Способ прошивки глубокого отверстия и устройство для его прошивки

Изобретение относится к области машиностроения и может быть использовано для электроэрозионной и комбинированной эрозионнохимической прошивки глубоких отверстий, преимущественно малого сечения. Предложен способ прошивки глубокого отверстия в металлической детали, осуществляемый вибрирующим профильным электродом-инструментом с подачей под давлением через форсунку в межэлектродный зазор жидкой рабочей среды для ускорения массовыноса продуктов обработки. В место выхода из межэлектродного зазора жидкой рабочей среды с продуктами обработки в момент наибольшего сближения с деталью вибрирующего вдоль продольной оси профильного электрода-инструмента через форсунку, вращающуюся вдоль продольной оси с частотой, кратной частоте вибрации электрода-инструмента, импульсами с давлением жидкой рабочей среды в месте входа в деталь электрода-инструмента, из форсунки раздельно подают струю той же жидкой рабочей среды, после чего давление в импульсе повышают до получения кавитационного режима течения жидкой рабочей среды в месте выхода струи из межэлектродного зазора и совмещают момент импульса воздействия струи жидкой рабочей среды из форсунки с моментом наибольшего сближения с деталью вибрирующего вдоль продольной оси профильного электрода-инструмента. Также предложено устройство для осуществления способа. Техническим результатом является интенсификация прошивки отверстия малого сечения профильным электродом-инструментом и увеличение предельной глубины прошиваемого отверстия за счет ускорения массовыноса из межэлектродного зазора продуктов разъединением струй жидкой рабочей среды и создания кавитационного режима течения струи на выходе из межэлектродного зазора. 2 н.п. ф-лы, 2 ил., 1 пр.

 

Способ и устройство относятся к области машиностроения и могут быть использованы для электроэрозионной и комбинированной эрозионнохимической прошивки глубоких отверстий, преимущественно малого сечения.

Известны из книги «Электрофизические и электрохимические методы обработки материалов» В 2 т. Т. 1/Под ред. В.П. Смоленцева М: Высшая школа, 1983 по страницам 34-36 способ и устройство для прошивки глубоких отверстий с прокачкой жидкой рабочей среды через канал внутри электрода-инструмента.

Недостатком известного способа и устройства является невозможность изготовления канала внутри электрода-инструмента при прошивке отверстий малого сечения, т.к. это снижает площадь сечения электрода-инструмента, требуемого для подвода технологического тока, что ограничивает скорость прошивки и предельную глубину отверстия.

Наиболее близким к предлагаемому способу является способ интенсификации процесса и увеличения предельной глубины электроэрозионной прошивки отверстий малого сечения в книге А.Ф. Бойко «Эффективная технология и оборудование для электроэрозионной прошивки прецизионных микроотверстий». Белгород: Изд-во БГТУ, 2010-314 с. путем придания (с. 60) профильному электроду-инструменту вдоль его оси продольной возвратно-поступательной вибрации, обеспечивающей интенсификацию массовыноса из межэлектродного зазора жидкой рабочей среды с продуктами обработки.

К недостаткам способа относится ограничение глубины прошиваемого отверстия по мере удлинения пути встречного движения струй жидкой рабочей среды в межэлектродном зазоре, что замедляет процесс прошивки вплоть до его прекращения. Наиболее близкой к предлагаемому устройству является форсунка для подачи в зону обработки под давлением вдоль ее оси струи жидкой рабочей среды, приведенная на с. 579 книги « Справочник технолога-машиностроителя». В. 2 т. Т. 2/Под ред. А.С. Васильева, А.А. Кутина. М: «Инновационное машиностроение», 2018.

К недостаткам устройства относится торможение в межэлектродном зазоре движения вдоль оси форсунки жидкой рабочей среды, что снижает интенсивность массовыноса продуктов обработки, замедляет прошивку и ограничивает предельную глубину получения отверстия малого сечения профильным электродом-инструментом.

Техническим результатом, на достижение которого направлено изобретение, является интенсификация прошивки отверстия малого сечения профильным электродом-инструментом и увеличение предельной глубины прошиваемого отверстия за счет ускорения массовыноса из межэлектродного зазора продуктов разъединением струй жидкой рабочей среды и создания кавитационного режима течения струи на выходе из межэлектродного зазора.

Данный технический результат достигается тем, что в предлагаемом способе в месте выхода из межэлектродного зазора жидкой рабочей среды с продуктами обработки в момент наибольшего сближения с деталью вибрирующего вдоль продольной оси профильного электрода-инструмента через форсунку, вращающуюся вдоль продольной оси с частотой, кратной частоте вибрации электрода-инструмента, импульсами с давлением жидкой рабочей среды в месте входа в деталь электрода-инструмента, из форсунки раздельно подают струю той же жидкой рабочей среды, после чего давление в импульсе повышают до получения кавитационного режима течения жидкой рабочей среды в месте выхода струи из межэлектродного зазора и совмещают момент импульса воздействия струи жидкой рабочей среды из форсунки с моментом наибольшего сближения с деталью вибрирующего вдоль продольной оси профильного электрода-инструмента.

