Способ увеличения антибактериальной активности антибиотиков

Изобретение относится к медицине, в частности к способу увеличения антибактериальной активности бензилпенициллина натриевой соли без изменения токсичности. Заявленный способ заключается в воздействии импульсного магнитного поля высокой напряженности на порошкообразный антибиотик переменным импульсным электромагнитным полем высокой напряженности. Порошкообразная бензилпенициллина натриевая соль облучается при напряженности Н=(0,09⋅106÷1,23⋅106) А/м с частотой f=30-70 кГц и числом импульсов n=1-3. Осуществление изобретения позволяет увеличить антибактериальную активность бензилпенициллина натриевой соли без изменения токсичности. 4 ил., 1 табл.

 

Изобретение относится к фармакологии, медицине, в частности к способу, увеличивающему антибактериальную активность антибиотиков, в частности на бензилпенициллина натриевую соль, конечным результатом которого является повышение эффективности и расширение возможностей применения имеющихся средств с антимикробной активностью.

Антибиотики используются для профилактики и лечения бактериальных инфекционных заболеваний. Устойчивость к антибиотикам развивается в случае изменения бактерий в ответ на применение данной группы препаратов. Распространение антимикробной резистентности является одной из самых острых проблем современности, несущей биологические и экономические угрозы для всех стран. Антимикробная резистентность снижает эффективность мероприятий по профилактике и лечению инфекционных и паразитарных болезней человека, животных и растений (приводят к увеличению тяжести и длительности течения этих заболеваний, что способствует повышению смертности и ухудшению показателей здоровья среди населения, гибели животных и растений) [ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ РАСПОРЯЖЕНИЕ от 25 сентября 2017 г. №2045-р].

Известно устройство для воздействия комбинированного магнитного поля на кинетику биохимических процессов в биологических системах (патент РФ N 2593238, МПК A61N 2/04, В82В 3/00, 10.08.2016). Устройство предназначено для воздействия низкочастотным магнитным полем, в импульсном режиме, в заданном объеме на биологические системы. В качестве биологических систем могут выступать как отдельные биоактивные макромолекулы, клетки, «фермент-субстрат», «белок-ингибитор», клеточные мембраны, липосомы, мицеллы и др., так и живые биообъекты (мыши, крысы).

Данное устройство создает неоднородные аксиальные поля, что является его недостатком, т.к. неоднородное магнитное поле действует неодинаково на разные области биообъекта, оказывая труднопрогнозируемый терапевтический эффект.

Наиболее близким аналогом технического решения является способ обработки вещества магнитным полем и устройство для его осуществления (патент РФ N 2155081, МПК A61N 2/00, C02F 1/48, 27.08.2000), включающее излучатель, содержащий установленные в корпусе соосно электромагнитную катушку и постоянные магниты, один из которых выполнен в виде кольца, а другой - в виде цилиндра. Электромагнитная катушка расположена между магнитами и подключена к генератору.

Недостатком является недостаточная активизация данного способа обработки, в ограничении параметров магнитной обработки вещества при напряженности не более 2⋅10-5 А/м.

Однако ни в одном из известных способов не представлено решение проблемы повышение эффективности антибактериальных препаратов с помощью универсального, портативного средства увеличения активности антибиотика без изменений токсичности.

Технический результат заключается в повышении антибактериальной активности бензилпенициллина натриевой соли без изменения токсичности.

Технический результат достигается тем, что в способе увеличения антибактериальной активности бензилпенициллина натриевой соли, заключающемся в облучении бензилпенициллина натриевой соли электромагнитным полем, воздействие осуществляют импульсным электромагнитным полем, имеющем форму затухающей синусоиды (фиг. 1) напряженностью Н=(0,09⋅106÷1,23⋅106) А/м, частотой f=30-70 кГц, числом повторения импульсов n=1-3, при этом бензилпенициллина натриевая соль имеет порошкообразное состояние.

В способе обработки порошкообразного бензилпенициллина натриевой соли импульсным электромагнитным полем все характеристики подобраны эмпирически.

