Фармацевтическая композиция на основе хлорбензоиламиноадамантана, повышающая физическую работоспособность в условиях высоких и низких температур

Настоящее изобретение относится к фармацевтической промышленности, а именно фармацевтической композиции, обладающей актопротекторной и термопротекторной активностью. Фармацевтическая композиция, обладающая актопротекторной и термопротекторной активностью, в виде таблеток содержит в определенных соотношениях терапевтически эффективное количество хлорбензоиламиноадамантана и фармацевтически приемлемые вспомогательные вещества - поливинилпирролидон 25000, твин 80, клептозу, микрокристаллическую целлюлозу, лактозу, кроскармеллозу натрия, магния стеарат (варианты). Вышеописанная фармацевтическая композиция обладает выраженной актопротекторной и термопротекторной активностью, нетоксична, без побочных эффектов, удобна и стабильна. 2 н. и 1 з.п. ф-лы, 3 ил., 5 табл., 7 пр.

 

Область техники, к которой относится изобретение

Изобретение относится к медицине, в частности, к фармакологии и фармации, конкретно к фармацевтической композиции, содержащей в качестве активного вещества эффективное количество известного соединения 2-(п-хлорбензоил)аминоадамантан [патент РФ №1646256] - хлодантан, и может быть использовано прежде всего в специальных областях медицины (спортивная, военная, морская, авиационно-космическая и т.д.) для повышения работоспособности организма в условиях экстремального воздействия высоких и низких температур в качестве препарата с актопротекторной и термопротекторной активностью.

Уровень техники

Поиск, создание и внедрение в практику высокоэффективных лекарственных средств, способных поддерживать физическую работоспособность в условиях экстремального воздействия высоких и низких температур представляется актуальной задачей, поскольку на современном этапе средства специального назначения, обладающие подобной активностью, практически отсутствуют.

Известны сведения о возможности использования или эффективности лекарственных средств, повышающих физическую работоспособность в условиях гипо- и гипертермии [Бобков Ю.Г. «Фармакологическая регуляция состояний дезадаптаций» М., 1986,160 с; Козлов Н.Б. «Гипертермия: биохимические основы патогенеза, профилактики и лечения» // Воронеж, 1990, 104 с; Васильева П.П. Вестник Смоленской медицинской академии. 2000. №3. С. 95-96; Седов А.В., Гончаров С.Ф., Г.Г. Онищенко и др. Защита человека в чрезвычайных ситуациях. М., «Реинфор». 2002. с. 115-169; Ильина И.В., Самойлов Н.Н., Парфенов Э.А. Саратовский научно-медицинский журнал. 2007. т. 3, №1. с. 103-104]. Для этой цели предлагается использовать производное бензимидазола этомерзол [Бобков Ю.Г., Виноградов В.М., Катков В.Ф. и др. Фармакологическая коррекция утомления. М, Медицина, 1984. 207 с], 2-пиперазино пиперазино-1-(тиетанил-3) бензимидазола дигидрохлорид [Патент РФ №2210370(13)С1]; производные метил-бензилзамещенных 3-оксипиридина [Васильева П.П. Вестник Смоленской медицинской академии. 2000. №3. С. 95-96]; физиологически совместимые антиоксиданты - производные аскорбиновой кислоты [Ильина И.В., Самойлов Н.Н., Парфенов Э.А. Саратовский научно-медицинский журнал. 2007. т. 3, №1. с. 103-104]. Однако наибольшей клинической эффективностью обладает производное бензимидазола бемитил [Муравьев А.В. Влияние тепловой тренировки и препарата бемитила на адаптацию животных и человека в условиях высокой температуры внешней среды. Дис. канд. мед. наук. СПб., 1997, 135 с] и производное аминоадамантана препарат ладастен (син. бромантан) [Морозов И.С., Клейменова. Н.Н. Влияние бромантана на физическую работоспособность лабораторных животных // Эксперим. и клинич. фармакология. 1998. т. 61, №6. С. 51-53].

Известно соединение 2-(п-хлорбензоил)аминоадамантан - хлодантан, которое также как и ладастен, относится к производным аминоадамантана. Хлодантан относится к биологически активным химическим соединениям, имеет более высокую адаптационную активность, чем соединения указанного класса и является низкотоксичным [Иванова И.А., Морозов И.С, Лукичева Т.А. Актопротекторные и адаптогенные свойства производных адамантана (обзор) // Хим.-фарм. журн., 2001. Т. 35 (5), 3-6]. Известно, что 2-(п-хлорбензоил)аминоадамантан и ряд близких к нему по химической структуре производных 1-й 2-аминоадамантана в условиях экстремальных воздействий повышают резистентность организма к действию экстремальных факторов среды обитания и обладают иммуностимулирующей активностью [патент РФ №1646256].

В связи с тем, что средства, обладающие адаптационной активностью, требуют приема и в экстремальных условиях, необходим выбор удобной и стабильной лекарственной формы для использования в любых условиях.

В основу изобретения положена задача создания новой высокоэффективной нетоксичной, не обладающей побочными эффектами фармацевтической композиции в твердой лекарственной форме, оказывающей актопротекторное и термопротекторное действия, и отвечающей всем требованиям Государственной Фармакопеи XIII издания.