В предлагаемом устройстве для прошивки форсунка установлена со стороны электрода -инструмента, противолежащей месту входа в межэлектродный зазор струи от насоса, при этом ось струи жидкой рабочей среды из форсунки совмещена с осью бокового сопла форсунки, направленной в место выхода жидкой рабочей среды из межэлектродного зазора, а со стороны входа жидкой рабочей среды в форсунку установлен регулятор давления рабочей среды, соединенный с независимыми друг от друга датчиками кавитации и положения электрода-инструмента относительно детали, при этом выходной сигнал датчика положения электрода-инструмента относительно детали совмещен с входным сигналом регулятора управлением частотой вращения привода форсунки.

Сущность изобретения поясняется фиг. 1 и 2, где на фиг. 1 показаны структура и взаимодействие элементов предлагаемого способа и устройства, а на фиг. 2 -положение сопла в форсунке относительно места подвода струи из форсунки к межэлектродному зазору.

При прошивке (фиг. 1) в детали 1 отверстия 2 малого сечения применяют профильный электрод-инструмент 3, который в процессе прошивки подают в направлении 4 к детали 1. Электрод-инструмент 3 совершает возвратно-поступательные движения 5 вдоль оси электрода-инструмента 3 от вибратора 6. Сигналы от продольного перемещения электрода-инструмента 3 идут на датчик положения 7 электрода-инструмента 3 и далее на регулятор давления 8 рабочей среды, поступающей к регулятору давления 8 от насоса 9, подающего струю 10 жидкой рабочей среды из магистрали 11 к входу в межэлектродный зазор 12, по которому рабочая среда перемещается через торцевой зазор 13 в направлении 14 на место 15 выхода струи из межэлектродного зазора, (фиг. 2). В месте 15 размещен датчик кавитации 16, сигнал с которого поступает на регулятор давления 8, подающий давление рабочей среды на вход форсунки 17, на выходе из которой формируется струя 18 рабочей среды. Форсунка вращается приводом 19 с управлением частотой вращения регулятором 20.

Способ осуществляют в следующей последовательности: Деталь 1 (фиг. 1) устанавливают на стол электроэрозионного станка или станка для эрозионнохимической прошивки. В электрододержатель станка устанавливают профильный электрод-инструмент 3. Делают пробную прошивку углубления в месте отверстия 2 с подачей 4 электрода-инструмента 3. Измеряют межэлектродные зазоры 12 и 13. Регулируют амплитуду вибрации вибратора 6 в пределах перемещения профильного электрода-инструмента 3 в межэлектродном зазоре 13 без касания донной части углубления. Устанавливают рекомендуемую (См., например, с. 61 книги А.Ф. Бойко «Эффективная технология и оборудование для электроэрозионной прошивки прецизионных микроотверстий». Белгород: Изд-во БГТУ, 2010-314 с. ) частоту следования вибраций 5 от вибратора б. Устанавливают межэлектродный зазор 13 и в межэлектродный зазор 12 из магистрали 11 через насос 9 подают струю 10 жидкой рабочей среды под давлением, обеспечивающим ее перемещение 14 на место 15 (фиг. 2). Настраивают датчик положения 7 электрода-инструмента по минимальному расстоянию между электродом-инструментом 3 и деталью и в этом положении датчика настраивают форсунку 17 с регулятором 20 и приводом 19 так, чтобы струя 18 была направлена в место 15. Датчик кавитации 16 устанавливают в место 15 и соединяют его с регулятором давления 8. Включают вибрацию 5 вибратором 6, насос 9, привод 19, и по сигналам датчика кавитации настраивают регулятор давления 8 на начало кавитационного течения жидкой рабочей среды в месте 15, что можно- установить визуально по появлению в этом месте псевдокипящей жидкости. Включают технологический ток от генератора (на рис. 1 не показан) так, чтобы электрод-инструмент 3 был анодом, подачу 4 и прошивают отверстие 2.

