Способ получения гетероструктуры co/pbzr0,45ti0,55o3

Изобретение относится к области композиционных гетероструктур, обладающих высоким низкочастотным магнитоэлектрическим эффектом, состоящих из слоя ферромагнетика и керамической сегнетоэлектрической подложки, конкретно к способу получения слоя металлического кобальта на поверхности керамики состава PbZr0,45Ti0,55O3. Способ получения гетероструктуры Co/PbZr0,45Ti0,55O3 включает сглаживание поверхности сегнетоэлектрической подложки PbZr0,45Ti0,55O3 толщиной 120-200 мкм до уровня шероховатости не более 20 нм и напыление ионно-лучевым методом слоя кобальта толщиной 2-4 мкм. Перед напылением слоя кобальта предварительно проводят профилирование поверхности подложки PbZr0,45Ti0,55O3, включающее проведение разметки поверхности выступами в форме лент шириной 5-7 мкм с расстоянием между ними 12-15 мкм методом ионно-лучевого напыления маски алюминия толщиной 1-3 мкм и вытравливание расстояния между размеченными выступами на глубину от 1 до 3 мкм. Гетероструктуры, состоящие из слоя ферромагненика, нанесенного на подложку из сегнетоэлектрика, характеризуются высоким низкочастотным магнитоэлектрическим эффектом. 4 ил., 3 пр.

 

Изобретение относится к области композиционных гетероструктур, обладающих высоким низкочастотным магнитоэлектрическим эффектом, состоящих из слоя ферромагнетика и керамической сегнетоэлектрической подложки, конкретно к способу получения слоя металлического кобальта на поверхности керамики состава PbZr0,45Ti0,55O3.

Магнитоэлектрический эффект заключается в возникновении электрической поляризации в материале, помещенном во внешнее магнитное поле, или в появлении намагниченности во внешнем электрическом поле [Пятаков А.П., Звездин А.К. Магнитоэлектрические материалы и мультиферроики // Успехи физ. наук, 2012, Т. 182, №5, С. 593-620]. Различают резонансный и низкочастотный магнитоэлектрический эффекты. Наиболее эффективным с точки зрения практического использования является низкочастотный магнитоэлектрический эффект, под которым понимается эффект, возникающий при намагничивании структуры во внешнем магнитном поле частотой до 1000 Гц [Филиппов Д.А., Лалетин В.М., Srinivasan G. Низкочастотный и резонансный магнитоэлектрические эффекты в объемных композиционных структурах феррит никеля-цирконат-титанат свинца // Журнал технической физики, 2012, Т. 82, вып. 1, С. 47-51].

Структуры с низкочастотным магнитоэлектрическим эффектом представляют наибольший интерес для создания генераторов и преобразователей напряжения, датчиков магнитных полей и других устройств бытового назначения [Стогний А.И., Новицкий Н.Н., Шарко С.А., Беспалов А.В., Голикова О.Л., Sazanovich A., Dyakonov V, Смирнова М.Н., Кецко В.А. Влияние толщины слоя кобальта на магнитоэлектрические свойства гетероструктур Co/PbZr0,45Ti0,55O3/Co // Неорганические материалы, 2013, Т. 49, №10, С. 1141-1147].

Материалы, проявляющие магнитоэлектрический эффект, подразделяются на однофазные и композиционные. Магнитоэлектрический эффект в однофазных материалах является незначительным по сравнению с композиционными и проявляется при температурах ниже комнатных [Белоус А.Г., Вьюгин О.И. Мультиферроики: синтез, структура и свойства // Украинский химический журнал, 2012, Т. 78, №7, С. 3-29; С.Lu, P. Li, Y. Wen, A. Yang, W. Не, J. Zhang. Enhancement of resonant magnetoelectric effect in magnetostrictive/piezoelectric heterostructure by end bonding // Appl. Phys. Lett., 2013, 102, 132410]. Композиционные материалы в свою очередь разделяют на объемные и слоистые. Основным недостатком объемных композиционных материалов является необходимость создания высокого электрического сопротивления для поляризации сегнетоэлектрической компоненты.