Раскрытие изобретения

Задача решается тем, что заявленная композиция, включает лекарственное вещество и фармацевтический носитель или растворитель, и содержит в качестве действующего вещества терапевтически эффективное количество 2-(п-хлорбензоил)аминоадамантана - хлодантан, - и целевые добавки, в качестве которых используют клептозу, лактозу, твин 80, поливинилпирролидон, кроскармеллозу натрия и магния стеарат в весовом соотношении 1:2-1:6.

В качестве наполнителя в композиции данного изобретения может применяться одно или более соединений, способных обеспечить получение таблетки нужной массы. Желательно применять наполнитель в количестве, близком к нижнему пределу интервала веса наполнителя. Предпочтительными наполнителями являются клептоза, лактоза водная или лактоза безводная.

В качестве связующего вещества в композиции данного изобретения может применяться одно или несколько соединений, способных облегчать гранулирование хлодантана или смеси с одним или несколькими веществами из группы наполнителей в более плотные и большего размера и/или более свободнотекучие частицы. Предпочтительными связующими веществами являются поливинилпирролидон с различной молекулярной массой (наиболее предпочтительно примененный в количестве 2-20%).

В качестве дезинтегранта, способного облегчать диспергирование таблетки при контакте таблетки с водной средой, в композиции данного изобретения может применяться кроскармеллоза натрия (наиболее предпочтительно примененная в количестве 1-10%).

В качестве солюбилизатора, способствующего растворению и образованию комплекса хлодантана и клептозы образованного для улучшения растворимости субстанции, в данной композиции может применяться твин 80 (наиболее предпочтительное количество 0,01-5%).

В качестве скользящего вещества в композиции данного изобретения может применяться одно или более соединений, способных устранить проблемы, связанные с формованием таблеток, такие как высвобождение из формовочного аппарата изготовленных из композиции таблеток, устранение налипания на поверхность верхнего или нижнего пресса для формования таблеток. Предпочтительными скользящими веществами являются жирные кислоты или производные жирных кислот, такие как стеарат кальция (наиболее предпочтительно примененные в количестве 0,5-2%), стеарат магния (наиболее предпочтительно примененный в количестве 1-2%).

Фармацевтические композиции, выполненные в твердых лекарственных формах, содержат в качестве действующего вещества - хлорбензоиламиноадамантан в терапевтически эффективном количестве, а в качестве вспомогательных веществ - фармацевтически приемлемые вспомогательные вещества, пригодные для использования в твердых фармацевтических композициях. Фармацевтические композиции на основе хлорбензоиламиноадамантана в качестве вспомогательных веществ, обеспечивающих достаточную массу таблетки, могут содержать, по меньшей мере, одно вещество, выбранное из группы наполнителей, связующего вещества, дезинтегрантов, солюбилизаторов и скользящих веществ.

В соответствии с настоящим изобретением фармацевтические композиции представлены в твердой форме, содержат следующие компоненты (мас. %):

Хлорбензоил аминоадамантан 16,0-50,0
ПВП 25000 6,0-20,0
Твин 80 0,01-5,0
Клептоза 20,0-50,0
Лактоза 10,0-40,0
Кроскармеллоза натрия 1,0-10,0
Магния/кальция стеарат 0,1-1,0

Фармацевтическая композиция может быть выполнена в виде твердой дозированной лекарственной формы, преимущественно в виде таблетки, содержащей 25,0 или 100,0 мг действующего вещества. Масса полученной таблетки предпочтительно составляет от приблизительно 100,0 мг до приблизительно 600,0 мг.

Далее изобретение проиллюстрировано примерами, представляющими варианты его осуществления с достижением указанного технического результата:

Пример 1.

В смесителе смешивали навеску хлорбензоиламиноадамантана 100,0 г, затем прикапывают и перемешивают 4,0 г твин 80. Микронизируют хлорбензоиламиноадамантан с твин 80 в течение 60-70 минут. Навеску бета-циклодекстрина (клептозы) 50,0 г добавляют к полученной смеси и перемешивают в течение 60 минут. Подготовленные компоненты массы для таблетирования: микрокристаллическая целлюлоза (5,0 г), лактоза (30,0 г), отвешивают и загружают в смеситель для смешения. Переносят в смеситель полученную ранее смесь хлорбензоиламиноадамантана, твин 80 и клептозы. Смесь перемешивают в течение 10 минут при скорости вращения лопастей 110 оборотов в минуту. По истечении этого времени массу увлажняют ~ 60,0 г раствора связывающего вещества и перемешивают для равномерного распределения увлажнителя с той же скоростью вращения лопастей (раствор связывающего вещества приливают по частям: ~ по 10,0 г через каждые 2,5 минуты перемешивания). Пробивают смесь через гранулятор лопастной с диаметром отверстий цилиндрической сетки 1 мм.

Сушка гранулята производится в сушильном шкафу при температуре 45°±5°С до остаточной влажности 2,0-3,0%. Высушенную массу гранул размалывают в грануляторе (например, фирмы Erweka (Германия)) с размером пор 1,0-1,5 мм. Массу сухого гранулята опудривают кроскармеллозой натрия 3,0 г и стеаратом кальция, в количестве 2,0 г (1,0 мас. %). Полученный гранулят таблетируют. Полученные таблетки, с содержанием хлорбензоиламиноадамантан 0,10 г, где средняя масса таблетки 0,200 г, отвечают требованиям Государственной фармакопеи.