Изобретение поясняется чертежами, где

на фиг. 1 - показана осциллограмма импульса электромагнитного поля;

на фиг. 2 - представлена схема воздействия на бензилпенициллина натриевую соль;

на фиг. 3 - диаметры зон подавления роста E. coli при воздействии на порошкообразную бензилпенициллина натриевую соль;

на фиг. 4 - воздействие ИМП на порошок бензилпенициллина натриевой соли с последующей подготовкой раствора и его взаимодействии с E. coli.

Стенд для проверки предлагаемого способа фиг. 2 содержит индуктор 1, генератор импульсного тока 2, датчик импульсного магнитного поля (ИМП) 3 и осциллограф 4. Датчик ИМП 3 подключен к осциллографу 4.

Последовательность процесса подготовки и проведения экспериментов:

1. Воздействие ИМП на порошок антибиотика.

2. Разведение антибиотика до нужной концентрации, распределение по поверхности чашки Петри по 0,1 мл инокулянта E. coli.

3. Размещение дисков на поверхности чашки и нанесение на них 10 мкл раствора антибиотика.

4. Размещение чашек Петри в термостат при температуре 30°С в течение 18 часов.

5. Замер «диаметров зон лизиса» производится следующим образом, чашки помещают кверху дном на темную поверхность так, чтобы свет падал на них под углом в 45°. Диаметр зон задержки роста измеряют с помощью штангенциркуля с точностью до 0,1 мм.

В случае, когда форма зон лизиса отличаются от круговой, производился расчет диаметра, как средний после замера расстояний между противоположными граничными точками фигуры в не менее 10 направлениях.

Способ обработки антибиотика импульсным электромагнитным полем осуществляется следующим образом (фиг. 2).

В индуктор 1 устанавливают виалу 5 с бензилпенициллина натриевой солью (6) в порошкообразном состоянии (например, 1 грамм), после чего проводится ее обработка ИМП. Облучается порошкообразный антибиотик электромагнитным полем при напряженности магнитного поля Н=(0,09⋅106÷1,23⋅106) А/м, частоте f=30-70 кГц и числом импульсов n=1-3 (фиг. 3).

Далее облученная порошкообразная бензилпенициллина натриевая соль доводится до концентрации 0,01 г/мл. В качестве примера можно привести воздействие антибиотика на клетки Escherihia coli. Посев бактериальной культуры кишечной палочки производился на МПА (мясопептонный агар). Escherichia coli М 17 - штамм кишечной палочки получен из медицинского сертифицированного препарата «Колибактерин», предназначенного для лечения желудочно-кишечных расстройств у людей. Инокуляты Е. coli готовились внесением 1 г сухой культуры в 10 мл среды, состав которой был следующим: пептон - 5 г/л; глюкоза - 10 г/л; NaCl - 4,68 г/л; KCl - 1,48 г/л; NH4Cl - 1,08 г/л; CaCl2 - 0,44 г/л; Трис - 6 г/л; K2HPO4 -2 г/л; MgSO4 - 5 г/л.

На фиг. 3 приведены следующие обозначения:

* - отличия диаметра зоны подавления роста E. coli при воздействии бензилпенициллина, облученного ИМП, от контроля в первой серии эксперимента достоверны с уровнем значимости Р<0,05;

# - отличия диаметра зоны подавления роста E. coli при воздействии бензилпенициллина, облученного ИМП, от контроля во второй серии эксперимента достоверны с уровнем значимости Р<0,05.

Произведенные эксперименты показывают, что облучение порошкообразного бензилпенициллина натриевой соли при напряженностях H1=0,09⋅106А/м, Н2=0,5⋅106А/м, Н3=0,65⋅106А/м, Н4=0,82⋅106А/м, Н5=1,02⋅106А/м частоте f=30-70 кГц и числом импульсов n=1-3 приводят к увеличению антибактериальной активности антибиотика на 12-24% (фиг. 4). В процессе исследований были найдены режимы обработки, при которых достигается эффект увеличения активности.

Результаты проведенной экспериментальной работы демонстрируют увеличение антибактериальный активности без изменения токсичности антибактериального препарата.

Оценка токсичности бензилпенициллина натриевой соли после обработки ИМП.