Достоинством слоистых структур является высокая степень поляризации пьезоэлектрической фазы, малые значения тока утечки [Белоус А.Г., Вьюгин О.И. Мультиферроики: синтез, структура и свойства Украинский химич. журнал, 2012, Т. 78, №7, С. 3-29].

В работах [Cheng J.H., Wang Y.G., Xie D. Resonance magnetoelectric effect in Ni/Pb(Zr,Ti)O3/Terfenol-D trilayered composites with different mechanical boundary conditions // Applied physics letters, 2014, V. 104, 252411; Zhou J., He H., Zhan S., Gang L., Nan C. Dielectric, magnetic, and magnetoelectric properties of laminated PbZr0,52Ti0,48O3/CoFe2O4 composite ceramics // Journal of Applied Physics, 2006, 100, 094106] в качестве материалов перспективных для создания многофункциональных устройств микроэлектроники рассматривают мультиферроидные композиционные структуры. Одним из недостатков данных многокомпонентных структур является высокая вероятность протекания процессов взаимной диффузии на межфазных границах. Негативное воздействие этих процессов возрастает по мере увеличения слоев, что приводит к химической нестабильности материала. При этом экспериментально доказано, что большое количество слоев не является фактором, приводящим к улучшению функциональных свойств материала [АЛ. Stognij, N. Novitskii, N. Poddubnaya, S. Sharko, V. Ketsko, V. Mikhailov, V. Dyakonov, and H. Szymczak. Interface magnetoelectric effect in the layered heterostructures with Co layers on the polished and ion-beam planarized ceramic PZT substrates // Eur. Phys. J. Appl. Phys., 2015, 69, 11301].

Таким образом, наиболее оптимальным является создание функциональных гетеструктур пленка/подложка, так как в этом случае удается минимизировать вероятность возникновения дефектов в структуре за счет уменьшения количества межфазных границ, которые потенциально можно рассматривать как участки нарушения химической стабильности материала.

Известен способ получения слоистых структур ферромагнетик/ сегнетоэлектрик, основанный на электрохимической кристаллизации слоя ферромагнетика на керамической подложке сегнетоэлектрика [J. Van Den Boomgaard, D.R. Terrell, R.A.J. Born, H.F.J.I. Giller. An in Situ Grown eutectic Magnetoelectric composite material. Part 1. Composition and unidirectional solidification // J. Mater. Sci., 1974, V. 9, №10. P. 1705-1709]. Среди недостатков этого метода следует выделить высокую вероятность неконтролируемого нарушения стехиометрии состава образцов, а также протекание процессов химического взаимодействия между компонентами структуры в процессе получения слоя ферромагнетика.

Известен способ получения слоистых структур ферромагнетик/сегнетоэлектрик, состоящий в нанесении на одну из сторон ферромагнетика и сегнетоэлектрика клея, соединения клеевых слоев друг с другом путем прессования и выдержки до затвердевания клея. [Petrov V.M., Srinivasan G., Laletin V.M., Bichurin M.I., Tuskov D.S., Poddubnaya N.N. Magnetoelectric Effects in Porous Ferromagnetic-Piezoelectric Bulk Composites: Experiment and Theory // Phys. Rev. В., 2007, V. 75, P. 174422; Islam R.A., Priya S. Effect of piezoelectric grain size on magnetoelectric coefficient of Pb(Zr0,52Ti0,48)O3-Ni0,8Zn0,2Fe2O4 particulate composites // J. Mater. Sci, 2008, V. 43, №10. P. 3560-3568].

Основными недостатками таких структур являются низкие значения магнитоэлектрического эффекта, термическая нестабильность и невоспроизводимость свойств материала. Это связано с неравномерной толщиной клеевой прослойки между ферромагнетиком и сегнетоэлектриком, обусловленной шероховатостью керамической подложки сегнетоэлектрика.