Пример 2.

В смесителе смешивают навеску хлорбензоиламиноадамантана 300,0 г, затем прикапывают и перемешивают 12,0 г твин 80. Микронизируют хлорбензоиламиноадамантан с твин 80 в течение 60-70 минут. Навеску бета-циклодекстрина (клептозы) 600,0 г добавляют к полученной смеси и перемешивают 60 минут. Подготовленные компоненты массы для таблетирования: микрокристаллическая целлюлоза (30,00 г), лактоза моногидрат (138,0 г), отвешивают и загружают в смеситель для смешения. Переносят в смеситель полученную ранее смесь хлорбензоиламиноадамантана, твин 80 и клептозы. Смесь перемешивают в течение 10 минут при скорости вращения лопастей 110 оборотов в минуту. По истечении этого времени массу увлажняют ~ 360,0 г раствора ПВП 25000 (20%) и перемешивают для равномерного распределения увлажнителя с той же скоростью вращения лопастей (раствор связывающего вещества приливают по частям: ~ по 30,0 г через каждые 2,5 минуты перемешивания). Пробивают смесь через гранулятор лопастной с диаметром отверстий цилиндрической сетки 1 мм.

Сушка гранулята производится в сушильном шкафу при температуре 45°±5°С до остаточной влажности 2,0-3,0%. Высушенную массу гранул размалывают в грануляторе фирмы Erweka (Германия) с размером пор 1,0-1,5 мм. Массу сухого гранулята опудривают кроскармеллозой натрия 36,0 г и стеаратом магния, в количестве 12,0 г (1,0 мас. %). Полученный гранулят таблетируют. Полученные таблетки, с содержанием хлорбензоиламиноадамантана 0,10 г, средняя масса таблетки 0,400 г, отвечают требованиям Государственной фармакопеи.

Пример 3.

В смесителе смешивают навеску хлорбензоиламиноадамантана 500,0 г, затем прикапывают и перемешивают 20,0 г твин 80. Микронизируют хлорбензоиламиноадамантан с твин 80 в течение 60-70 минут. Навеску бета-циклодекстрина (клептозы) 669,00 г добавляют к полученной смеси и перемешивают 60 минут. Подготовленные компоненты массы для таблетирования: микрокристаллическая целлюлоза (750,0 г), лактоза (500,0 г), отвешивают и загружают в смеситель для смешения. Переносят в смеситель полученную ранее смесь хлорбензоиламиноадамантана, твин 80 и клептозы. Смесь перемешивают в течение 10 минут при скорости вращения лопастей 110 оборотов в минуту. По истечении этого времени массу увлажняют ~ 900,0 г раствора ПВП 25000 (20%) связывающего вещества и перемешивают для равномерного распределения увлажнителя с той же скоростью вращения лопастей (раствор связывающего вещества приливают по частям: ~ по 10,0 г через каждые 2,5 минуты перемешивания). Пробивают смесь через гранулятор лопастной с диаметром отверстий цилиндрической сетки 1 мм.

Сушка гранулята производится в сушильном шкафу при температуре 45°±5°С до остаточной влажности 2,0-3,0%. Высушенную массу гранул размалывают в грануляторе фирмы Erweka (Германия) с размером пор 1,0-1,5 мм. Массу сухого гранулята опудривают кроскармеллозой натрия 90,0 г и стеаратом магния, в количестве 30,0 г (1,0 мас. %). Полученный гранулят таблетируют. Полученные таблетки, с содержанием хлорбензоиламиноадамантан 0,10 г, средняя масса таблетки 0,600 г, отвечают требованиям Государственной фармакопеи.

Фармакологическое действие заявляемой композиции изучено в экспериментах на животных и демонстрируется следующими примерами:

Пример 4. Изучение влияния фармацевтической композиции на основе 2-(п-хлорбензоил)аминоадамантана и эталонных препаратов на работоспособность животных в условиях гипертермии.

Опыты проводили на нелинейных мышах-самцах массой 18-20 г, содержащихся в виварии в соответствии с правилами лабораторной практики (GLP) и нормативными документами - Постановление Главного государственного санитарного врача РФ от 29.08.2014 N 51 "Об утверждении СП 2.2.1.3218-14 "Санитарно-эпидемиологические требования к устройству, оборудованию и содержанию экспериментально-биологических клиник (вивариев)" (Зарегистрировано в Минюсте России 31.10.2014 N 34547 и Приказом Министерства здравоохранения и социального развития Российской Федерации от 23 августа 2010 г. №708н «Об утверждении Правил лабораторной практики».

Оценку работоспособности животных проводили на беговой дорожке LE8700 Tredmill control V20/09/10 фиры Panab Harvard apparatus (Испания) со скоростью движения беговой дорожки 15 м/мин. Критерий оценки переносимости физической нагрузки - продолжительность бега животных по тредбану до полного утомления, о чем свидетельствует или переворот животного на спину/бок, или его пребывание на неподвижной части тредбана более 10 секунд. При помощи выше указанной программы рассчитывали пройденную дистанцию (м).

Перед началом каждого эксперимента тредбан помещали в климатическую камеру Binder MKF115 (Германия), в которой поддерживался постоянный уровень температуры +40°С. Контроль температуры, помимо штатного термометра камеры, осуществляли цифровыми термометрами Testo 622 (Германия), расположенными на передней и задней стенке камеры, и термодатчиком ТР-75М (Россия), расположенным непосредственно над беговой дорожкой.