Токсикологические исследования проводили на белых мышах-самцах в возрасте 2 месяцев со средней массой тела 20-21 г. [Руководство по проведению доклинических исследований лекарственных средств. Часть первая. - М.: Гриф и К, 2012. - 944 с.] при внутрибрюшном введении. Вещества исследовали в дозах 50, 100, 150, 200, 250, 275 мг/кг (по 10 животных на каждую дозу). Количество вводимого вещества рассчитывали по объему введенного раствора в зависимости от массы тела с учетом максимально допустимого количества жидкости. Контрольная (интактная) группа животных включена в эксперимент для проведения сравнительной оценки состояния и поведения этих особей и подопытных животных. Данная группа животных по окончании первых суток наблюдений исключалась из эксперимента. Наблюдение за опытными группами проводилось в течение 14 суток. Величину LD50 (средняя доза вещества, вызывающая гибель половины членов испытуемой группы) рассчитывали с помощью нелинейного фиттинга кривых, описывающих антиагрегационную активность (%) по логарифмическому уравнению с 4 параметрами, используя программное обеспечение GraphPad Prism (GraphPad Software, Inc., США).

По результатам проведенного исследования установлено, что по расчетным показателям LD50 облучение импульсным электромагнитным полем не меняло токсичность бензилпенициллина натриевой соли. Показатели токсичности бензилпенициллина натриевой соли, подвергшейся и не подвергшейся облучению приведены в таблице 1.

I группа - бензилпенициллина натриевая соль, подвергшаяся облучению электромагнитным полем; II группа - бензилпенициллина натриевая соль, не подвергшаяся облучению электромагнитным полем.

Таким образом, при обработке ИМП порошкообразного бензилпенициллина натриевой соли наблюдается рост диаметров лизиса на 12-24%, что свидетельствует об увеличении его антибактериальной активности без изменения токсичности.

Способ увеличения антибактериальной активности бензилпенициллина натриевой соли, заключающийся в облучении бензилпенициллина натриевой соли электромагнитным полем, отличающийся тем, что облучение осуществляют импульсным электромагнитным полем напряженностью Н=(0,09⋅106÷1,23⋅106) А/м, частотой f=30-70 кГц, числом импульсов n=1-3, при этом бензилпенициллина натриевая соль имеет порошкообразное состояние.



 

Похожие патенты:

Группа изобретений относится к медицине. Предложено применение штамма Lactobacillus paracasei CNCM I-3689 для восстановления численности Bacteroidetes у субъекта с дисбактериозом, вызванным или являющимся следствием лечения антибиотиками, применение его для ускорения снижения Enterococcus faecalis в микрофлоре кишечника у субъекта с дисбактериозом, вызванным или являющимся следствием лечения антибиотиками указанного субъекта, и для предотвращения транслокации E.

Изобретение относится к фармацевтической промышленности, в частности к композиции для приготовления биологически активного средства обработки среды обитания человека.

Изобретение относится к пригодным в медицине фосфониевым солям на основе салициловой и ацетилсалициловой кислот и способу их получения. Предложены производные формулы где при R=Ac, n=4, 5, 6, 9, 10; и при R=Н, n=4, 5, 9.

Изобретение относится к области биотехнологии, конкретно к получению антибактериальных рекомбинантных белков, и может быть использовано в медицине в качестве антибактериальной композиции, проявляющей активность в отношении грамотрицательных бактерий Pseudomonas aeruginosa.

Изобретение относится пептиду и может быть использовано в медицине и ветеринарии. Предложен биологически активный пептид ChMAP-28, который имеет аминокислотную последовательность SEQ ID NO 1.

Группа изобретений относится к медицине и может быть использована для лечения или профилактики бактериальных заболеваний у пациента. Для этого парентерально вводят гибридное средство оксазолидинон-хинолон.

Описаны фармацевтические композиции, содержащие цефепим или его фармацевтически приемлемое производное и соединение формулы (I) или его стереоизомер или его фармацевтически приемлемое производное.

Изобретение относится к области ветеринарии и касается средства для лечения некробактериоза овец. В средстве в качестве действующего вещества используют электрохимически структурированный водный раствор бишофита с использованием медного анода при соотношении в масс.

