюминия водными растворами солей активных компонентов с последующей сушкой и прокалкой. При проведении каталитических испытаний в качестве сырья использовали смесевую дизельную фракцию 180 - 360oC с содержанием серы 1,6 мас. %, непредельных углеводородов 10 мас. %, механических примесей 1.2 мас. %. Каталитическую активность системы оценивали по содержанию серы в гидрогенизате и перепаду давления по реактору после 100 и 500 ч работы каталитической системы. Испытания в соответствии с описанными в патенте RU2140964 показали превосходство катализаторов защитного слоя в сравнении с алюмокобальтмолибденовым катализатором ГО-70 (ТУ 38.1011378-97) и алюмоникельмолибденовым катализатором РК-222 (ТУ 38.1011378-97). Однако недостатком изобретения является невозможность его использования для тяжелых нефтей с высоким содержанием макромолекул, металлов и серы ввиду быстрой дезактивации катализаторов, а также высокая стоимость наносимых каталитически активных компонентов.

В патенте RU 2603776 описан способ гидрокрекинга углеводородного сырья, заключающийся в превращении высококипящего сырья при температуре 360-440°С, давлении 6-20 МПа, массовом расходе сырья 0,5-1,5 ч-1, объемном отношении водород/сырье 800-2000 нм33 в присутствии гетерогенного катализатора. При этом используемый катализатор содержит никель и молибден в форме биметаллических комплексных соединений [Ni(HO)(L)][MoO(CHO)], где L - частично депротонированная форма лимонной кислоты СНO; х=0 или 2; у=0 или 1; кремний в форме аморфного алюмосиликата, алюминий в форме γ-АlOз и аморфного алюмосиликата, при этом компоненты содержатся в следующих концентрациях, мас. %: [Ni(HO)(L)][MoO(CHO)] 13,1-23,3, аморфный алюмосиликат - 40,0-61,3; γ-AlO - остальное, что соответствует содержанию в прокаленном при 550°С катализаторе, мас. %: МoО - 7,0-13,0, NiO - 1,8-3,4, аморфный алюмосиликат - 43,1-66,9; γ-АlO - остальное. Предлагаемый способ позволяет получить средние дистилляты с низким остаточным содержанием серы.

Описан катализатор защитного слоя для гидроочистки нефтяных фракций (RU2319543 C1), содержащий оксид молибдена (3,0-9,0 мас. %), оксид никеля и/или кобальта (0,5-4,0), оксид кремния (0,8-3,0 мас. %), оксид алюминия (до 100 %), сформованный в виде полых цилиндрических гранул. Данный катализатор испытан в качестве катализатора защитного слоя при осуществлении процесса гидроочистки дизельного топлива с добавкой 25 % вторичных газойлей при температуре 350°С, давлении 40 атм, объемной скорости подачи сырья 1,5 ч-1. Применение описанного катализатора обеспечивает перепад давления до 0,09 МПа, уменьшает содержание кокса на катализаторе до 3,5 мас. %, повышает степень гидрирования непредельных углеводородов до 90,0 %, увеличивает срок службы основного катализатора гидроочистки до регенерации до не менее трех лет.

Однако общим недостатком вышеописанных изобретений является их неприменимость для начальной переработки вязких высокосернистых нефтей с высоким содержанием макромолекул и металлов и высокая стоимость наносимых каталитически активных компонентов. Основная причина первого недостатка заключается в низкой доле крупных пор, что затрудняет подвод реагентов к внутренней поверхности катализатора, не обеспечивает достаточно высокой емкости по металлам, оксиду кремния, асфальтенам и коксу. Сложность каталитической переработки тяжелого нефтяного сырья заключается в малой подвижности и низкой реакционной способности содержащихся в нем макромолекул, а также дезактивации катализаторов вследствие отравления побочными продуктами реакций крекинга и гидрокрекинга, включающих в себя углеродистые отложения, металлические примеси и металлорганические соединения. Известно, что каталитическая активность и стабильность работы катализаторов существенно зависят от текстурных характеристик носителя: распределения пор по размерам, их объема, а также от величины удельной поверхности. В случае малого размера пор внутренняя поверхность катализатора становится недоступной для макромолекул. Задача усложняется тем, что при переработке тяжелого нефтяного сырья побочный процесс образования коксовых отложений протекает с высокой скоростью, в результате узкие поры блокируются, поверхность падает и катализатор дезактивируется. Для решения указанных проблем предлагается использовать катализаторы защитного слоя с существенной долей крупных пор размером более 50 нм, которые по существующей классификации относятся к макропорам. Известно, что развитая сеть транспортных макропор облегчает подвод реагентов к внутренней поверхности катализатора, уменьшает негативное влияние отложений побочных продуктов реакции (US №№ 4328127, 4572778, 5416054, 5968348), а щелочные добавки увеличивают время функционирования катализатора в условиях высокого содержания тяжелых ароматических соединений в сырье (Ancheyta J. Deactivation of heavy oil hydroprocessing catalysts: fundamentals and modeling. Hoboken, New Jersey: John Wiley&Sons, - 2016).