Перед началом каждой серии экспериментов животных в течение 4-х дней адаптировали к работе на тредбане. Для этой цели ежедневно они помещались в тредбан на 20 минут при скорости движения беговой дорожки 15 м/мин. Через сутки после последней тренировки животных включали в основной эксперимент.

В качестве эталонных препаратов использовали наиболее эффективные из известных актопротекторов - препараты бемитил и ладастен.

Заявляемую композицию и эталонные препараты бемитил и ладастен вводили однократно за час до начала эксперимента per os (интраназально) в виде взвеси в крахмальной взвесив объеме 10 мл/кг. Животные контрольных групп получали per os аналогичный объем крахмальной взвеси. Дозу заявляемой композиции рассчитывали по содержанию действующего вещества - соединения 2-(п-хлорбензоил)аминоадамантан.

Полученные результаты обрабатывали статистически. Нормальность распределения данных проверяли с помощью критерия Шапиро-Уилка, гомогенность дисперсий - с помощью критерия Барлетта. В случае соответствия распределения данных нормальному закону и гомогенности дисперсий статистическая значимость различий определяли с помощью критерия Стьюдента (при сравнении 2-х выборок) или однофакторного дисперсионного анализа с дальнейшей обработкой методом множественных сравнений по Даннету (в случае 3-х и более выборок, критерий односторонний). В противном случае использовался критерий Манна-Уитни (2 выборки) или непараметрический аналог дисперсионного анализа по Крускалу-Уоллису с дальнейшей обработкой методом множественных сравнений по Данну (3 и более выборок). Данные описаны в случае нормального распределения с помощью средних арифметических и их стандартных ошибок, в противном случае приведены медианы и нижний и верхний квартили. Критический уровень значимости α=0,05.

Показано, что в условиях нормотермии (+20°С) продолжительность бега животных (n=10) до полного утомления составила 112,83±16,06 мин (табл. 1). При этом пройденная дистанция составила 1663,00±302,73 м.

В условиях гипертермии (+40°С) работоспособность мышей (n=18) резко снижается, о чем свидетельствует статистически значимое по сравнению с нормотермией (р≤0,05) снижение продолжительности бега - соответственно 27,69±1,31 мин и 112,83±16,06 мин. То же самое касается и пройденной дистанции - соответственно 425,79±25,03 м и 1663,00±302,73 м (см. табл. 1).

* - р≤0,005 по сравнению с нормотермией

Показано, что бемитил (50 мг/кг; n=8) в условиях гипертермии (+40°С) приводит к статистически значимому по сравнению с контролем (р≈0,0214) увеличению продолжительности бега животных - соответственно 41,66±2,76 мин и 27,69±1,31 мин. То же самое касается и пройденной дистанции - соответственно 613,33±41,84 м и 425,79±25,03 м (см. табл. 2).

Увеличение дозы препарата до 100 мг/кг не сопровождалось повышением его акто- и термопротекторной активности (см. табл. 2). Так, например, при использовании препарата в дозе 50 мг/кг продолжительность бега животных (n=9) составила 41,66±2,76 мин, а в дозе 100 мг/кг - 40,62±5,01 мин.

Таким образом, бемитил в дозах 50 и 100 мг/кг, введенный per os за час до начала эксперимента, в условиях гипертермии проявляет акто- и термопротекторную активность, увеличивая продолжительность бега животных в среднем на 50%. Аналогичным образом увеличивается и величина пройденной дистанции.

Ладастен в дозе 20 мг/кг (n=10) в условиях гипертермии (±40°С) не проявляет акто- и термопротекторную активность. Так, например, продолжительность бега на фоне препарата 36,69±3,37 мин статистически значимо не отличается (p≈0,1954) от зарегистрированной в контроле - 27,69±1,31 мин (табл. 2).

р указано по отношению к контролю.

Увеличение дозы препарата до 50 мг/кг приводит к реализации его акто- и термопротекторной активности. Так, в условиях гипертермии (+40°С) продолжительность бега животных, получавших ладастен, была статистически значимо (р≈0,0009) выше, чем в контроле - соответственно 44,67±3,62 мин и 27,69±1,31 мин. Величина пройденной дистанции по сравнению с контролем увеличилась приблизительно на 55% (табл. 2).

Таким образом, эталонный препарат ладастен в дозе 50 мг/кг в условиях гипертермии проявляет значимую акто- и термопротекторную активность, сопоставимую с таковой известной для эталонного препарата бемитил (50 мг/кг).

Показано, что заявляемая композиция в условиях гипертермии (+40°С) проявляет выраженную акто- и термопротекторную активность, на 35-40% превышающую таковую у эталонных препаратов. Так, например, если в контрольной серии экспериментов продолжительность бега составляет 27,69±1,31 мин, то у животных, получавших заявляемую композицию (25 мг/кг; n=9) - 56,23±5,36 (табл. 2). Различие статистически достоверно (р<0,0001). При этом величина пройденной дистанции также была достоверно (р<0,0001) больше - соответственно 425,79±25,03 м в контроле и 832,95±80,28 м у животных, получавших заявляемую композицию.

