Способ диагностики двухполюсного ротора с постоянными магнитами

Изобретение относится к области энергомашиностроения, в частности к устройствам, используемым для диагностики электрических машин с постоянными магнитами в синхронных машинах. Технический результат: повышение точности и эффективности диагностики двухполюсных роторов с постоянными магнитами. Сущность: в электрическую машину устанавливают дополнительную трехфазную обмотку, катушки каждой фазы которой расположены относительно друг друга на 120°. Измеряют электродвижущую силу, наводимую в дополнительной обмотке при вращении ротора, по измеренной форме кривой электродвижущей силы и ее гармоническому составу судят об исправности ротора с постоянными магнитами. Если кривая электродвижущей силы искажена относительно оси абсцисс, то ротор с постоянными магнитами неисправен. 3 ил.

 

Изобретение относится к области энергомашиностроения, в частности к устройствам, используемым для диагностики электрических машин с постоянными магнитами в синхронных машинах (англ. synchronous electrical machines with permanent magnets, сокращенно - SEMPM).

Известен способ определения температуры постоянных магнитов в многофазных синхронных машинах переменного тока [патент US №8,222,844 В2 С2, Н02Р 6/00, опубл. 17.07.2012], по которому измеряют температуру постоянных магнитов в электрической машине и определяют их остаточную индукцию. Температуру магнита можно определить, если измерять фазное напряжение и скорость вращения электрической машины.

Недостатком данного способа является ограниченные функциональные возможности, обусловленные сложностью конструкции и невозможностью точного определения механических повреждений постоянных магнитов в роторе электрической машины.

Известен способ диагностики повреждений постоянных магнитов и управления электрической машиной [патент US №9,647,591 В2, Н02Н 7/08, Н02Р 21/14, опубл. 9.05.2017], по которому диагностику повреждений постоянных магнитов осуществляются по току и напряжению. По напряжению определяют форму кривой электродвижущей силы. Полученную информацию о форме используют для оценки состояния постоянных магнитов.

Недостатком данного способа являются ограниченные функциональные возможности, обусловленные сложностью конструкции и невозможностью точного определения расположения повреждений постоянных магнитов.

Наиболее близким по технической сущности и достигаемому результату к заявляемому изобретению является способ диагностики для обнаружения неисправности ротора с постоянными магнитами в синхронных машинах [патент US №2016/0097814 A1, G01R 31/34, опубл. 7.04.2016], по которому диагностику постоянных магнитов осуществляют током q-оси, током d-оси, напряжением на оси q и/или оси d. Полученную информации используют для определения формы потока, в результате чего определяется состояние постоянных магнитов на роторе электрической машины. Оценка может быть использована для идентификации повреждений одного или нескольких магнитов, которые могут возникать в результате повышенных температурных условий, физического или химического разложения.

Недостатками ближайшего аналога являются большие массогабаритные показатели, низкая эффективность, ограниченные функциональные возможности, обусловленные сложностью конструкции, а также отсутствие возможности определения расположения повреждения.

Задачами изобретения являются диагностирование сколов и локальных повреждений двухполюсных роторов, а также своевременное выявление повреждения постоянных магнитов.

Техническим результатом является повышение точности и эффективности диагностики двухполюсных роторов с постоянными магнитами.

Технический результат достигается за счет того, что по способу диагностики электрической машины с постоянными магнитами в синхронных машинах, по которому определяют неисправность ротора по напряжению, согласно изобретению, в электрическую машину устанавливают дополнительную трехфазную обмотку, катушки каждой фазы расположены относительно друг друга на 120°, затем измеряют электромагнитную силу, наводящую в дополнительной обмотке при вращении ротора, и по измеренной форме кривой электродвижущей силы и ее гармоническому составу судят об исправности электрической машины с постоянными магнитами, если кривая электродвижущей силы искажена в первом либо в четвертом квадранте, то ротор с постоянными магнитами не исправен.

Изобретение поясняется следующими чертежами.

На фиг. 1 показана осциллограмма экспериментальных исследований дефектного ротора.

На фиг. 2 показана осциллограмма экспериментальных исследований исправного ротора.