Прототипом изобретения является способ деасфальтизации и деметаллизации тяжелого нефтяного сырья в присутствии адсорбента, состоящего из гамма-оксида алюминия, полученного с помощью темплатного синтеза, содержащего макропоры, образующие регулярную пространственную структуру, причем доля макропор с размером в диапазоне от 50 нм до 500 нм составляет не менее 30 % в общем удельном объеме пор (RU2610525 С1). Адсорбент не содержит в себе дорогостоящих каталитически активных добавок таких металлов, как кобальт, молибден, никель или вольфрам. В соответствии с изобретением тяжелую нефть или мазут пропускают через неподвижный слой адсорбента при температуре 300-600 оС при скорости подачи сырья через адсорбент 0,5-2 г-сырья/г-адсорбента/ч в присутствии водорода, подаваемого под давлением 4-7 МПа. Достигаемый результат – более высокая степень очистки тяжелого нефтяного сырья от асфальтенов и металлов в сравнении с бестемплатным носителем аналогичного химического состава. Недостатком изобретения является избыточная активность описанного адсорбента в реакции коксообразования в случаях с сырьем с избыточным содержанием тяжелых ароматических компонентов, приводящая к быстрому заполнению емкости адсорбента, блокированию каталитически активных центров и сниженное время эксплуатации каталитического слоя.

Изобретение решает задачу разработки эффективного процесса переработки тяжелого нефтяного сырья на защитном слое катализатора.

Технический результат – дешевый способ подготовки тяжелых нефтей для их каталитической гидропереработки и увеличение срока эксплуатации катализатора защитного слоя в жестких условиях гидропереработки.

Это достигается за счет использования катализаторов с контролируемым и заданным объемом транспортных макропор, но не содержащих дорогостоящих металлов, и имеющих в своем составе щелочные добавки в виде соединений кальция и/или магния, которые уменьшают кислотность носителя и/или катализатора и, тем самым, снижают скорость коксообразования в условиях гидропереработки тяжелого нефтяного сырья.

В литературе не известны способы применения катализаторов с контролируемым и заданным объемом транспортных макропор и содержащих щелочные добавки в качестве катализаторов защитного слоя для процесса переработки тяжелых нефтей.

Изобретение раскрывает способ переработки тяжелого нефтяного сырья на катализаторе защитного слоя со строго заданной структурой макропор и содержащем щелочные примеси в составе катализатора.

Задача решается с помощью использования в качестве катализаторов защитного слоя материалов с пространственной структурой макропор и внесения в них соединений кальция и/или магния.

В соответствии с настоящим изобретением процесс гидропереработки тяжелых нефтей в присутствии катализаторов защитного слоя проводят при температурах 300-600оС, скорости подачи сырья через катализатор 0,2-2 г-сырья/г-катализатора/ч, в присутствии водорода, подаваемого под давлением 8-12 МПа, при этом катализатор содержи макропоры, образующие пространственную структуру, причем доля макропор размером в диапазоне от 50 нм до 15 мкм составляет не менее 30 % в общем удельном объеме пор указанного катализатора и удельную поверхность не менее 100 м2/г с долей внешней поверхности не менее 50% и удельным объемом пор не менее 0,1 см3/г, материал катализатора соответствует по составу оксиду алюминия с не более 10 мас. % кальция и/или магния.