Увеличение дозы заявляемого соединения до 50 мг/кг в условиях гипертермии сопровождается уменьшением ее акто- и термопротекторной активности, а при применении заявляемой композиции в дозе 10 мг/кг ее специфическая активность не реализуется (табл. 2).

Таким образом, как следует из приведенных данных, заявляемая композиция в условиях гипертермии проявляет выраженную акто- и термопротекторную активность, значимо превосходящую таковую у эталонных препаратов - бемитила и ладастена и может быть использована для повышения работоспособности организма в условиях экстремального воздействия высоких температур.

Пример 5. Изучение влияния фармацевтической композиции на основе 2-(п-хлорбензоил)аминоадамантана и эталонного препарата на работоспособность животных в условиях гипотермии.

Методика проведения экспериментов (за исключением температуры в климатической камере), схема и способ введения изучаемых препаратов, а также статистическая обработка результатов аналогична приведенным в примере 4. Эксперименты проводились в климатической камере Binder MKF115 (Германия), в которой поддерживался постоянный уровень температуры -5°С. В качестве эталонного препарата использовали препарата ладастен.

В контрольных экспериментах показано, что в условиях гипотермии (-5°С), также как и гипертермии, работоспособность мышей (n=15) резко снижается (табл. 3). Так, продолжительность бега животных в условиях гипотермии составляла 42,15±4,27 мин, тогда как в условиях нормотермии - 112,83±16,06 мин (р≤0,05), а длина пройденной животными дистанции - 585,45±61,67 м и 1663,00±302,73 м, соответственно (р≤0,05).

* - р≤0,005 по сравнению с нормотермией

Ладастен (20 мг/кг; n=10) в условиях гипотермии (-5°С) не проявляет акто- и термопротекторную активность. Так, например, продолжительность бега на фоне препарата статистически значимо не отличается (р≈0,995) от таковой, зарегистрированной в контроле - соответственно 38,59±3,40 мин и 42,15±4,27 мин (табл. 4).

Аналогичные результаты получены и при применении препарата в дозе 50 мг/кг. Так, время бега животных на фоне применения препарата в этой дозе составляет 34,44±5,37 мин, а величина пройденной дистанции 486,28±83,79 м, тогда как в контроле, соответственно 42,15±4,27 мин и 585,45±61,67 м (табл. 4). Различие с контролем статистически не значимо.

Показано, что заявляемая композиция в условиях гипотермии (-40°С) проявляет выраженную акто- и термопротекторную активность. Так, например, если в контрольной серии экспериментов продолжительность бега составляет 42,15±4,27 мин, то у животных, получавших заявляемую композицию (25 мг/кг; n=9) - 63,45±5,48 (табл. 4). Различие статистически достоверно (р<0,0063). При этом величина пройденной дистанции также была достоверно (р<0,0055) больше - соответственно 585,45±61,67 м в контроле и 913,29±54,21 м у животных, получавших заявляемую композицию.

«р» указано по отношению к контролю

Анализ полученных результатов свидетельствует о том, что заявляемая композиция в дозе 25 мг/кг (per os, за час до начала эксперимента) в условиях гипотермии оказывает выраженное акто- и термопротекторное действие в отличие от эталонного препарата ладастен, который в условиях настоящего эксперимента был неэффективен.

Таким образом, как следует из полученных данных, заявленная фармацевтическая композиция на основе 2-(п-хлорбензоил)аминоадамантана (25 мг/кг) в условиях гипотермии проявляет выраженную акто- и термопротекторную активностьи может быть использована для повышения работоспособности организма в условиях экстремального воздействия низких температур.

Пример 6. Изучение влияния фармацевтической композиции на основе 2-(п-хлорбензоил)аминоадамантана и эталонного препарата на экстренную адаптацию животных в условиях гипертермии.

Опыты проводили на беспородных мышах-самцах массой 20-25 г. Методом случайной выборки формировались основная группа, получавшая исследуемую композицию (n=18), контрольная группа (n=12) и группа животных, получавших эталонный препарат бемитил (n=18). Заявляемую фармацевтическую композицию (таблеточная масса) и бемитил вводили за час до начала эксперимента в дозе 25 и 100 мг/кг, соответственно, per os в крахмальной взвеси в объеме 10 мл/кг. Животные контрольной группы получали per os аналогичный объем крахмальной взвеси. Дозу заявляемой композиции рассчитывали по содержанию действующего вещества -соединения 2-(п-хлорбензоил)аминоадамантан. Через час после введения исследуемых ввеществ животных помещали в климатическую камеру с температурой +40°С. Критерием оценки целевой эффективности служила суммарная гибель животных за каждый час и весь период наблюдения. По полученным данным строили кривые выживаемости. Статистическую значимость различий между кривыми определяли по критерию Гехана-Вилкоксона с учетом множественности сравнений.

Как следует из полученных данных, заявляемая композиция увеличивала длительность жизни животных, находящихся в климатической камере при температуре +40°С. Так, если в контрольной группе средняя продолжительность жизни животных составляла 162,5±20,1 мин, то у животных, получавших заявляемую композицию -225,0±69,2 мин. Из построенной кривой выживаемости (Рис. 1) следует, что различие статистически значимо (р=0,01). Эталонный препарат бемитил в условиях настоящего эксперимента не влияет на выживаемость животных - соответственно, контроль 162,5±20,1 мин, бемитил - 165,0±37,5 мин.

