Способ растворения некондиционной таблетированной продукции производства мокс-топлива

Изобретение относится к способам переработки некондиционной таблетированной продукции производства МОКС-топлива до процесса спекания. Способ растворения некондиционной таблетированной продукции производства МОКС-топлива включает раздельное растворение урана и плутония. Некондиционный материал обрабатывают в токе инертного газа при температуре 400-450°С, проводят извлечение урана в раствор азотной кислоты с концентрацией от 90 до 180 г/л при температуре 81-95°С с последующим отделением образовавшегося азотнокислого раствора нитрата уранила. Ведут вскрытие плутонийсодержащего нерастворимого остатка в присутствии электролитически генерируемого двухвалентного серебра в растворе азотной кислоты с концентрацией от 240 до 360 г/л при температуре 30-40°С. Изобретение позволяет осуществить аффинаж плутониевого потока без проведения предварительных подготовительных операций и возвращать целевые компоненты в технологическую схему. 3 з.п. ф-лы, 1 ил., 1 пр.

 

Изобретение относится к способам переработки некондиционной таблетированной продукции производства МОКС-топлива до процесса спекания, представляющую собой уплотненную смесь UO2 и РuО2.

Из существующего уровня техники известен способ растворения некондиционного и отработавшего ядерного топлива [Патент RU 2400466, опубл. 27.09.2010], включающий растворение оксидов урана, некондиционного и отработавшего оксидного ядерного топлива и МОКС-топлива в растворе нитрата или хлорида Fe(III). В указанном способе растворение твердого раствора РuO2 (4,6 вес.%) в UO2 (МОКС-топливо) осуществляют при комнатной температуре в водных слабокислых растворах FeCl3×6H2O или Fe(NO3)3×9H2O при рН среды 1,0-1,4 и мольном отношения топлива к соли железа, равном 1:(2,1-2,5). Недостатками способа являются: наличие коррозионно-активных компонентов, осложняющих радиохимическую переработку; увеличение количества образующихся ТРО; сложность поддержания указанного диапазона концентрации кислот; использование реагентов, инициирующих образование вторичных осадков, усложняющих операцию последующего осветления.

При производстве МОКС-топлива на операции прессования образуются некондиционные технологические обороты, которые представляют собой механическую смесь раздельно полученных диоксидов урана и плутония, а также стеарата цинка, используемого в качестве пластификатора. Некондиционные технологические обороты в виде таблеток и их фрагментов, которые не были подвергнуты спеканию, подлежат переработке и возврату в технологическую схему.

Для избирательного растворения урана неспеченный материал является наиболее пригодным, чем спеченный, поскольку растворение диоксида урана происходит не только за счет протонирования диоксида, но также за счет окисления азотной кислотой.

При этом растворение плутония происходит только за счет протонирования:

Однако, при растворении неспеченного материала наблюдается образование в значительном количестве самостоятельной фазы стеариновой кислоты (CH3(CH2)16COOH), стеарата цинка (Zn(CH3(CH2)16COO)2) и продуктов их разложения. Стеариновая кислота и ее соли имеют ограниченную растворимость в водных растворах сильных кислот, что инициирует процесс осадкообразования, а также вызывает сорбционное отделение на формирующуюся твердую фазу целевых компонентов. По этой причине перед операцией растворения для удаления органических компонентов целесообразным является проводить термообработку некондиционных технологических оборотов.

Из литературных источников [N. Desigan, Nivar P. Bhatt, N.K. Pandey, U. Kamachi Mudali, R. Natarajan, J.B. Joshi. Journal Radioanalitic Nuclear Chemistry. 2017. Vol.312, pp 141-149] известно о высокой скорости растворения диоксида урана, протекающий по нитритозависимому механизму, в растворах азотной кислоты, в свою очередь диоксид плутония - труднорастворимое соединение, не окисляется ни азотной, ни азотистой кислотой [J. Bourges, С. Madic, М. Lecomte. Journal Less-Common Metals, 1986. Vol.122, pp 303-311]. Вместе с тем, известен способ электрохимического растворения диоксида плутония с использованием двухвалентного серебра [US patent 4 686 019 Dissolution of PuO2 or NpO2 using electrolytically regenerated reagents от 26.09.1984], при этом очевидным является возможность количественного растворения в этих условиях диоксида урана. Негативным фактором при этом является окисление двухвалентным серебром азотистой кислоты, интенсифицирующей процесс растворения диоксида урана.