Можно видеть, что в качестве ферромагнитной компоненты обычно используют металлические ферромагнетики, ферриты,

интерметаллические соединения. В качестве пьезоматериалов преимущественно применяют керамику на основе твердого раствора цирконата - титаната свинца с общей формулой PbZr1-xTixO3. Материалы на основе PbZr1-xTixO3 обладают высокими значениями диэлектрической проницаемости и пьезоэлектрического модуля. Для решения различных практических задач микроэлектроники используется PbZr1-xTixO3 с соотношением Zr и Ti в составе примерно 1:1. При этом наиболее оптимальными свойствами обладают материалы состава PbZr0,45Ti0,55O3 [Izyumskaya N., Alivov Y.-L., Cho S.-J., H., Lee H., and Kang Y.-S. Processing, Structure, Properties, and Applications of PZT Thin Films // Critical Reviews in Solid State and Mater. Sciences, 2007, P. 111-202].

Наиболее близким техническим решением (прототип) к предлагаемому является способ получения слоистых структур, заключающийся в нанесении методом ионно-лучевого напыления слоя кобальта на предварительно сглаженную до субмикронного уровня (не более 20 нм) керамическую сегнетоэлектрическую подложку PbZr0,45Ti0,55O3. Использование этого метода напыления обеспечивает высокую адгезию разнородных компонентов гетероструктуры. Сформированная таким способом ферромагнитная сегнетоэлектрическая гетероструктура характеризуется термостабильными и воспроизводимыми свойствами. Показано, что оптимальные значения толщин ферромагнитной и сегнетоэлектрической компонент, при которых магнитоэлектрическое взаимодействие достигает максимальных значений, составляет для слоя ферромагнетика 2-4 мкм, а для сегнетоэлектрика - 120-200 мкм [Стогний А.И., Новицкий Н.Н., Шарко С.А., Беспалов А.В., Голикова О.Л, Смирнова М.Н., Кецко В.А. О визуализации области магнитоэлектрического взаимодействия тонкого слоя ферромагнетика на сегнетоэлектрической подложке // Неорганические материалы, 2019, Т. 55, №3, С. 311-316].

Основным недостатком этого способа является недостаточно высокая величина низкочастотного магнитоэлектрического эффекта у получаемых структур, составляющая не более 4 мВ/(см×Э), что ограничивает практическое использование материала в микроэлектронике из-за низкого значения отношения сигнал/шум.

Изобретение направлено на изыскание способа увеличения магнитоэлектрического эффекта в гетероструктурах, состоящих из слоя ферромагнетика, нанесенного на подложку сегнетоэлектрика.

Технической задачей изобретения является создание гетероструктур, состоящих из слоя кобальта, нанесенного на сегнетоэлектрическую подложку PbZr0,45Ti0,55O3.

Технический результат достигается тем, что предложен способ получения гетероструктуры Co/PbZr0,45Ti0,55O3, заключающийся в том, что поверхность сегнетоэлектрической подложки PbZr0,45Ti0,55O3 толщиной 120-200 мкм сглаживают до уровня шероховатости не более 20 нм и наносят ионно-лучевым методом слой кобальта толщиной 2-4 мкм, отличающийся тем, что перед напылением слоя кобальта предварительно проводят профилирование поверхности PbZr0,45Ti0,55O3: сначала ионно-лучевым напылением маски алюминия толщиной 1-3 мкм проводят разметку поверхности выступами в форме лент шириной 5-7 мкм с расстоянием между ними 12-15 мкм и затем вытравливают расстояние между размеченными выступами на глубину от 1 до 3 мкм.

Метод ионно-лучевого напыления обеспечивает эффективность получения функциональных слоистых структур с предварительным профилированием поверхности, поскольку в результате его использования материал распыляемой мишени находится при комнатной температуре и бомбардируется ионами низких энергий. Подложка при этом не разогревается, что позволяет напылять на подложку слой, обладающий низкой термостойкостью. Кроме того, ионно-лучевой метод позволяет не только напылять, но и распылять заданную толщину слоя.

Использование маски алюминия обусловлено тем, что такая маска не испаряется во время напыления, химически не взаимодействует с материалом поверхности, обладает малым коэффициентом диффузии, при травлении удаляется примерно с такой же скоростью, как и подложка [Зи С.М. Физика полупроводниковых приборов // Энергия, 1973, 656 с.].