На фиг. 3 изображена схема распределения магнитного потока ротором SEMPM с дефектным ротором.

Пример конкретной реализации способа.

Для понимания физической сути данного процесса представляется целесообразным рассмотреть его математическое описание. Расчетная схема с распределением линий магнитной индукции постоянных магнитов ротора приведена на фиг. 3.

При математическом анализе процессов локального размагничивания постоянных магнитов используются следующие допущения:

- так как диагностическая ЭДС получается с дополнительной обмотки и является ЭДС холостого хода, то рассматривается магнитное поле холостого хода;

- рассматривается двухполюсная магнитная система ротора;

- магнитная проницаемость стали сердечника, а также стали вала равна бесконечности, магнитная проницаемость воздушного зазора равна магнитной проницаемости вакуума;

- аксиальная составляющая напряженности магнитного поля в торцевых поверхностях ротора равна 0, т.е. рассматривается SEMPM бесконечной длины.

- обмотка в исследуемом SEMPM представляется в виде тонкого медного слоя, вектор плотности токов содержит только аксиальную составляющую;

- вихревые токи, наводимые пространственными и временными гармониками статора в постоянных магнитах и бандажной оболочке ротора не учитываются. При этом важно отметить, что в ряде случае, поле создаваемое вихревыми токами в обмотки SEMPM, может также являться диагностическим критерием сколов и локального размагничивания. Вопросы исследования полей вихревых токов, наводимых в обмотке SEMPM, раскрыты в работе (Ismagilov, F.R., Vavilov, V.E., Karimov, R.D. Improving the efficiency of electrical high-rpm generators with permanent magnets and tooth winding Progress In Electromagnetics Research M 63, c. 93-105);

- магнитное поле на поверхности постоянного магнита задано в виде гармонического ряда нормальной составляющей магнитной индукции на поверхности постоянного магнита (Ismagilov, F.R., Vavilov, V.Y., Miniyarov, А.Н., Veselov, A.M., Ayguzina, V.V. Design, optimization and initial testing of a high-speed 5-kw permanent magnet generator for aerospace application Progress In Electromagnetics Research С vol. 79, c. 225-240):

при ; .

При анализе магнитного поля в SEMPM мы оперируем уравнениями Максвелла:

; ; ; ; ;

где - вектор магнитной индукции результирующего магнитного поля; - вектор напряженности электрического и магнитного полей;

- вектор скорости движения ротора; - электрическая проводимость обмотки статора; - вектор плотности индуцированных токов;

- вектор плотности сторонних токов.

Так как, локальное размагничивание постоянных магнитов должно проявляться и при режиме нагрузке SEMPM, и при режиме холостого хода, то для обобщенности математического описания целесообразно рассмотреть режим холостого хода SEMPM. Для решения данной задачи рассматривается уравнение Лапласа в цилиндрических координатах с учетом условий непрерывности линий магнитного поля:

, , ,

где Hr, Hϕ радиальная и тангенциальная составляющие напряженности магнитного поля в немагнитном зазоре SEMPM.

Локальное размагничивание полюса или скол полюса приведет к уменьшению величины индукции на поверхности постоянных магнитов и изменению амплитуды намагниченности постоянных магнитов.

Экспериментальные исследования выполнялись электрической машиной с тремя катушками, расположенными относительно друг друга на 120°. Все испытания производились в генераторном режиме SEMPM при работе на активную нагрузку.

Для минимизации потерь в магнитопроводе статора для всех исследуемых топологий используют аморфный магнитный материал 5БДСР с индукцией насыщения 1,35 Тл и толщиной листа 25 мкм. Статор имеет полную длину 45 мм и состоит из 9 стеков длиной по 5 мм. В качестве магнитов ротора использовались магниты Sm2Co17 остаточной индукцией 1,07 Тл и коэрцитивной силой 756 кА/м. Для минимизации потерь магниты выполнены шихтованными в осевом направлении. Ротор имеет активную длину 50 мм. Обмотка выполнена из провода ПНЭТ-имид с температурным индексом 220°С. Пазовая изоляция выполнена из полиамидной пленки.