Совместное электрохимическое растворение некондиционной топливной композиции приводит к: приоритетному расходованию генерируемого серебра (II) при растворении диоксида урана; снижению скорости растворения диоксида плутония и, как следствие, сокращению общей производительности электролитического оборудования. При этом радиохимическое выделение плутония из образующегося продукта сорбционным методом осложняется содержанием в нем преобладающего количества урана. Необходимость раздельного растворения урана и плутония является предпосылкой настоящего изобретения.

Наиболее близким к заявляемому способу является способ растворения смеси оксидов урана и плутония и устройство для его осуществления [Патент RU 2171506, опубл. 27.07.2001], включающий растворение смеси оксидов урана и плутония и/или смешанных оксидов (U, Рu)О2 в растворе азотной кислоты с помощью двухвалентного серебра, образующегося в процессе электролиза. В указанном способе растворение проводят последовательно в две стадии в одном и том же устройстве, внутри которого реагирующий раствор циркулирует в контуре. На первой стадии проводят растворение в 360 г/л растворе азотной кислоты без присутствия двухвалентного серебра при температуре 80°С, на второй стадии нерастворимый остаток, в основном состоящий из диоксида плутония, растворяют в азотной кислоте с концентрацией 240-360 г/л с использованием двухвалентного серебра, полученного электролизом при температуре 25°С. Недостатками способа являются: получение в результате растворения продукта, из которого выделение плутония сорбционным способом на анионообменной смоле осложняется значительным содержанием урана. При этом основным недостатком является неэффективное использование производственных мощностей электролитического оборудования для вскрытия смешанных оксидов урана и плутония, из-за необходимости растворения на первой стадии диоксид урана.

Задачей изобретения является получение в процессе растворения некондиционной таблетированной продукции производства МОКС-топлива плутониевого потока пригодного для сорбционного аффинажа.

Поставленная задача решается тем, что в способе растворения некондиционной таблетированной продукции производства МОКС-топлива, некондиционный материал обрабатывают в токе инертного газа при температуре 400-450°С, проводят извлечение урана в раствор азотной кислоты с концентрацией от 90 до 180 г/л при температуре 81-95°С с последующим отделением образовавшегося азотнокислого раствора нитрата уранила, а затем ведут вскрытие плутонийсодержащего нерастворимого остатка в присутствии электролитически генерируемого двухвалентного серебра в растворе азотной кислоты с концентрацией от 240 до 360 г/л при температуре 30-40°С.

Техническим результатом изобретения является количественное растворение некондиционной топливной композиции с получением отдельного уранового продукта, содержащего более 98% урана и менее 0,1% плутония, и отдельного плутониевого продукта, содержащего менее 2% урана и более 99,9% плутония от исходного количества. Технический результат позволяет осуществить последующий сорбционный аффинаж плутониевого потока без проведения предварительных подготовительных операций и возвращать целевые компоненты в технологическую схему.

Сущность изобретения заключается в селективном выщелачивании урана из некондиционной топливной композиции, обеспечивающее его количественное выделение с формированием отдельного уранового потока. Выделение уранового продукта в отдельный поток с сохранением плутония в твердофазной форме диоксида и его последующим растворением с использованием электролитически генерируемого серебра является отличительным признаком предлагаемого способа.