Указанные катализаторы с пространственной структурой макропор получают с использованием темплатов как синтетического происхождения - полимерных микросфер диаметром от 50 до 2000 нм, которые могут быть изготовлены из стирола, метилметакрилата, этилметакрилата, бутилметакрилата, в виде индивидуальных веществ, или их смесей, так и из природных материалов – крахмала, целлюлозы, микрокристаллической целлюлозы и других. Содержание щелочного компонента в указанных катализаторах не должно превышать 10 мас. % кальция и/или магния, т.к. при высоком содержании соединений щелочной природы происходит значительное снижение каталитической активности до величины, сравнимой с некаталитическим термическим гидрокрекингом.

Заявляемые материалы испытаны в качестве катализаторов защитного слоя в процессе гидропереработки тяжелого нефтяного сырья на лабораторном стенде. Под тяжелым сырьем подразумевается как сырая нефть, например, извлекаемая среди прочих на территории Татарстана, так и тяжелые нефтяные фракции, в частности атмосферной и вакуумной перегонки, то есть мазут и гудрон, соответственно. В процессе гидропереработки использована тяжелая нефть Татарстана, а также тяжелые остатки гидропереработки нефти (гудрон, мазут), имеющие плотность при 20 оС 0,950-990 кг/м3, вязкость при 100 оС 250-290 сСт, содержание асфальтенов 5-10 мас. % и серы 2,0-3,5 мас. %, металлов Ni+V более 200 м.д. При скорости подачи сырья от 0,2 до 2 г-сырья/г-катализатора/ч, давлениях водорода до 20 МПа и температурах 300-650оC лабораторная установка обеспечила защитные функции катализатора с возможностью дальнейшей переработки тяжелого сырья и стабильную работу катализатора защитного слоя в течение более чем 1200 ч. Удалось снизить содержание металлов (Ni+V) и серы не менее, чем в два раза.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1

В качестве структурообразующего темплата используют полистирольные (ПС) микросферы в виде коммерческого продукта или полученные путем эмульсионной полимеризации стирола по описанной ранее методике [RU 2527573 C1]. В качестве предшественника оксида алюминия используют гидроокись алюминия AlOOH марки ЗАО «Промышленные катализаторы», представленную кристаллической фазой бемита (93 %) с примесью байерита (7 %).

Образцы носителей из оксида алюминия получают добавлением к порошку мелкодисперсного AlOOH разбавленного раствора азотной кислоты (10-4 М) в отсутствии и в присутствии сухого порошка ПС темплата. Для темплатного образца массовое содержание ПС темплата в пасте составляет 20%. Полученные композитные пасты подвергают экструдированию с получением гранул диаметром 2,5 мм, длиной 5 мм. Гранулы сушат на воздухе в течение суток и прокаливают на воздухе при 800°C в течение 8 ч. Фазовый состав макропористых носителей, полученных после прокаливания, представлен смесью γ- и δ-модификаций Al2O3.

Затем гранулы пропитывают растворами Mg(NO3)2, пропитку проводят из двукратного избытка требуемого объема пропиточного раствора, рассчитанного с учетом влагоемкости носителя, сушат на воздухе 24 ч и прокаливают при 350°C в течение 4 ч. Полученные темплатные образцы оксида алюминия обладают регулярной пространственной структурой макропор со средним размером 160 нм, измеренным и визуализированным с помощью сканирующей электронной микроскопии. Текстурные свойства темплатных образцов Al2O3, а также полученных на их основе катализаторов защитного слоя гидропереработки тяжелого нефтяного остатка 1Mg/Al2O3 (1 мас. % Mg) и 5Mg/Al2O3 (5 мас. % Mg) являются практически идентичными: площадь удельной поверхности по БЭТ лежит в диапазоне 108-117 м2/г, объем мезопор по данным N2/77K - 0,49-0,55 см3/г, площадь удельной поверхности по данным ртутной порометрии - 140-173 м2/г, общий объем пор - 0,79-0,81 см3/г. В бестемплатном образце сравнения макропоры не упорядочены и составляют незначительную долю в общем объеме пор.

Катализаторы в количестве 10 г загружают в реактор Берти и испытывают в реакциях гидропереработки мазута при температуре 420°C, давлении 8 МПа. Скорость подачи мазута М-100 составляет 0,5 г-мазута/г-кат/ч, скорость подачи водорода 1 мг-Н2/г-кат/ч.