Изобретение относится к области ветеринарии и представляет собой способ лечения некробактериоза крупного рогатого скота, заключающийся в расчистке пораженных участков копыт рогатого скота с последующим удалением некротизированных тканей, последующим введением гипериммунной сыворотки, полученной на основе штамма Fusobacterium necrophorum, с содержанием антител к Fusobacterium necrophorum в титре не ниже 1:128 в реакции агглютинации (в РА), отличающийся тем, что после расчистки проводят промывку 6% раствором перекиси, и последующую фиксацию марлевого тампона, смоченного композицией, в которой соотношение компонентов, % мас.: спирт этиловый 95%-55,6%, глицерин - 33,3%, йода раствор спиртовой 5%-11,1%, накладыванием тугой повязки на пораженную конечность с курсом лечения при стандартной форме течения некробактериоза в течение 2 недель при соблюдении норм кормления и содержания рогатого скота с учетом потребностей и физиологического состояния; в качестве гипериммунной сыворотки используют сыворотку, полученную из крови клинически здоровых продуцентов, гипериммунизированных инактивированными некробактериозными антигенами Fusobacterium necrophorum, и законсервированную раствором фенола до концентрации не более 0,5%; за животными осуществляют строгий контроль содержания, обеспечивая сухую глубокую подстилку и полноценное кормление по возрастным нормам и с учетом физиологического состояния больных животных.

Изобретение относится к медицине, а именно к диагностике и фотодинамической терапии, и может быть использовано для лечения опухолевых и воспалительных заболеваний с применение фотодинамической терапии (ФДТ).

Изобретение относится к медицинской технике. Устройство для лечения сколиоза включает по меньшей мере один имплантируемый в тело позвонка транспедикулярный винт, содержащий резьбовую часть с заостренным концом и головку, выполненную из ферромагнитного материала, и внешний источник постоянного магнитного поля, установленный на теле пациента напротив области установки винтов, силовые линии которого ориентированы перпендикулярно или тангенциально по отношению к вводимым винтам.

Изобретение относится к медицине и может быть использовано для импульсного электромагнитного воздействия на клеточную культуру в медицинских и биологических целях.
Изобретение относится к области медицины, а именно к неврологии и педиатрии, и может быть использовано для лечения задержки речевого развития у детей в возрасте от 3 лет.

Изобретение относится к области медицины, а именно к неврологии, и может быть использовано для лечения невропатии нижнего альвеолярного нерва. Предварительно проводят клинико-нейрофизиологическое исследование путем неврологического осмотра и регистрации акустических стволовых вызванных потенциалов (АСВП) и тригеминальных вызванных потенциалов (ТВП) в области нижней челюсти.
Изобретение относится к медицине, а именно к эндокринологии и физиотерапии, и может быть использовано при лечении диабетической ангиопатии нижних конечностей у пациентов с сахарным диабетом 2 типа.

Изобретение относится к медицине, а именно к неврологии, реабилитологии, физиотерапии. Осуществляют диагностическую стимуляцию импульсным магнитным полем невральных структур на сегментарном уровне с помощью магнитного стимулятора с минимальной интенсивностью магнитного поля с последующим ее увеличением до получения порога вызванного моторного ответа.
Изобретение относится к медицине, а именно к урологии и физиотерапии, и может быть использовано для профилактики рубцово-склеротических осложнений после оперативного лечения на верхних мочевых путях.
Изобретение относится к области медицины, в частности, к неврологии (вегетологии). Проводят мониторинг частоты пульса и частоты (ЧСС) дыхания пациента (ЧД).
Изобретение относится к медицине, в частности к комбустиологии, и может быть использовано для лечения ожоговых ран II-III А степени. При смене покрытия "Silkofix Gel Ag" применяют ультрафиолетовое облучение ожоговой раны, начиная с дозы облучения 50 мкб ⋅ мин/см2 в течение 30 секунд.
Изобретение относится к медицине, а именно к офтальмологии и физиотерапии, и может быть использовано для лечения нейроретинопатии вследствие тяжелой преэклампсии.

Изобретение относится к медицинской технике. Устройство для лечения сколиоза включает по меньшей мере один имплантируемый в тело позвонка транспедикулярный винт, содержащий резьбовую часть с заостренным концом и головку, выполненную из ферромагнитного материала, и внешний источник постоянного магнитного поля, установленный на теле пациента напротив области установки винтов, силовые линии которого ориентированы перпендикулярно или тангенциально по отношению к вводимым винтам.
Наверх