Предлагаемый способ реализуют в соответствии с блок-схемой изображенной на фиг. 1 в следующей последовательности. Некондиционный материал, представляет собой таблетки и/или фрагменты таблеток, которые не были подвергнуты спеканию и состоящие из механически уплотненной смеси UO2 и РuO2, в которую в качестве пластификатора добавлен стеарат цинка. Для удаления пластификатора предварительно проводят термообработку в печи омического нагрева при температуре 400-450°С в токе инертного газа. В частном случае используют поток аргона. После термообработки полученный материал загружают в ядернобезопасный аппарат, заливают 90-180 г/л раствор азотной кислоты объемом из расчета Т:Ж=1:(3-7) и проводят селективное извлечение урана в раствор при температуре 81-95°С в течение 2-8 часов при перемешивании посредством барботажа сжатым воздухом. В результате проведенной обработки плутоний остается в твердофазной форме в виде нерастворенного остатка. Образовавшийся раствор нитрата уранила отделяют фильтрованием в частном случае с использованием погружного устройства. Нерастворившийся остаток дополнительно промывают 60-90 г/л раствором азотной кислоты, отфильтровывают и передают в суспендированном виде в анодное пространство электролизера. В катодное пространство электролизера заливают необходимый объем 240-360 г/л раствора азотной кислоты с содержанием серебра 9-11 г/л из расчета Т:Ж=1:(14-18). Проводят электрохимическое растворение в течение 6-12 часов с получением плутониевого потока, пригодного для проведения сорбционного аффинажа. Выделение плутония из азотнокислого раствора проводят на анионообменной винилпиридиновой смоле в устройстве колонного типа.

Пример осуществления способа.

Навеску некондиционного материала производства МОКС-топлива массой 25 г, представляющую собой механически уплотненную смесь UO2 и РuО2, а также пластификатора (стеарата цинка), загружали в печь омического нагрева для термообработки в инертной атмосфере. Загруженный материал нагревали со скоростью 10°С/мин до температуры 430°С с постоянной подачей в рабочую зону печи потока аргона со скоростью 50 мл/мин. Термообработку проводили в течение 5 часов.

Материал после термообработки загружали в аппарат-растворитель для проведения процесса селективного извлечения урана в раствор азотной кислоты. В аппарат заливали 120 г/л раствор азотной кислоты объемом из расчета Т:Ж=1:5. Процесс проводили при температуре 90°С в течение 6 часов с постоянным перемешиванием посредством барботажа сжатым воздухом.

Раствор нитрата уранила отделяли с использованием погружного фильтра. В качестве фильтрующего элемента использовали металлокерамическую мембрану с размерами пор 0,2-0,5 мкм. Фильтрующий элемент регенерировали сжатым воздухом в импульсном режиме подачи. Нерастворившийся остаток, содержащий основное количество плутония, дополнительно промывали 80 г/л раствором азотной кислоты для количественного удаления урана, отфильтровывали и передавали в суспендированном виде в анодное пространство электролизера. По результатам аналитического контроля уранового продукта в раствор перешло 98% урана и менее 0,1% плутония от исходного содержания. Масса нерастворившегося остатка составила 5,12 г.

Для вскрытия плутонийсодержащего остатка в анодное пространство вносили 400 г/л раствор азотной кислоты с содержанием серебра 11 г/л из расчета Т:Ж=1:15. Процесс электрохимического растворения плутонийсодержащего остатка проводили при температуре 35°С в течение 7 ч. Плотность анодного тока составляла 1,6 А/см2. В результате получили количественное растворение плутонийсодержащего остатка с получением отдельного от урана плутониевого потока. Содержание плутония в растворе составило 36,7 г/л.

Перед операцией сорбционного аффинажа плутония провели корректировку исходного раствора путем разбавления 400 г/л раствором азотной кислоты до получения требуемых кондиций по содержанию плутония и стабилизацию плутония в четырехвалентном состоянии. Стабилизацию проводили при постоянном перемешивании с добавлением под зеркало реакционного объема раствора пероксида водорода до достижения концентрации 8 г/л. Для удаления избытка пероксида водорода нагревали полученный раствор до температуры 80°С.

Процесс сорбционного аффинажа плутония проводили в аппарате колонного типа при температуре 60°С. В качестве сорбента использовали анионообменную смолу ВП-1АП. Исходный плутониевый раствор дозировали со скоростью 5 колон.об./ч. После переработки всего объема плутониевого продукта, полученного от растворения 5,12 г остатка провели промывку сорбционной колонны путем пропускания 8 колоночных объемов 440 г/л раствора азотной кислоты со скоростью 2,5 колон.об/ч. Десорбцию плутония с сорбента проводили путем пропускания 10 колоночных объемов 30 г/л раствора азотной кислоты со скоростью 2,5 колон.об/ч. Промывку колонны и десорбцию плутония проводили при температуре 60°С. Получали плутониевый раствор кондиций по примесным элементам, удовлетворяющих производственные нужды. Содержание плутония составило 6,3 г/л, общее содержание примесных элементов составило не более 0,02%, в том числе Са менее 0,001%, Mg менее 0,0006%, Аl менее 0,0003%, Ni менее 0,004%, Сr менее 0,002%, Si менее 0,001%, Fe менее 0,02%.