В условиях гидропереработки тяжелого нефтяного остатка для макропористых катализаторов с различным содержанием магния − 1Mg/Al2O3 и 5Mg/Al2O3 наблюдается различное изменение текстурных свойств. Образец с меньшим числом кислотных центров (5Mg/Al2O3) в меньшей степени показывает изменение удельной поверхности и объема мезопор по сравнению с образцом 1Mg/Al2O3, имеющим большую концентрацию кислотных центров. После испытаний катализатора 5Mg/Al2O3 в качестве защитного слоя гидропереработки остатка в течение 1225 ч его текстурные свойства меняются незначительно, уменьшаются значения удельной поверхности и объема пор, причем наибольшие изменения произошли в мезопорах – уменьшение объема мезо- и макропор достигло 35 и 20%, соответственно. При испытаниях менее кислого образца 1Mg/Al2O3 в течение 194 ч изменение объема мезопор превышает 50%. Таким образом, макропористый катализатор с меньшей кислотностью показывает меньшую скорость дезактивации, несмотря на более длительные каталитические эксперименты на этом образце. Отработанные катализаторы после испытаний в качестве защитного слоя исследованы методом термогравиметрии для определения количества коксовых отложений. Согласно полученным данным, потери массы при термообработке для 1Mg/Al2O3 и 5Mg/Al2O3 составили 20 и 12%, соответственно. Это указывает на менее интенсивное протекание процессов образования кокса для катализатора с меньшим числом кислотных центров - 5Mg/Al2O3.

Полученный катализатор может быть использован как катализатор защитного слоя с увеличенным сроком функционирования при гидропереработке тяжелого нефтяного сырья.

Пример 2

В качестве структурообразующего темплата используют полиметилметакрилатные (ПММА) микросферы в виде коммерческого продукта или полученные путем эмульсионной полимеризации метилметакрилата. В качестве предшественника оксида алюминия используют гидроокись алюминия AlOOH от компании Disperal, представленную кристаллической фазой бемита.

Образцы носителей из оксида алюминия получают добавлением к водному раствору ПММА микросфер мелкодисперсного псевдобемита, при этом происходит совместное осаждение гидкроксида алюминия и темплата. Объем раствора ПММА микросфер подбирают таким образом, чтобы массовое содержание ПММА темплата в расчете на сухой композит составляло 20%. Осадок отделяют декантацией, высушивают, размалывают, добавляют водный раствор азотной кислоты (10-4 М), в количестве, достаточном для формирования пасты. Полученные композитные пасты подвергают экструдированию с получением гранул диаметром 2,5 мм, длиной 5 мм. Гранулы сушат на воздухе в течение суток и прокаливают на воздухе при 800°C в течение 8 ч. Фазовый состав макропористых носителей, полученных после прокаливания, представлен смесью γ- и δ-модификаций Al2O3.

Затем гранулы пропитывают растворами Ca(NO3)2, пропитку проводят из двукратного избытка требуемого объема пропиточного раствора, рассчитанного с учетом влагоемкости носителя, сушат на воздухе 24 ч и прокаливают при 350°C в течение 4 ч.

Полученный катализатор обладает пространственной структурой макропор со средним размером 150 нм, измеренным и визуализированным с помощью сканирующей электронной микроскопии, общий объем пор, измеренный с помощью ртутной порометрии, составляет 0,75 см3/г при удельной поверхности 157 м2/г.

Катализатор в количестве 10 г загружают в реактор Берти и испытывают в реакциях гидропереработки гудрона при температуре 420°C, давлении 10 МПа. Скорость подачи гудрона составляет 0,2 г-гудрона/г-кат/ч, скорость подачи водорода 1 мг-Н2/г-кат/ч.

Относительно темплатного катализатора на основе оксида алюминия без щелочной добавки при испытаниях образца с кальциевой добавкой в качестве защитного слоя в гидропереработке тяжелой нефти скорость дезактивации катализатора ниже в 1,5 раза. Полученный оксид алюминия с щелочными добавками может быть использован как катализатор защитного слоя с увеличенным сроком функционирования при гидропереработке тяжелого нефтяного сырья.

Пример 3

В качестве структурообразующего темплата используют крахмал в виде нагретой водной суспензии. В качестве предшественника оксида алюминия используют гидроокись алюминия AlOOH от компании ЗАО «Промышленные катализаторы», представленную кристаллической фазой бемита (93 %) с примесью байерита (7 %).