Ширина выступов и расстояние между ними обусловлены тем, что при ширине выступов менее 5 мкм и расстоянием между ними менее 12 мкм, как и при ширине выступов более 7 мкм и расстоянием между ними более 15 мкм, величина максимально достижимого магнитоэлектрического эффекта не возрастает.

Глубину вытравливания выбирают из соображений, что при глубине вытравливания менее 1 мкм магнитоэлектрический эффект не превышает величину, полученную по прототипу, а при глубине вытравливания более 3 мкм возрастает неоднородность гетероструктуры.

Диапазон толщин маски определяется глубиной заданного профиля поверхности. При этом учитывается, что в процессе профилирования маску металла необходимо полностью удалить с поверхности подложки методом ионно-лучевого распыления.

Сущность изобретения заключается в том, что профилирование поверхности подложки приводит к увеличению площади ее контакта с ферромагнетиком и, как следствие, к возрастанию величины намагничивания, что, в свою очередь, увеличивает магнитоэлектрический эффект.

Достижение технического результата иллюстрируется, но не ограничивается приведенными ниже фигурами и примерами.

Фиг. 1. Изображение поверхности гетероструктуры Co/PbZr0,45Ti0,55O3, полученной по примеру 1.

Фиг. 2. Величина магнитоэлектрического эффекта в гетероструктуре Co/PbZr0,45Ti0,55O3, полученной по примеру 1.

Фиг. 3. Изображение поверхности и поперечного среза гетероструктуры Co/PbZr0,45Ti0,55O3, полученной по примеру 2.

Фиг. 4. Величина магнитоэлектрического эффекта в гетероструктуре Co/PbZr0,45Ti0,55O3, полученной по примеру 2.

Пример 1. Первоначально поверхность сегнетоэлектрической подложки PbZr0,45Ti0,55O3 толщиной 120 мкм сглаживали до уровня шероховатости 20 нм. Для этого с поверхности PbZr0,45Ti0,55O3 пучком ионов азота с энергией 0.2 кэВ в течение 30 минут удаляли посторонние примеси и наносили слой того же химического состава, что и подложка (PbZr0,45Ti0,55O3) толщиной 0.2 мкм путем распыления мишени ионами кислорода с энергией 1,6 кэВ. Затем поверхность подложки с нанесенным слоем распыляли ионами кислорода с энергией 0.4 кэВ. Далее осуществляли профилирование поверхности PbZr0,45Ti0,55O3: ионно-лучевым напылением маски алюминия толщиной 3 мкм ионами аргона с энергией пучка 1.6 кэВ и плотностью тока пучка 0,25 мА/см2 проводили разметку поверхности выступами в форме лент шириной 6,5 мкм с расстоянием между ними 14 мкм и затем вытравливали расстояние между размеченными выступами вдоль всей подложки путем ионно-лучевого распыления с использованием пучков ионов кислорода с энергией 0,3 кэВ и плотностью тока пучка 0,25 мА/см2 на глубину 3 мкм. На профилированную поверхность PbZr0,45Ti0,55O3 наносили слой кобальта толщиной 2 мкм распылением мишени кобальта ионами аргона с энергией пучка 1,6 кэВ и плотностью тока пучка 0,25 мА/см2. В результате получали ферромагнитную сегнетоэлектрическую гетероструктуру, изображение которой представлено на Фиг. 1. За величину магнитоэлектрического эффекта принимали значение магнитоэлектрического коэффициента по напряжению α. Величина магнитоэлектрического эффекта для полученной гетероструктуры в переменном магнитном поле на частоте 1 кГц составила 10 мВ/(см×Э), что проиллюстрировано на Фиг. 2.

Пример 2. По примеру 1, отличающийся тем, что на поверхности керамической подложки PbZr0,45Ti0,55O3 толщиной 200 мкм проводили разметку поверхности выступами в форме лент высотой 1 мкм, шириной 5 мкм и расстоянием между ними 15 мкм. Распыление проводили на глубину 1 мкм. В результате получали ферромагнитную сегнетоэлектрическую гетероструктуру, изображение которой представлено на Фиг. 3. Величина магнитоэлектрического эффекта для нее в переменном магнитном поле на частоте 1 кГц составила 10 мВ/(смхЭ), что проиллюстрировано на Фиг. 4.