Предлагаемый способ, в отличие от способа-прототипа, позволяет увеличить производительность узла растворения за счет селективного растворения урана в ядернобезопасном аппарате, получить раздельные потоки урана и плутония с возможность аффинажа и выделения плутония сорбционным способом на анионообменной винилпиридиновой смоле, а также не требует проведения дополнительных подготовительных операций перед сорбционной очисткой.

1. Способ растворения некондиционной таблетированной продукции производства МОКС-топлива, включающий раздельное растворение урана и плутония, отличающийся тем, что некондиционный материал обрабатывают в токе инертного газа при температуре 400-450°С, проводят извлечение урана в раствор азотной кислоты с концентрацией от 90 до 180 г/л при температуре 81-95°С с последующим отделением образовавшегося азотнокислого раствора нитрата уранила, затем ведут вскрытие плутонийсодержащего нерастворимого остатка в присутствии электролитически генерируемого двухвалентного серебра в растворе азотной кислоты с концентрацией от 240 до 360 г/л при температуре 30-40°С.

2. Способ по п. 1, отличающийся тем, что некондиционная таблетированная продукция производства МОКС-топлива содержит стеарат цинка.

3. Способ по п. 1, отличающийся тем, что селективное извлечение урана в раствор азотной кислоты проводят в отдельном аппарате ядернобезопасного исполнения с выдачей нерастворимого суспендированного остатка в электролизер для последующего растворения в присутствии электролитически генерируемого двухвалентного серебра.

4. Способ по п. 1, отличающийся тем, что в качестве инертного газа используют аргон.



 

Похожие патенты:

Изобретение относится к способу получения оксихлорида и/или оксида актинида(ов), и/или лантанида(ов) из хлорида актинида(ов), и/или лантаноида(ов), присутствующего в среде, содержащей по крайней мере одну расплавленную соль типа хлорида.

Изобретение относится к способу и устройству для приведения в контакт двух несмешивающихся жидкостей. Способ приведения в контакт без смешивания первого вещества, состоящего из металла или сплава металлов, в жидком состоянии, и второго вещества, состоящего из соли или смеси солей, в жидком состоянии, в котором: помещают первое вещество в твердом состоянии в первый контейнер, приводят в контакт первый контейнер со вторым веществом в твердом состоянии, находящимся во втором контейнере, подвергают первый и второй контейнеры воздействию электромагнитного поля, первое вещество в жидком состоянии приходит в движение, второе вещество в твердом состоянии начинает плавиться под действием потока тепла от первого контейнера, второе вещество в жидком состоянии приходит в движение, первое вещество в жидком состоянии остается в контакте со вторым веществом в жидком состоянии в течение периода времени, извлекают первый контейнер из второго вещества в жидком состоянии, охлаждают первый контейнер до тех пор, пока первое вещество не вернется в твердое состояние.

Изобретение относится к области создания пирохимических технологий переработки облученного ядерного топлива, а именно к способу извлечения редкоземельных элементов из жидкого сплава с цинком.

Изобретение относится к области ядерной энергетики, в частности к переработке оборотного ядерного топлива (ОЯТ) и материалов зоны воспроизводства (3В) реакторов на быстрых нейтронах (РБН) для их неоднократного использования с возможностью корректирования состава при формировании новой топливной композиции.

Изобретение относится к применению раствора или водной пасты с полимерами и устройству для улавливания рутения в газовых выбросах. .

Изобретение относится к атомной технике. .

Изобретение относится к способам неводного растворения урана и урансодержащих материалов и может быть использовано для извлечения урана из отработанного ядерного топлива, отходов металлургического производства урана, его сплавов и изделий.

Изобретение относится к области производства и переработки ядерного топлива. .

Изобретение относится к атомной энергетике, в частности к производству металлического плутония и смешанного уран-плутониевого оксидного топлива. .

Изобретение относится к новым асимметричным N,N-диалкиламидам формулы (I): (I),где R является линейной или разветвленной алкильной группой, имеющей от 8 до 15 атомов углерода.