Образцы носителей из оксида алюминия получают добавлением водной суспензии 10 мас. % крахмала, нагретого до 90оС в состоянии прозрачного геля, и водного раствора азотной кислоты (10-4 М) к порошку мелкодисперсного псевдобемита с формированием композитной пасты из гидкроксида алюминия и темплата. Композитные пасты подвергают экструдированию с получением гранул диаметром 2,5 мм, длиной 5 мм. Гранулы сушат на воздухе в течение суток и прокаливают на воздухе при 800°C в течение 8 ч.

Затем гранулы пропитывают раствором Mg(NO3)2 и Ca(NO3)2 равной концентрации, пропитку проводят из двукратного избытка требуемого объема пропиточного раствора, рассчитанного с учетом влагоемкости носителя, сушат на воздухе 24 ч и прокаливают при 350°C в течение 4 ч. Полученные темплатные образцы оксида алюминия обладают пространственной структурой макропор со средним размером 500 нм, измеренным и визуализированным с помощью сканирующей электронной микроскопии, общий объем пор, измеренный с помощью ртутной порометрии, составляет 0,70 см3/г при удельной поверхности 150 м2/г.

Катализатор в количестве 10 г загружают в реактор Берти и испытывают в реакциях гидропереработки тяжелой нефти Татарстана при температуре 400°C, давлении 15 МПа. Скорость подачи нефти составляет 2 г-нефти/г-кат/ч, скорость подачи водорода 1 мг-Н2/г-кат/ч.

Относительно темплатного катализатора на основе оксида алюминия без щелочной добавки при испытаниях образца с магний-кальциевой добавкой в качестве защитного слоя в гидропереработке тяжелой нефти скорость дезактивации катализатора ниже в 1,3 раза. Полученный оксид алюминия с щелочными добавками может быть использован как катализатор защитного слоя с увеличенным сроком функционирования при гидропереработке тяжелого нефтяного сырья.

Способ переработки тяжелого нефтяного сырья на защитном слое катализатора, в котором тяжелое нефтяное сырье пропускают через неподвижный слой катализатора при температуре 300-600 °С, скорости подачи сырья через катализатор 0,2-2г-сырья/г-катализатора/ч, в присуствии водорода, подаваемого под давлением 8-15 МПа, отличающийся тем, что используют катализатор, содержащий в качестве носителя оксид алюминия, а в качестве активного компонента - соединения кальция и/или магния, кальция не более 10 мас.%, магния не более 10 мас.%, катализатор имеет макропоры, образующие регулярную пространственную структуру, причем доля макропор с размером в диапазоне от 50 нм до 15 мкм составляет не менее 30% в общем удельном объеме пор, катализатор имеет удельную поверхность не менее 100 м2/г с долей внешней поверхности не менее 50 % и удельным объемом пор не менее 0,1 см3/г.



 

Похожие патенты:

Изобретение относится к способу улучшения качества углеводородной смеси, отводимой в виде части потока орошения из установки дистилляции сырой нефти и имеющей начальную температуру кипения ниже 200°С, и по меньшей мере 5% состава которой имеет температуру кипения выше 500°С.
Изобретение относится к способу приготовления катализатора процесса гидрокрекинга, который дает повышенные количества продукта, кипящего в диапазоне средних дистиллятов, и использует катализатор, включающий Бета цеолит, в качестве активного компонента крекинга.
Настоящее изобретение относится к способу конверсии парафинового сырья, которое содержит по меньшей мере 50 вес.% соединений, кипящих выше 370°С, и в котором содержание парафинов составляет по меньшей мере 60 вес.%, содержание ароматики менее 1 вес.%, содержание нафтеновых соединений менее 2 вес.%, содержание азота менее 0,1 вес.% и содержание серы менее 0,1 вес.%.
Группа изобретений относится к способу получения носителя катализатора гидрокрекинга, носителю, способу получения катализатора, катализатору и способу гидрокрекинга в присутствии полученного катализатора.