Испытания выполнялись на пониженной частоте 2800 об/мин. Пониженная частота вращения ротора использовалась в связи с тем, что бандажные оболочки роторов SEMPM были удалены. При испытаниях использовались подшипники SKF 638/8-2Z, способные обеспечить частоту вращения до 90000 об/мин. Приводным двигателем стенда являлся асинхронный двигатель мощностью 4 кВт.

Главной задачей при испытаниях макетов была оценка их электродвижущей силы (ЭДС) в зависимости от дефекта ротора. ЭДС измерялась с помощью осциллографа Gwinstek GDS-73154, анализ гармонического спектра напряжения осуществлялся с помощью анализатора гармоник Призма-50. Результаты экспериментальных исследований для исправного и дефектного ротора приведены на фигуре 1 и 2.

Результаты экспериментальных исследований по измерению ЭДС SEMPM при холостом ходе в генераторном режиме. При установке дефектного ротора в SEMPM с зубцовой обмоткой типа alternate teeth wound выходная ЭДС становится ассиметричной относительно оси абцисс. Подобная форма ЭДС практически не встречается в электрических машинах. При этом установка исправного ротора в данный образец SEMPM привела к симметричности выходного ЭДС относительно оси абцисс. Таким образом, диагностическим критерим одностороннего скола или локального размагничивания постоянного магнита при данном типе обмотке, числе полюсов и числе пазов является несимметрчиность выходного напряжения по оси абцисс. Аналогичные результаты были получены и при полной нагрузке, что доказывает: ток в обмотках SEMPM практически не влияет на выявленные диагностические критерии (ассиметричность выходного ЭДС относительно оси абцисс).

Таким образом, обеспечивается повышение точности и эффективности диагностики двухполюсных роторов с постоянными магнитами.

Способ диагностики двухполюсного ротора с постоянными магнитами синхронной электрической машины, по которому определяют неисправность ротора по напряжению, отличающийся тем, что в электрическую машину устанавливают дополнительную трехфазную обмотку, катушки каждой фазы расположены относительно друг друга на 120°, затем измеряют электродвижущую силу, наводимую в дополнительной обмотке при вращении ротора, и по измеренной форме кривой электродвижущей силы и ее гармоническому составу судят об исправности ротора с постоянными магнитами, если кривая электродвижущей силы искажена по оси абсцисс, то ротор с постоянными магнитами неисправен.



 

Похожие патенты:

Изобретение относится к области диагностики технических систем для проверки промышленного оборудования и технических систем на предмет их надежной работы, к которым могут быть отнесены подшипники электродвигателей, ленточные конвейеры и т.п., и может быть использовано для диагностики электродвигателя технической системы на предмет его надежности.

Изобретение относится к области электротехники и может быть использовано для защиты от эксцентриситета ротора электрических машин переменного тока. Технический результат заключается в повышении точности определения эксцентриситета ротора электрической машины в способе защиты от эксцентриситета, основанном на получении сигнала о наличии и величине эксцентриситета ротора, в качестве которого используют непрерывно измеряемый сигнал тока фазы статора электрической машины, с последующим его преобразованием в однополярный сигнал, удалении из однополярного сигнала постоянной составляющей, равной D, где D - постоянная величина размером от нуля до наибольшей величины однополярного сигнала, и выделении из получившегося сигнала гармонических составляющих.

Изобретение относится к области контроля исправности диодов системы возбуждения синхронных машин. Способ контроля исправности диодов системы возбуждения синхронных машин, заключающийся в использовании некоторого условного сопротивления Rусл, равного отношению напряжения возбуждения ротора синхронной машины, измеряемого в эксплуатации на измерительных контактных кольцах, к измеряемому в эксплуатации току возбуждения возбудителя и сравнении этого условного сопротивления с соответствующим значением в явно исправном состоянии, причем уменьшение Rусл до двух раз свидетельствует о пробое (запекании) диода, незначительное уменьшение до 10% свидетельствует об обрыве одного и более диодов.