Изобретение относится к способу экстракционного выделения и разделения плутония и нептуния из азотнокислых растворов, содержащих плутоний, нептуний, технеций и уран.

Изобретение относится к переработке облученного ядерного топлива. Способ переработки облученного ядерного топлива включает волоксидацию топлива, удаление из топлива молибдена, технеция и рутения, растворение топлива.

Изобретение относится к области ядерной энергетики, в частности к области переработки облученного ядерного топлива. Способ экстракционного извлечения урана и плутония из водного раствора включает две последовательные стадии противоточной обработки водного потока (потока питания) оборотным экстрагентом, как правило, 30% раствором трибутилфосфата в инертном разбавителе.

Группа изобретений относится к переработке израсходованных ядерных топлив. Отделяют америций от других металлических элементов, присутствующих в кислотной водной фазе или в органической фазе, путем образования комплекса америция с водорастворимым производным этилендиамина.

Изобретение относится к способу очистки азотнокислых урановых продуктов от изотопов рутения. В заявленном способе осуществляется очистка технологических азотнокислых урановых продуктов переработки отработавшего ядерного топлива от рутения, содержащих уран до 300 г/л и азотную кислоту до 40 г/л, на твердофазном катализаторе в присутствии восстановителя гидразин-нитрата с концентрацией до 10 г/л.

Изобретение относится к способу переработки отработанного ядерного топлива. Заявленный способ включает очистку урана и плутония, присутствующих в азотнокислой водной фазе, совместную реэкстракцию в азотнокислую водную фазу урана и плутония, разделение урана и плутония, присутствующих в азотнокислой водной фазе, получаемой ранее, селективную экстракцию всего или части урана в степени окисления VI в органическую фазу, несмешивающуюся с водой, реэкстракцию в азотнокислую водную фазу урана и очистку плутония или смеси урана и плутония, присутствующих в водной фазе, получаемой экстракцией.
Изобретение относится к средствам для ингибирования образования осадка молибдата циркония в водном растворе, содержащем элемент молибден и элемент цирконий, и характеризуется тем, что предусмотрено применение химического элемента, выбираемого из плутония, теллура, сурьмы и их смесей, для ингибирования образования осадка молибдата циркония в водном растворе, содержащем элемент молибден и элемент цирконий.

Изобретение относится к способу переработки отработанного ядерного топлива. Заявленный способ включает очистку урана, плутония и нептуния, присутствующих в азотнокислой водной фазе, полученной при растворении упомянутого ядерного топлива в HNO3, от примесей актинидов (III) и большей части продуктов деления, также присутствующих в данной фазе, причем указанная очистка от примесей включает в себя, по меньшей мере, совместную экстракцию урана, плутония и нептуния в фазу растворителя; разделение урана, плутония и нептуния, присутствующих в фазе растворителя, на первую водную фазу, содержащую либо плутоний без U или Np, либо смесь Pu+U без Np, или смесь Pu+U+Np, и вторую водную фазу, содержащую либо смесь U+Np без Pu, либо уран без Pu и Np; хранение первой водной фазы; очистку плутония, либо смеси Pu+U, либо смеси Pu+U+Np, присутствующих в первой водной фазе, от продуктов деления, все еще присутствующих в данной фазе, при этом указанная очистка включает в себя, по меньшей мере, однократное добавление урана для получения в конце данной стадии водного раствора, содержащего смесь Pu+U или Pu+U+Np; и совместную конверсию полученной таким образом смеси Pu+U или Pu+U+Np в смешанный оксид.
Изобретение относится к области регенерации плутония из отработанного ядерного топлива водными методами. Предложен способ реэкстракции плутония из органического раствора трибутилфосфата, содержащего плутоний в четырехвалентном состоянии, в водный азотнокислый раствор осуществляют путем контактирования указанного органического раствора с водным раствором, содержащим азотную кислоту, карбогидразид в качестве восстановителя, переводящего плутоний в трехвалентное состояние, и аминокарбоновую кислоту.

Изобретение относится к способу растворения диоксида плутония или смешанных оксидов актиноидов, содержащих диоксид плутония, любых других оксидов с окислительно-восстановительным потенциалом положительнее потенциала пары Ag2+/Ag+(-1,98 В).
Наверх