Изобретение относится к способу получения средних дистиллятов из парафинового сырья, полученного синтезом Фишера-Тропша. В способе используют катализатор гидрокрекинга/гидроизомеризации, содержащий гидрирующий-дегидрирующий металл, выбранный из группы, образованной из металлов группы VIB и группы VIII Периодической системы, и подложку, содержащую по меньшей мере один кристаллический твердый IZM-2.

Изобретение относится к нефтепереработке. .

Изобретение относится к способу производства базового топлива, включающему гидрокрекинг парафинового углеводорода в присутствии катализатора гидрокрекинга, который содержит USY цеолит, имеющий средний размер частиц 0,8 мкм или менее, чтобы достичь скорости разложения от 75 до 90% по массе, как определяется следующим уравнением (1) где молярное отношение кремнезем/глинозем в USY цеолите составляет от 25 до 50.

Изобретение относится к составу топлива, используемого для двигателей с воспламенением от сжатия, и более конкретно к составам топлива, которые являются превосходными как по расходу топлива, так и по свойствам защиты окружающей среды.
Настоящее изобретение относится к бифункциональному катализатору защитного слоя процесса переработки тяжелого нефтяного сырья, а также к способу его получения. Катализатор содержит активный компонент и носитель.

Изобретение относится к технологии производства катализаторов гидрокрекинга и гидроочистки тяжелых остатков нефти, вязкой и высоковязкой нефти. Заявленный катализатор содержит высокопористый ячеистый носитель, выполненный из металла: никель, хром, медь, железо, титан, алюминий в индивидуальной форме или в комбинациях друг с другом, или из оксида алюминия, или оксида железа, или в комбинации друг с другом, активный компонент, выбранный из ряда: никель, хром, медь, железо, титан, алюминий, оксид алюминия оксид железа с пористостью не менее 85%, средним размером пор (ячеек) 0,5-6,0 мм, на высокопористом ячеистом носителе закреплен слой вторичного носителя, выбранного из ряда: цеолит, оксид алюминия, оксид железа, оксид кремния, оксид титана, оксид циркония, алюмосиликат, железосиликат, глина или любая их комбинация, вторичный носитель характеризуется толщиной от 10 до 2000 мкм, удельной поверхностью не менее 20 м2/г, объемом пор от 0,1 до 1,0 см3/г, в котором поры диаметром более 5 нм составляют не менее 50% общего объема пор, наличием кислотных центров Бренстеда и Льюиса, при этом согласно данным температурно-программируемой десорбции аммиака количество средних и сильных кислотных центров Бренстеда и Льюиса с температурными диапазонами десорбции аммиака 250-350°С и более 350°С составляет 1-1500 и 1-1500 мкмоль/г соответственно, а соотношение средних и сильных кислотных центров Бренстеда и Льюиса составляет 1-10:1-5, вторичный носитель в общем составе катализатора составляет не менее 5 мас.%, активный компонент закреплен на вторичном носителе при следующем соотношении компонентов, мас.%: вторичный носитель 5,0-40,0, активный компонент 0,05-40,0, модифицирующий элемент 0-40,0, высокопористый ячеистый материал - остальное.

Изобретение относится к способу приготовления катализатора гидрокрекинга углеводородного сырья путем пропитки прокаленного аморфного алюмосиликатного носителя водным раствором, полученным смешением при температуре 90-95°С в водном растворе ортофосфорной кислоты 45-75 г/л, оксида вольфрама (III) 290-460 г/л и карбоната никеля (II) 65-120 г/л, который стабилизируется смесью лимонной и щавелевой кислот с концентрацией 28-65 г/л с образованием устойчивого водного комплекса активных компонентов с последующей сушкой катализатора при 120-150°С и дальнейшим сульфидированием.

Изобретение относится к области производства катализаторов гидрокрекинга углеводородного сырья. Гидрокрекинг позволяет преобразовать высококипящие углеводородные фракции нефти в более ценные продукты - дизельное и реактивное топливо, керосин, бензин и моторные масла.

Изобретение относится к способу приготовления катализатора гидрокрекинга углеводородного сырья, ориентированного на получение низкосернистых керосиновых и дизельных фракций.

Изобретение относится к способу гидрокрекинга углеводородного сырья, заключающемуся в превращении высококипящего углеводородного сырья при температуре 360-440°С, давлении 6-20 МПа, массовом расходе сырья 0.5-1.5 ч-1, объемном отношении водород/сырье 800-2000 нм3/м3 в присутствии гетерогенного катализатора.