Пример 3. По примеру 1, отличающийся тем, что на поверхности керамической подложки PbZr0,45Ti0,55O3 толщиной 130 мкм проводили разметку поверхности выступами в форме лент высотой 2 мкм, шириной 7 мкм и расстоянием между ними 12 мкм. Распыление проводили на глубину 2 мкм. Толщина слоя кобальта составляла 4 мкм. В результате получали ферромагнитную сегнетоэлектрическую гетероструктуру. Величина магнитоэлектрического эффекта для нее в переменном магнитном поле на частоте 1 кГц, как и в примере 1, составила 10 мВ/(см×Э).

Таким образом, предложен способ получения ферромагнитной сегнетоэлектрической гетероструктуры, обладающей высоким низкочастотным магнитоэлектрическим эффектом, состоящей из слоя кобальта и подложки PbZr0,45Ti0,55O3 с профилированной геометрией поверхности. Предлагаемое изобретение позволяет создавать композиционные материалы для устройств взаимного контроля и преобразования электрических и магнитных характеристик, магнитополевых сенсоров, а также устройств хранения и считывания информации.

Способ получения гетероструктуры Co/PbZr0,45Ti0,55O3, включающий сглаживание поверхности сегнетоэлектрической подложки PbZr0,45Ti0,55O3 толщиной 120-200 мкм до уровня шероховатости не более 20 нм и напыление ионно-лучевым методом слоя кобальта толщиной 2-4 мкм, отличающийся тем, что перед напылением слоя кобальта проводят профилирование поверхности подложки PbZr0,45Ti0,55O3, включающее проведение разметки поверхности выступами в форме лент шириной 5-7 мкм с расстоянием между ними 12-15 мкм ионно-лучевым напылением маски алюминия толщиной 1-3 мкм и вытравливание расстояния между размеченными выступами на глубину от 1 до 3 мкм.



 

Похожие патенты:
Изобретение относится к способу декорирования стекла. Способ включает распаковку стеклянных изделий, мойку с сушкой; гравировку наружной поверхности стеклянных изделий; повторную мойку и сушку; нанесение трафаретной маски для напыления; маскирование стеклянных изделий путем нанесения вручную защитного материала на поверхность; размещение изделий в устройстве фиксации камеры для вакуумного напыления; напыление декорирующего слоя; выгрузку изделий, удаления защитного материала со стеклянных изделий и упаковки.
Изобретение относится к способу декорирования стекла. Способ включает распаковку стеклянных изделий, мойку с сушкой; гравировку наружной поверхности стеклянных изделий; повторную мойку и сушку; нанесение трафаретной маски для напыления; маскирование стеклянных изделий путем нанесения вручную защитного материала на поверхность; размещение изделий в устройстве фиксации камеры для вакуумного напыления; напыление декорирующего слоя; выгрузку изделий, удаления защитного материала со стеклянных изделий и упаковки.

Изобретение относится к области ионно-плазменного напыления многослойных пленок, в частности к устройству для получения многослойных пленок. Устройство содержит экранированную катод-мишень и подложкодержатель, расположенный в горизонтальном магнитном поле.

Изобретение относится к устройству для напыления просветляющего покрытия фотопреобразователя и может найти применение в электронной технике. Маска в устройстве расположена с лицевой стороны подложки.

Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из легированных сталей, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения, режущего инструмента и штамповой оснастки.

Изобретение относится к микроэлектронике, в частности к установке для напыления в вакууме топологического тонкоплёночного рисунка гибридной микросхемы на подложку.

Изобретение относится к способу напыления в вакууме топологического тонкопленочного рисунка гибридной микросхемы на подложку и может быть использовано в микроэлектронике.