Таким образом, заявляемая композиция в отличие от эталонного препарата бемитил в условиях настоящего эксперимента статистически значимо повышает выживаемость животных.

Пример 7. Изучение влияния фармацевтической композиции на основе 2-(п-хлорбензоил)аминоадамантана и эталонного препарата на координацию движений животных, длительно находящихся в условиях гипотермии.

Опыты проводили на беспородных мышах-самцах массой 20-25 г. Оценку влияния заявляемой композиции и эталонного препарата сиднокарб на координацию движений мелких лабораторных животных проводили с использованием стандартной методики «Вращающийся стержень» с помощью прибора «Rota-Rod/RS» (Panlab Harvard Apparatus, Испания). Установка представляет собой барабан 3 см в диаметре, разделенный 6 дисками (25 см в диаметре) на 5 одинаковых частей. Барабан может вращаться в разных скоростных режимах. В условиях настоящего эксперимента начальная скорость движения барабана 5 оборотов в минуту, которая в соответствии с заданной программой поступательно увеличивается до 40 об/мин. Перед началом эксперимента (за сутки до помещения в термокамеру) проводили процедуру ознакомления животных с установкой при скорости вращения барабана 5 об/мин.

Методом случайной выборки формировались основная (n=12) и контрольная (n=12) группа животных, а также группа животных, получавших эталонный препарат (n=12) сиднокарб. На следующий день после рандомизации животных на семь дней помещали в климатическую камеру при температуре -4°С. Заявляемую композицию и сиднокарб вводили per os в крахмальной взвеси в объеме 10 мл/кг в течение 7 дней в дозе 25 мг/кг. Животные контрольной группы получали per os аналогичный объем крахмальной взвеси. Дозу заявляемой композиции рассчитывали по содержанию действующего вещества - соединения 2-(п-хлорбензоил)аминоадамантан. Через час после последнего введения крыс помещали на 15 минут в климатическую камеру при температуре -8°С. По истечении времени пребывания в климатической камере животных извлекали из нее и помещали на прибор Rota-Rod/RS, находящийся в климатической камере с температурой -4°С. Критерием оценки целевой эффективности служило время удержания животных на вращающемся стержне.

Статистическую обработку данных проводили следующим образом. Нормальность распределения данных проверяли с помощью критерия Шапиро-Уилка, гомогенность дисперсий - с помощью критерия Левена. Так как дисперсии были негомогенны, то статистическую значимость различий определяли с помощью непараметрического аналога дисперсионного анализа по Крускалу-Уоллису с дальнейшей обработкой методом множественных сравнений по Данну (3 и более выборок). Данные описывали с помощью медиан и нижних и верхних квартилей. Критический уровень значимости α=0,05.

Показано, что длительное пребывание животных в условиях гипотермии существенно влияет на координацию их движений. Так, если в условиях нормотермии среднее время пребывания интактных животных на вращающемся стрежне составляет 127,0 (100,5÷183,0) с, то в условиях гипотермии оно снижается на 90%, соответственно со 127,0 (100,5÷183,0) до 11,5 (9,5÷15,5) с-р<0,0001.

Сравнительное изучение влияния заявляемой композиции (25 мг/кг, per os) и сиднокарба (25 мг/кг, per os) на координацию движений животных, длительно находящихся в условиях гипотермии, свидетельствует о том, что заявляемая композиция, в отличие от эталонного препарата сиднокарб, улучшает координацию движений, тогда как сиднокарб оказывает негативное влияние на этот показатель. Так, если у животных, получавших заявляемую композицию, время нахождения на вращающемся стержне было более чем в 2 раза выше, чем в контроле: соответственно 24,0 (17,0÷33,0) и 11,5 (9,5÷15,5) - р=0,04, то у животных, получавших сиднокарб, время удержания на вращающемся стержне было статистически значимо (р=0,04) меньше, чем в контроле: соответственно, 6,5 (5,0÷9,0) и 11,5 (9,5÷15,5) (табл. 5).

Примечания: данные представлены в виде медианы, нижнего и верхнего квартилей;

* - р<0,05 по сравнению с контролем.

Таким образом, полученные данные свидетельствуют о том, что заявляемая композиция, в отличие от эталонного препарата сиднокарб, улучшает координацию движений у животных, длительно находящихся в условиях гипотермии, что, по всей видимости, связано с его способностью повышать адаптационные возможности организма в этих условиях.

1. Фармацевтическая композиция, обладающая актопротекторной и термопротекторной активностью, в виде таблеток, содержащая терапевтически эффективное количество хлорбензоиламиноадамантана и фармацевтически приемлемые вспомогательные вещества при следующем соотношении ингредиентов, масс. %:

Хлорбензоиламиноадамантан 25,0
Поливинилпирролидон 25000 (ПВП 25000) 6,0
Твин 80 1,0
Клептоза 50,0
Микрокристаллическая целлюлоза 2,5
Лактоза 11,5
Кроскармеллоза натрия 3,0
Магния стеарат 1,0

2. Фармацевтическая композиция, обладающая актопротекторной и термопротекторной активностью, в виде таблеток, содержащая терапевтически эффективное количество хлорбензоиламиноадамантана и фармацевтически приемлемые вспомогательные вещества при следующем соотношении ингредиентов, масс. %:

Хлорбензоиламиноадамантан 18,27
Поливинилпирролидон 25000 (ПВП 25000) 6,58
Твин 80 0,73
Клептоза 24,45
Микрокристаллическая целлюлоза 27,41
Лактоза 18,27
Кроскармеллоза натрия 3,29
Магния стеарат 1,00

3. Фармацевтическая композиция по п. 1 или 2, отличающаяся тем, что в качестве лактозы содержит преимущественно лактозу моногидрат.