Изобретение относится к способу приготовления катализатора гидрокрекинга углеводородного сырья, ориентированного на получение низкосернистых среднедистиллятных фракций.
Изобретение относится к способу приготовления сульфидированного катализатора гидрокрекинга, содержащему этапы, где (a) пропитывают аморфный алюмосиликатный носитель раствором, содержащим компоненты с одним или более металлами VIB группы, компоненты с одним или более металлами VIII группы и С3-С12 многоатомное соединение, посредством одноступенчатой пропитки, (b) сушат обработанный носитель катализатора при температуре самое большее 200°С с образованием пропитанного носителя, и (c) сульфидируют пропитанный носитель с получением сульфидированного катализатора, причем С3-С12 многоатомное соединение представляет собой сахар, сахарный спирт и/или сахарную кислоту, и причем способ осуществляют в отсутствие промежуточного прокаливания.

Изобретение относится к способу изготовления композиции катализатора, пригодной в гидропереработке углеводородного сырья. Способ включает подготовку частиц носителя, который представляет собой неорганический оксидный материал; пропитку указанных частиц носителя первым водным пропитывающим раствором, включающим первый компонент с металлом VIII группы, первый компонент с металлом VIB группы и первый компонент с фосфором, с получением тем самым пропитанного металлами носителя; прокаливание указанного пропитанного металлами носителя с получением основного катализатора, включающего активные центры I типа и указанный первый компонент с фосфором; пропитку указанного основного катализатора вторым водным пропитывающим раствором, включающим второй компонент VIII группы, второй компонент VIB группы и второй компонент с фосфором с получением тем самым пропитанного металлами основного катализатора; сушку указанного пропитанного металлами основного катализатора в условиях без прокаливания, которые регулируют так, чтобы получить высушенный промежуточный продукт, содержащий активные центры II типа и указанный второй компонент с фосфором; и сульфидирование указанного высушенного промежуточного продукта без его предварительного прокаливания.

Изобретение может быть использовано в химической промышленности. Для получения сфероидальных частиц оксида алюминия готовят суспензию, содержащую воду, кислоту и по меньшей мере один порошок бемита.

Настоящее изобретение относится к способу гидрокрекинга, объединенному с использованием вакуумной перегонки и сольвентной деасфальтизации. Способ гидрокрекинга включает следующие стадии: (a) осуществляют в реакторе гидрокрекинга гидрокрекинг тяжелого сырья с получением продукта гидрокрекинга, который разделяют на по меньшей мере два потока продуктов, включая указанный рециркуляционный поток тяжелого масла, имеющий концентрацию указанных полициклических ароматических углеводородов; (b) пропускают первую часть указанного рециркуляционного потока тяжелого масла в качестве рециркуляционного подаваемого материала в указанный реактор гидрокрекинга; (c) пропускают вторую часть указанного рециркуляционного потока тяжелого масла в установку вакуумной перегонки, в которой указанная вторая часть разделяется на по меньшей мере поток легкого вакуумного газойля, поток более тяжелого вакуумного газойля, поток некондиционного нефтепродукта/парафина и поток вакуумного остатка, при этом указанный поток легкого вакуумного газойля имеет концентрацию полициклических ароматических углеводородов, большую, чем концентрация полициклических ароматических углеводородов в указанном потоке более тяжелого вакуумного газойля; (d) пропускают указанный поток более тяжелого вакуумного газойля в качестве подаваемого материала в указанный реактор гидрокрекинга; (e) используют указанный поток легкого вакуумного газойля, имеющий указанную более высокую концентрацию полициклических ароматических соединений, в качестве сбрасываемого потока или потока продукта, который не возвращается в указанный процесс гидрокрекинга; (f) пропускают поток некондиционного нефтепродукта/парафина и поток вакуумного остатка в установку сольвентной деасфальтизации, в которой асфальтены и тяжелые полициклические ароматические углеводороды отделяются от указанных потоков с получением деасфальтированного парафинового масла, обедненного полициклическими ароматическими углеводородами; и (g) пропускают указанное деасфальтированное парафиновое масло, обедненное полициклическими ароматическими углеводородами, в качестве подаваемого материала в указанный реактор гидрокрекинга.
Наверх