Пример применения способа. В форсунке из бронзы БРХ08 необходимо прошить круглое отверстие диаметром 0,40+0,005 мм глубиной 7 мм. Изготавливаем электрод-инструмент диаметром 0,30 мм и длиной 50 мм. Устанавливаем макет форсунки и электрод-инструмент на модернизированный станок СН-145. Режимы обработки выбраны по рекомендациям на стр. 78-79 книги А.Ф. Бойко «Эффективная технология и оборудование для электроэрозионной прошивки прецизионных микроотверстий». Белгород: Изд-во БГТУ, 2010-314 с: энергия импульсов разрядного тока-80 мкДж, длительность импульсов-0,3 мкс, частота импульсов-300 Гц, амплитуда импульсов тока -10 А, рабочая среда-углеводородная жидкость, давление подачи рабочей среды 12 МПа, частота вибраций электрода-инструмента-120 Гц. Выполняем на станке углубление величиной 1 мм и замеряем межэлектродный зазор - 0,005 мкм. Назначаем амплитуду колебаний при вибрации электрода-инструмента -7+2 мкм, частоту вибраций электрода-инструмента сохраняем- 120 Гц. Настраиваем частоту вращения форсунки -1,2 Гц. Устанавливаем на станок выбранные режимы и обрабатываемую форсунку. Изменение давления подачи рабочей среды +9 МПа. Прошиваем на кавитационном режиме сквозное отверстие. Средняя скорость прошивки составила 0,0872 мм/мин, соотношение глубины отверстия к диаметру -17, погрешность диаметра -0,004 мм. Без использования кавитационного режима средняя скорость прошивки не превышала 0,05 мм/мин, а предельное соотношение глубины отверстия относительно диаметра менее 12.

Таким образом приведенный пример подтвердил эффективность предлагаемого способа и устройства.

1. Способ прошивки глубокого отверстия в металлической детали, осуществляемый вибрирующим профильным электродом-инструментом с подачей под давлением через форсунку в межэлектродный зазор жидкой рабочей среды для ускорения массовыноса продуктов обработки, отличающийся тем, что в место выхода из межэлектродного зазора жидкой рабочей среды с продуктами обработки в момент наибольшего сближения с деталью вибрирующего вдоль продольной оси профильного электрода-инструмента через форсунку, вращающуюся вдоль продольной оси с частотой, кратной частоте вибрации электрода-инструмента, импульсами с давлением жидкой рабочей среды в месте входа в деталь электрода-инструмента, из форсунки раздельно подают струю той же жидкой рабочей среды, после чего давление в импульсе повышают до получения кавитационного режима течения жидкой рабочей среды в месте выхода струи из межэлектродного зазора и совмещают момент импульса воздействия струи жидкой рабочей среды из форсунки с моментом наибольшего сближения с деталью вибрирующего вдоль продольной оси профильного электрода-инструмента.

2. Устройство для прошивки глубокого отверстия в металлической детали, содержащее насос для подачи под давлением жидкой рабочей среды в межэлектродный зазор между деталью и электродом-инструментом, форсунку и вибратор для продольного перемещения вдоль ее оси электрода-инструмента, отличающееся тем, что форсунка установлена со стороны электрода-инструмента, противолежащей месту входа в межэлектродный зазор струи от насоса, при этом ось струи жидкой рабочей среды из форсунки совмещена с осью бокового сопла форсунки, направленной в место выхода жидкой рабочей среды из межэлектродного зазора, а со стороны входа жидкой рабочей среды в форсунку установлен регулятор давления рабочей среды, соединенный с независимыми друг от друга датчиками кавитации и положения электрода-инструмента относительно детали, при этом выходной сигнал датчика положения электрода-инструмента относительно детали совмещен с входным сигналом регулятора управлением частотой вращения привода форсунки.



 

Похожие патенты:

Изобретение относится к области машиностроения, к инструменту для электрохимической обработки глубоких отверстий малого поперечного сечения. Электрод-инструмент для обработки глубоких отверстий содержит полую трубку, на наружной поверхности которой выполнена кольцевая канавка с перемычками, между которыми расположены радиальные отверстия, сообщенные с центральным отверстием, на торец электрода приварена проволока в форме дуги, а через радиальные отверстия установлен ограничитель из изоляционного материала, выполненный в виде втулки, при этом длина ограничителя L соответствует ширине b обрабатываемого отверстия.

Изобретение относится к области машиностроения и может быть использовано для обработки отверстий малого диаметра, например перфорационных отверстий в лопатках из жаропрочных сплавов путем удаления дефектного слоя электрохимической обработкой.

Изобретение относится к электрохимической и эрозионнохимической групповой прошивке круглых отверстий малого диаметра, например в фильтрах. Способ изготовления многоэлектродного инструмента для групповой прошивки круглых отверстий включает получение многоэлектродного инструмента с электродами прямоугольного сечения путем электроэрозионного разрезания монолитной заготовки вдоль оси с образованием взаимно перпендикулярных пазов между электродами, в которые для дальнейшего обработки электродов прямоугольного сечения устанавливают катод, собранный в виде решетки из металлических пластин, имеющих продольные замки в виде пазов с глубиной, равной половине длины пластины, а на концевых участках каждой пластины между замками установлен по меньшей мере один диэлектрический точечный упор с высотой не более величины бокового межэлектродного зазора, причем толщина пластин равна разнице между шириной паза в заготовке и удвоенной величиной бокового межэлектродного зазора, а шаг между пластинами равен расстоянию между осями соседних прямоугольных электродов.