Изобретение относится к диагностической технике и может быть использовано для определения технического состояния автомобильных вентильных генераторов. Сущность заявленного решения заключается в том, что для определения неисправностей предлагается снимать осциллограммы на силовом выходе автомобильного вентильного генератора, предварительно отключив его от аккумуляторной батареи и соединив с анодом полупроводникового диода, катод которого соединяется с положительным выводом аккумуляторной батареи.

Изобретение относится к области электротехники и может быть применено для испытания асинхронных машин и способа их нагружения. Технический результат: повышение надежности стенда за счет исключения возможности перегрузки испытуемой и нагрузочной машины в процессе их нагружения.

Изобретение относится к области контроля технического состояния асинхронных электродвигателей и может быть использовано для обнаружения обрывов стержней обмоток роторов асинхронных электродвигателей.

Изобретение относится к электроизмерительной технике, в частности к устройствам для контроля качества изоляции, и может быть использовано в средствах для диагностики состояния изоляции асинхронного электродвигателя с короткозамкнутым ротором.

Изобретение относится к области электротехники и может быть использовано при испытаниях электрических машин - синхронных, асинхронных электрических двигателей и генераторов с совмещенными обмотками (обмотки типа «Славянка») и контроля качества их исполнения, а также может применяться в процессе разработки и исследования конструктивных решений энергоэффективных электрических машин с совмещенными обмотками и систем управления (контроллеров), адаптированных к использованию с такими машинами.

Изобретение относится к устройствам диагностирования и быстродействующей защиты асинхронных двигателей. Устройство диагностирования и быстродействующей защиты асинхронного двигателя дополнительно содержит датчик магнитной индукции, размещенный в воздушном зазоре асинхронного двигателя и предназначенный для измерения мгновенных значений магнитной индукции, масштабированный сигнал о значении которой с выхода масштабирующего усилителя сигнала магнитной индукции поступает на блок полосовых фильтров, настроенных на частоты гармоник диагностических признаков, выходами подключенный к первым входам блока компараторов, вторые входы которых соединены с выходами формирователя амплитуд эталонных сигналов, соответствующих диагностическим признакам, выходы блока компараторов соединены с установочными входами блока триггеров и входами логического элемента ИЛИ, подключенного выходом к управляющему входу управляемого коммутационного аппарата, входы сброса блока триггеров объединены между собой и являются входом сброса кода ошибки, визуальное отображение которой осуществляется блоком индикации сигнала кода ошибки, входы которого подключены к выходам блока триггеров.

Изобретение относится к устройствам диагностирования и быстродействующей защиты асинхронных двигателей. Устройство диагностирования и быстродействующей защиты асинхронного двигателя дополнительно содержит датчик магнитной индукции, размещенный в воздушном зазоре асинхронного двигателя и предназначенный для измерения мгновенных значений магнитной индукции, масштабированный сигнал о значении которой с выхода масштабирующего усилителя сигнала магнитной индукции поступает на блок полосовых фильтров, настроенных на частоты гармоник диагностических признаков, выходами подключенный к первым входам блока компараторов, вторые входы которых соединены с выходами формирователя амплитуд эталонных сигналов, соответствующих диагностическим признакам, выходы блока компараторов соединены с установочными входами блока триггеров и входами логического элемента ИЛИ, подключенного выходом к управляющему входу управляемого коммутационного аппарата, входы сброса блока триггеров объединены между собой и являются входом сброса кода ошибки, визуальное отображение которой осуществляется блоком индикации сигнала кода ошибки, входы которого подключены к выходам блока триггеров.

Изобретение относится к области энергомашиностроения, в частности к устройствам, используемым для диагностики электрических машин с постоянными магнитами в синхронных машинах. Технический результат: повышение точности и эффективности диагностики двухполюсных роторов с постоянными магнитами. Сущность: в электрическую машину устанавливают дополнительную трехфазную обмотку, катушки каждой фазы которой расположены относительно друг друга на 120°. Измеряют электродвижущую силу, наводимую в дополнительной обмотке при вращении ротора, по измеренной форме кривой электродвижущей силы и ее гармоническому составу судят об исправности ротора с постоянными магнитами. Если кривая электродвижущей силы искажена относительно оси абсцисс, то ротор с постоянными магнитами неисправен. 3 ил.

Наверх