 

Похожие патенты:

Описано применение дезэтиламиодарона для лечения или профилактики фибрилляции предсердий путем перорального применения. Дезэтиламиодарон вводят перорально, сублингвально или буккально.

Настоящее изобретение относится к композициям и фармацевтическим препаратам для лечения или предотвращения расстройств центральной и периферической нервной системы.
Группа изобретений относится к лечению послеродового кровотечения. Перорально распадающаяся твердая фармацевтическая единица дозирования для лечения послеродового кровотечения имеет массу в пределах от 50 до 500 мг и состоит из 1-100% масс.

Изобретение относится к травматологии и ортопедии. Предложен способ профилактики соматических осложнений в интра- и послеоперационном периоде у пациентов с эндопротезированием тазобедренного и коленного суставов.

Настоящее изобретение предлагает способ получения фармацевтической композиции, которая представляет собой таблетку и содержит кристаллическую форму моногидрата тофоглифлозина в качестве активного ингредиента.

Настоящее изобретение предлагает способ получения фармацевтической композиции, которая представляет собой таблетку и содержит кристаллическую форму моногидрата тофоглифлозина в качестве активного ингредиента.

Настоящее изобретение относится к фармацевтической композиции, содержащей 5 мг, 10 мг, 15 мг или 20 мг суворексанта в аморфной форме и полимер, повышающий концентрацию суворексанта, представляющий собой коповидон.

Настоящее изобретение относится к фармакологии и раскрывает нетоксичную твердую фармацевтическую композицию для перорального введения, содержащую L-цистеин в сочетании с одним или более дополнительными активными агентами, по меньшей мере один из которых выбран из цистина, глутатиона и метионина, а также нетоксичный носитель.

Группа изобретений относится к химико-фармацевтической промышленности и представляет собой способ получения комбинированного препарата и сам комбинированный препарат для лечения, предупреждения, или облегчения желудочно-кишечных расстройств, или облегчения желудочно-кишечных симптомов, содержащий: первую композицию, которая содержит мозаприд или его фармацевтически приемлемую соль в качестве первого активного ингредиента, и вторую композицию, которая содержит рабепразол или его фармацевтически приемлемую соль в качестве второго активного ингредиента, где комбинированный препарат имеет структуру таблетки с ядром, в которой вторая композиция содержится в качестве внутреннего ядра и первая композиция окружает внешний слой второй композиции.

Изобретение относится к области фармацевтики и медицины, а именно к противомикробной фармацевтической композиции в форме шипучих таблеток, содержащих нитрофурал. Композиция содержит в качестве активного вещества нитрофурал, в качестве вспомогательных веществ натрия хлорид, газообразующую смесь, регулятор кислотности и связующее вещество, в указанных в формуле изобретения количествах.

Изобретение относится к медицине и касается способа сохранения стабильности антитела в препарате, включающего хранение препарата антитела в течение шести месяцев или более при 5°C или более.

Настоящее изобретение предлагает способ получения фармацевтической композиции, которая представляет собой таблетку и содержит кристаллическую форму моногидрата тофоглифлозина в качестве активного ингредиента.

Изобретение относится к области медицины, а именно к терапевтической стоматологии, и может быть использовано для лечения хронического катарального гингивита. Проводят рассасывание конфет «Смарт», содержащих в качестве основы сухое молоко, в качестве биологически активного компонента симбиотическую закваску, а в качестве подсластителя фруктозу, по 1 конфете до полного растворения 3 раза в день между приемами пищи в течение 2 недель.

Настоящее изобретение относится к области фармацевтических композиций антител. В частности, настоящее изобретение относится к стабильной жидкой композиции антитела и к ее фармацевтическому препарату и применению.

Изобретение относится к способу получения олигонуклеотидного комплекса для доставки в клетки млекопитающих и может быть использовано в молекулярной медицине. Предложенный способ включает смешивание раствора соответствующего олигонуклеотида с раствором носителя в определенном соотношении и отличается тем, что водный раствор олигонуклеотида с концентрацией 2,0-25 мкг/мл смешивают с водным раствором декстрана с мол.

Группа изобретений относится к области ядерной медицины. Набор для приготовления суспензии полипептидных биодеградабельных микрочастиц для проведения трансартериальной радиоэмболизации капилляров печени, находящихся в изотоническом 0,9% водном растворе хлорида натрия, меченных изотопом рения, состоящий из вспомогательных реагентов: антиоксиданта - аскорбиновой кислоты в количестве 10 мг; восстановителя рения до более низкого валентного состояния - хлорида олова дигидрата - 13,3 мг; эмульгатора - полисорбата-80 - 2,5 мг; полипептидного носителя радионуклидов - микросфер альбумина крови человека диаметром 20-40 мкм - 10 мг; трансхелатора и стабилизатора рН - K,Na- виннокислого (тартрат K, Na) - 18,9 мг; при этом все вспомогательные реагенты расфасованы по трем флаконам: во флаконе №1 содержится смесь восстановителя и антиоксиданта, во флаконе №2 содержится смесь полипептидного носителя атомов радионуклида и эмульгатора, во флаконе №3 содержится трансхелатор и стабилизатор рН, способствующий достижению величины рН суспензии полипептидных биодеградабельных микрочастиц, находящихся в изотоническом 0,9% водном растворе хлорида натрия, меченных изотопом рения, в интервале от 2 до 5, при этом содержимое каждого флакона стерильно и лиофилизировано.