Изобретение относится к турбомашинам и, в частности, к деталям упомянутых турбомашин, которые подвержены высоким температурам. Способ осаждения керамического слоя, образующего термобарьерное покрытие, на металлическую подложку (1), который включает осаждение указанного керамического слоя со столбчатой структурой, при этом указанное осаждение осуществляют через перфорированную отверстиями (11) решетку (10), расположенную параллельно поверхности подложки (1), так чтобы сформировать, по меньшей мере, два керамических столбика (5), отделенных друг от друга промежутком (6).

Изобретение относится к способу очистки вспомогательных поверхностей установок для нанесения покрытий, которые содержат камеру для нанесения покрытия. Перед нанесением покрытия наносят антиадгезионный слой на вспомогательные поверхности камеры для нанесения покрытия.
Изобретение относится к области нанесения на подложки металлических покрытий, а именно к нанесению электропроводящего слоя на полимерную или бумажную подложку при изготовлении антенн, работающих в диапазоне ультравысокой частоты.

Изобретение относится к способу изготовления препятствующего оксидированию барьерного слоя на подложке детали и подложке с упомянутым барьерным слоем. Осуществляют физическое осаждение из газовой фазы (PVD) непроницаемого для кислорода препятствующего оксидированию барьерного слоя на непокрытой поверхности подложки детали.

Изобретение относится к машиностроению и может быть использовано при изготовлении металлополимерных объемных образцов на основе сверхвысокомолекулярного полиэтилена (СВМПЭ).

Изобретение относится к пленочным материалам для управления солнечным светом для использования в остеклении и касается полученных с использованием тройных сплавов панелей с низкой излучательной способностью, включающих в себя подложку и отражающий слой, образованный поверх подложки, а также способов их формирования.

Изобретение относится к функциональной тонкой пленке, которая включает гибридную органическую/неорганическую тонкую пленку и слой оксида металла, а также к способу ее изготовления.

Изобретение относится к области получения композиционных материалов и касается способа изготовления трехслойной композитной панели с сотовым заполнителем. Способ включает в себя следующие операции: по аддитивной технологии изготавливают средний слой из пластика с требуемыми конструктивными параметрами «сот»; из металлических листов вырезают верхний и нижний слои необходимого размера; механически обрабатывают или травят поверхности верхнего и нижнего слоев для обеспечения требуемого микрорельефа; устанавливают нижний и верхний слои в пресс обработанными поверхностями друг напротив друга; располагают средний слой между нижним и верхним слоями; поочередно нагревают верхний и нижний слои до температуры плавления среднего слоя с одновременным осаждением на заданный размер.

Изобретение относится к подложке и способу ее изготовления. Подложка содержит множеством слоев, по меньшей мере один из которых включает оксиды металлов и имеет непосредственно поверх себя слой металлического покрытия, которое содержит по меньшей мере 8 масс.

Изобретение относится к металлическим покрытиям, в частности к нанесению поверхностного покрытия на композитное изделие. Способ формирования поверхностного покрытия (256) на композитном изделии (150) включает нанесение термического напыления (206, 236) на поверхность (302) инструмента (300) с обеспечением формирования поверхностного покрытия (256), имеющего раскрепляемую связь (226) с поверхностью (302) инструмента и имеющего суммарное остаточное напряжение (250), которое, по существу, эквивалентно по величине прочности (224) сцепления покрытия с инструментом.

Изобретение относится к изготовлению плит из керамических и композиционных материалов. Способ включает приготовление экзотермической смеси порошков, прессование смеси в заготовку, помещение ее в пресс-форму, инициирование реакции горения и последующее прессование продуктов горения.

Изобретение относится к химической промышленности, в частности к установкам для изготовления листового композиционного теплораспределяющего материала на основе природного графита, который может быть использован в энергосберегающих системах для отвода и распределения тепла от трубчатых меандров радиантных потолочных панелей систем отопления и кондиционирования помещений.

Изобретение относится к изделиям с покрытием и может быть использовано в области монолитных окон, в теплоизоляционных стеклопакетах и многослойных окнах. Изделие содержит многослойное покрытие, нанесенное на стеклянную основу.
Наверх