Изобретение относится к прошивке сквозных отверстий в закрытых полостях, предназначенных для содержания горючих веществ, например жидкого водорода и кислорода, применяемых в качестве топлива для ракетных двигателей, в которых до заполнения полостей горючими веществами не допускается наличие любых веществ, кроме чистой дистиллированной воды.

Изобретение относится к электроэрозионной прошивке отверстий в металлических деталях. Способ включает одновременную прошивку группы отверстий электродами, при которой используют решетку из диэлектрического материала в виде шаблона с отверстиями, площадь сечения каждого из которых не менее минимальной площади сечения прошиваемого отверстия в детали со стороны выхода из нее электрода.

Изобретение относится к электроэрозионной обработке и может быть использовано для электроэрозионной прошивки прецизионных отверстий малого диаметра широкой номенклатуры деталей, например лопаток газотурбинного двигателя.

Изобретение относится к полированию поверхности отверстия детали. Способ включает возвратно-поступательное перемещение и вибрацию эластичного инструмента относительно детали и одновременную электрохимическую анодную обработку поверхности отверстия.

Изобретение относится к электрохимической обработке. Способ электрохимической обработки каналов соосно-струйной форсунки для камеры жидкостного ракетного двигателя, содержащей корпус с пилонами и каналами для подачи компонентов топлива, включает доводку геометрических размеров каналов форсунки электрохимической обработкой, при которой осуществляют подачу токопроводящей жидкости в обрабатываемые каналы при помощи инструмента-катода.

Изобретение относится к электрохимической обработке и может быть использовано для электрохимической доводки форсунок из токопроводящих материалов, преимущественно, для жидкостных ракетных двигателей.

Изобретение относится к электрохимической обработке и может быть использовано при электрохимической доводке форсунок из токопроводящих материалов, преимущественно форсунок для жидкостных ракетных двигателей.

Предлагаемое изобретение относится к области электрокоагуляционной регенерации электролитов на основе водных растворов нитрата и хлорида натрия, содержащих шестивалентные ионы хрома, и может быть использовано в процессе электрохимической обработки лопаток газотурбинных двигателей.

Изобретение относится к электрохимической размерной обработке деталей из металлических материалов. Предложен способ, включающий пропускание рабочей среды на входе в зону обработки через магнитное поле с вектором перемещения наночастиц в сторону, противоположную гравитационным силам, при этом на выходе из зоны обработки рабочую среду с продуктами обработки, образовавшимися в процессе электрохимической размерной обработки, пропускают через магнитное поле с вектором перемещения наночастиц в противоположном направлении.

Изобретение относится к электрохимическому глубокому маркированию металлических деталей. В способе используют шаблон из диэлектрической водопроницаемой основы с нанесенным на нее контуром маркируемых знаков из токопроводящего материала, при этом шаблон диэлектрической основой устанавливают на поверхность детали, а к контурам маркируемых знаков шаблона прижимают катод.

Изобретение относится к электрохимической обработке. Способ электрохимической обработки каналов соосно-струйной форсунки для камеры жидкостного ракетного двигателя, содержащей корпус с пилонами и каналами для подачи компонентов топлива, включает доводку геометрических размеров каналов форсунки электрохимической обработкой, при которой осуществляют подачу токопроводящей жидкости в обрабатываемые каналы при помощи инструмента-катода.

Изобретение относится к электрохимической обработке и может быть использовано для электрохимической доводки форсунок из токопроводящих материалов, преимущественно, для жидкостных ракетных двигателей.

Изобретение относится к электрохимической обработке и может быть использовано при электрохимической доводке форсунок из токопроводящих материалов, преимущественно форсунок для жидкостных ракетных двигателей.

Изобретение относится к электрохимической обработке и может быть использовано для электрохимической доводки форсунок из токопроводящих материалов преимущественно для жидкостных ракетных двигателей.

Изобретение относится к электрохимической обработке и может быть использовано при электрохимической доводке форсунок из токопроводящих материалов, преимущественно форсунок для жидкостных ракетных двигателей.

Изобретение относится к электрохимической размерной обработке металлических деталей в рабочей среде с переменной проводимостью. Вначале межэлектродный зазор заполняют рабочей средой и на электрод-инструмент и деталь подают импульсы тока до достижения рабочей средой температуры порога проводимости, после чего включают прокачку рабочей среды в межэлектродном зазоре и продолжают подавать на электрод-инструмент и деталь импульсы тока с частотой обратно пропорциональной положительному градиенту между рабочей температурой и температурой порога проводимости рабочей среды.

Изобретение относится к очистке электролита и может быть использовано для подачи, регенерации и регулирования параметров электролита. .
Наверх