Группа изобретений относится к области ядерной медицины. Набор для приготовления суспензии полипептидных биодеградабельных микрочастиц для радиосиновэктомии, находящихся в изотоническом 0,9%-ном водном растворе хлорида натрия, меченных изотопом рения, состоит из вспомогательных реагентов: антиоксиданта - аскорбиновой кислоты в количестве 7 мг, восстановителя рения до более низкого валентного состояния - хлорида олова дигидрата - 11,4 мг, эмульгатора - полисорбата-80 - 1,25 мг, полипептидного носителя радионуклидов - микросфер альбумина крови человека диаметром 5-10 мкм - 5 мг, трансхелатора и стабилизатора рН - K,Na-виннокислого (тартрат K, Na) - 10 мг, при этом все вспомогательные реагенты расфасованы по трем флаконам: во флаконе №1 содержится смесь восстановителя и антиоксиданта, во флаконе №2 содержится смесь полипептидного носителя атомов радионуклида и эмульгатора, во флаконе №3 содержится трансхелатор и стабилизатор рН, при этом содержимое каждого флакона стерильно и лиофилизировано.

Описан способ получения ингаляционных частиц, содержащих фармацевтически активное средство, включающий: a) сухое измельчение композиции, содержащей твердое фармацевтически активное средство и размалываемую матрицу в мельнице, которая содержит множество мелющих тел, в течение периода времени, достаточного для получения ингаляционных частиц, содержащих твердое фармацевтически активное средство и размалываемую матрицу, где измельчение уменьшает размер частиц твердого фармацевтически активного средства до медианного размера частиц на основании значения объема в пределах между 50 нм и 3 мкм; и b) измельчение ингаляционных частиц, полученных на этапе а), в мельнице без мелющих тел в течение периода времени, достаточного для получения ингаляционных частиц со средним массовым аэродинамическим диаметром (ММАD) между 1 мкм и 20 мкм.

Изобретение относится к способу получения лиофилизата бортезомиба. Способ включает следующие стадии: a) предварительную многократную перекристаллизацию субстанции бортезомиба в хлористом метилене, или метаноле, или ацетоне, или этилацетате путем растворения субстанции бортезомиба в одном из указанных растворителей в соотношении их от 1:3 до 1:20 в течение от около 15 минут до около 30 минут при комнатной температуре и по окончании перекристаллизации последующее упаривание досуха полученного раствора после полного растворения субстанции бортезомиба на роторном испарителе под вакуумом; b) приготовление водного раствора маннита до полного его растворения с концентрацией его в растворе 10-20 мг/мл в течение 0,5-5,0 ч и поддержанием рН от 4,0 до 5,0; c) приготовление водного раствора бортезомиба в водном растворе маннита, полученном на стадии (b), путем растворения субстанции бортезомиба в водном растворе маннита при 15-30°С до полного растворения ее в течение менее 60 минут с получением раствора с концентрацией бортезомиба в нем 1,0-2,5 мг/мл при рН от 5,0 до 6,5 и в среде инертного газа азота или аргона; d) стерилизующую фильтрацию раствора со стадии (с) с использованием фильтрации под вакуумом или фильтрации под давлением 0,1-0,6 МПа и дозирование его во флаконы; e) проведение лиофильной сушки продукта со стадий (d) в камере лиофильной сушки в несколько этапов; f) заполнение камеры лиофильной сушки инертным газом, закупоривание флаконов и закатывание их колпачками.

Изобретение относится к области медицины и фармацевтики, а именно, к вагинальному суппозиторию для лечения инфекционно-воспалительных заболеваний вульвы и влагалища, в особенности, заболеваний вульвы и влагалища, вызванных грибами Candida, например, вагинальных и вульвовагинальных кандидозов, где указанный вагинальный суппозиторий содержащие активный компонент — тетраборат натрия, диспергированный в основе — твердом при комнатной температуре жире, представляющем собой смесь триглицеридов, диглицеридов и моноглицеридов среднецепочечных (С16-С18) жирных кислот с гидроксильным числом, составляющим от 40 до 50 мг KOH/г, а также эмульгатор — полиоксиэтилен (20) сорбитан моноолеат и добавку, предотвращающую снижение температуры плавления и времени полной деформации суппозитория — моноглицериды дистиллированные, и к способу изготовления такого суппозитория.

Изобретение относится к медицине, а именно к фтизиоурологии, и может быть использовано для лечения мочеполового туберкуклеза. Для этого вводят изониазид в дозе 600 мг и ПАСК в дозе 8000 мг внутривенно капельно два раза в неделю, рифампицин в дозе 600 мг вводят ректально в составе лечебного коктейля: новокаин 0,5% - 20 мл + димексид 2 мл + галидор 2 мл + пиридоксин 2 мл ежедневно.
Наверх